Journal Home > Volume 1 , Issue 3

Silicon (Si) is one of the most promising anode materials for high-energy lithium-ion batteries. However, the widespread application of Si-based anodes is inhibited by large volume change, unstable solid electrolyte interphase, and poor electrical conductivity. During the past decade, significant efforts have been made to overcome these major challenges toward industrial applications. This review summarizes the recent development of microscale Si-based electrodes fabricated by Si microparticles or other industrial bulk materials from the perspective of industrialization. First, the challenges for microscale Si anodes are clarified. Second, structural design strategies of stable micro-sized Si materials are discussed. Third, other critical practical metrics, such as robust binder construction and electrolyte design, are also highlighted. Finally, future trends and perspectives on the commercialization of Si-based anodes are provided.


menu
Abstract
Full text
Outline
About this article

The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review

Show Author's information Qing LiuYunhuan HuXinrun YuYufei QinTao MengXianluo Hu( )
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Silicon (Si) is one of the most promising anode materials for high-energy lithium-ion batteries. However, the widespread application of Si-based anodes is inhibited by large volume change, unstable solid electrolyte interphase, and poor electrical conductivity. During the past decade, significant efforts have been made to overcome these major challenges toward industrial applications. This review summarizes the recent development of microscale Si-based electrodes fabricated by Si microparticles or other industrial bulk materials from the perspective of industrialization. First, the challenges for microscale Si anodes are clarified. Second, structural design strategies of stable micro-sized Si materials are discussed. Third, other critical practical metrics, such as robust binder construction and electrolyte design, are also highlighted. Finally, future trends and perspectives on the commercialization of Si-based anodes are provided.

Keywords: silicon, lithium-ion batteries, polymer binder, porous structures, micro-sized particles, electrolyte design

References(184)

[1]

Cao, Y. L.; Li, M.; Lu, J.; Liu, J.; Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 2019, 14, 200–207.

[2]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[3]

Liang, Y. R.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W. C.; Huang, J. Q.; Yu, D. S.; Liu, Y. L.; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.

[4]

Xia, C.; Kwok, C. Y.; Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 2018, 361, 777–781

[5]

Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

[6]

Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.

[7]

Cao, C. T.; Abate, I. I.; Sivonxay, E.; Shyam, B.; Jia, C. J.; Moritz, B.; Devereaux, T. P.; Persson, K. A.; Steinrück, H. G.; Toney, M. F. Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 2019, 3, 762–781.

[8]

McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

[9]

Shimizu, M.; Usui, H.; Matsumoto, K.; Nokami, T.; Itoh, T.; Sakaguchi, H. Effect of cation structure of ionic liquids on anode properties of Si electrodes for LIB. J. Electrochem. Soc. 2014, 161, A1765–A1771.

[10]

Xu, Z. X.; Yang, J.; Li, H. P.; Nuli, Y.; Wang, J. L. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J. Mater. Chem. A 2019, 7, 9432–9446.

[11]

Yamaguchi, K.; Domi, Y.; Usui, H.; Shimizu, M.; Morishita, S.; Yodoya, S.; Sakata, T.; Sakaguchi, H. Effect of film-forming additive in ionic liquid electrolyte on electrochemical performance of Si negative-electrode for LIBs. J. Electrochem. Soc. 2019, 166, A268–A276.

[12]

Zhang, Y. G.; Du, N.; Yang, D. R. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries. Nanoscale 2019, 11, 19086–19104.

[13]

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

[14]

Wang, Q. Y.; Zhu, M.; Chen, G. R.; Dudko, N.; Li, Y.; Liu, H. J.; Shi, L. Y.; Wu, G.; Zhang, D. S. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism. Adv. Mater. 2022, 34, 2109658.

[15]

Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 2006, 161, 1254–1259.

[16]

Zhang, C. Z.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J. S.; Li, F. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2021, 2, 2100009.

[17]

Zhang, L.; Rajagopalan, R.; Guo, H. P.; Hu, X. L.; Dou, S. X.; Liu, H. K. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv. Funct. Mater. 2016, 26, 440–446.

[18]

Nzabahimana, J.; Guo, S. T.; Hu, X. L. Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries. Appl. Surf. Sci. 2019, 479, 287–295.

[19]

Huang, A. M.; Ma, Y. C.; Peng, J.; Li, L. L.; Chou, S. L.; Ramakrishna, S.; Peng, S. J. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 1, 141–162.

[20]

Pan, S. Y.; Han, J. W.; Wang, Y. Q.; Li, Z. S.; Chen, F. Q.; Guo, Y.; Han, Z. S.; Xiao, K. F.; Yu, Z. C.; Yu, M. Y. et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv. Mater. 2022, 2203617.

[21]

Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of Konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

[22]

Jin, Y.; Zhu, B.; Lu, Z. D.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715.

[23]

Seefurth, R. N.; Sharma, R. A. Investigation of lithium utilization from a lithium-silicon electrode. J. Electrochem. Soc. 1977, 124, 1207–1214.

[24]

Sharma, R. A.; Seefurth, R. N. Thermodynamic properties of the lithium-silicon system. J. Electrochem. Soc. 1976, 123, 1763–1768.

[25]

Yu, Q.; Ge, P. P.; Liu, Z. H.; Xu, M.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Ultrafine SiOx/C nanospheres and their pomegranate-like assemblies for high performance lithium storage. J. Mater. Chem. A 2018, 6, 14903.

[26]

Ma, T. Y.; Yu, X. N.; Cheng, X. L.; Li, H. Y.; Zhu, W. T.; Qiu, X. P. Confined solid electrolyte interphase growth space with solid polymer electrolyte in hollow structured silicon anode for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 13247–13254.

[27]

Chen, X.; Li, H. X.; Yan, Z. H.; Cheng, F. Y.; Chen, J. Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 2019, 62, 1515–1536.

[28]

Pereira-Nabais, C.; Światowska, J.; Chagnes, A.; Gohier, A.; Zanna, S.; Seyeux, A.; Tran-Van, P.; Cojocaru, C. S.; Cassir, M.; Marcus, P. Insight into the solid electrolyte interphase on Si nanowires in lithium-ion battery: Chemical and morphological modifications upon cycling. J. Phys. Chem. C 2014, 118, 2919–2928.

[29]

Kim, G. T.; Kennedy, T.; Brandon, M.; Geaney, H.; Ryan, K. M.; Passerini, S.; Appetecchi, G. B. Behavior of germanium and silicon nanowire anodes with ionic liquid electrolytes. ACS Nano 2017, 11, 5933–5943.

[30]

Shimizu, M.; Usui, H.; Suzumura, T.; Sakaguchi, H. Analysis of the deterioration mechanism of Si electrode as a Li-ion battery anode using Raman microspectroscopy. J. Phys. Chem. C 2015, 119, 2975–2982.

[31]

Usui, H.; Shimizu, M.; Sakaguchi, H. Applicability of ionic liquid electrolytes to LaSi2/Si composite thick-film anodes in Li-ion battery. J. Power Sources 2013, 235, 29–35.

[32]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[33]

Hou, G. L.; Cheng, B. L.; Cao, Y. B.; Yao, M. S.; Li, B. Q.; Zhang, C.; Weng, Q. H.; Wang, X.; Bando, Y.; Golberg, D. et al. Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy 2016, 24, 111–120.

[34]

Su, L. W.; Jing, Y.; Zhou, Z. Li ion battery materials with core-shell nanostructures. Nanoscale 2011, 3, 3967–3983.

[35]

Xu, Q.; Li, J. Y.; Yin, Y. X.; Kong, Y. M.; Guo, Y. G.; Wan, L. J. Nano/micro-structured Si/C anodes with high initial Coulombic efficiency in Li-ion batteries. Chem. Asian J. 2016, 11, 1205–1209.

[36]

Hahn, A.; Fuhlrott, J.; Loos, A.; Barcikowski, S. Cytotoxicity and ion release of alloy nanoparticles. J Nanopart. Res. 2012, 14, 686.

[37]

Chen, Z.; Zhang, H. R.; Dong, T. T.; Mu, P. Z.; Rong, X. C.; Li, Z. T. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes. ACS Appl. Mater. Interfaces 2020, 12, 47164–47180.

[38]

Du, A. M.; Li, H.; Chen, X. W.; Han, Y. Y.; Zhu, Z. P.; Chu, C. C. Recent research progress of silicon-based anode materials for lithium-ion batteries. ChemistrySelect 2022, 7, e202201269.

[39]

Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, 2004577.

[40]

Guo, J. P.; Dong, D. Q.; Wang, J.; Liu, D.; Yu, X. Q.; Zheng, Y.; Wen, Z. R.; Lei, W.; Deng, Y. H.; Wang, J. et al. Silicon-based lithium ion battery systems: State-of-the-art from half and full cell viewpoint. Adv. Funct. Mater. 2021, 31, 2102546.

[41]

Han, L.; Liu, T. F.; Sheng, O. W.; Liu, Y. J.; Wang, Y.; Nai, J. W.; Zhang, L.; Tao, X. Y. Undervalued roles of binder in modulating solid electrolyte interphase formation of silicon-based anode materials. ACS Appl. Mater. Interfaces 2021, 13, 45139–45148.

[42]

He, S. G.; Huang, S. M.; Wang, S. F.; Mizota, I.; Liu, X.; Hou, X. H. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy Fuels 2021, 35, 944–964.

[43]

Yi, R.; Gordin, M. L.; Wang, D. Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries. Nanoscale 2016, 8, 1834–1848.

[44]

Zhu, G. J.; Chao, D. L.; Xu, W. L.; Wu, M. H.; Zhang, H. J. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 2021, 15, 15567–15593.

[45]

Bourderau, S.; Brousse, T.; Schleich, D. M. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 1999, 8182, 233–236.

[46]

Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

[47]

Kim, M.; Yang, Z. Z. Bloom, I. Review-the lithiation/delithiation behavior of Si-based electrodes: A connection between electrochemistry and mechanics. J. Electrochem. Soc. 2021, 168, 010523.

[48]

Feng, Z. Y.; Peng, W. J.; Wang, Z. X.; Guo, H. J.; Li, X. H.; Yan, G. C.; Wang, J. X. Review of silicon-based alloys for lithium-ion battery anodes. Int. J. Miner. Metall. Mater. 2021, 28, 1549–1564.

[49]

Xie, Q. X.; Qu, S. P.; Zhao, P. A facile fabrication of micro/nano-sized silicon/carbon composite with a honeycomb structure as high-stability anodes for lithium-ion batteries. J. Electroanal. Chem. 2021, 884, 115074.

[50]

Zhang, P. J.; Wang, L. B.; Xie, J.; Su, L. W.; Ma, C. A. Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 3776–3782.

[51]

Feng, X. J.; Cui, H. M.; Miao, R. R.; Yan, N. F.; Ding, T. D.; Xiao, Z. Q. Nano/micro-structured silicon@carbon composite with buffer void as anode material for lithium ion battery. Ceram. Int. 2016, 42, 589–597.

[52]

Nzabahimana, J.; Chang, P.; Hu, X. L. Porous carbon-coated ball-milled silicon as high-performance anodes for lithium-ion batteries. J. Mater. Sci. 2019, 54, 4798–4810.

[53]

Park, B. H.; Jeong, J. H.; Lee, G. W.; Kim, Y. H.; Roh, K. C.; Kim, K. B. Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. J. Power Sources 2018, 394, 94–101.

[54]

Ma, C. L.; Wang, Z. R.; Zhao, Y.; Li, Y.; Shi, J. A novel raspberry-like yolk-shell structured Si/C micro/nano-spheres as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 2020, 844, 156201.

[55]

Cao, W. Y.; Han, K.; Chen, M. X.; Ye, H. Q.; Sang, S. B. Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching. Electrochim. Acta 2019, 320, 134613.

[56]

An, W. L.; He, P.; Che, Z. Z.; Xiao, C. M.; Guo, E. M.; Pang, C. L.; He, X. Q.; Ren, J. G.; Yuan, G. H.; Du, N. et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 10308–10318.

[57]

Dai, F.; Zai, J. T.; Yi, R.; Gordin, M. L.; Sohn, H.; Chen, S. R.; Wang, D. H. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat. Commun. 2014, 5, 3605.

[58]

Lee, J.; Moon, J.; Han, S. A.; Kim, J.; Malgras, V.; Heo, Y. U.; Kim, H.; Lee, S. M.; Liu, H. K.; Dou, S. X. et al. Everlasting living and breathing gyroid 3D network in Si@SiOx/C nanoarchitecture for lithium ion battery. ACS Nano 2019, 13, 9607–9619.

[59]

Lee, J. I.; Lee, K. T.; Cho, J.; Kim, J.; Choi, N. S.; Park, S. Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems. Angew. Chem. , Int. Ed. 2012, 51, 2767–2771.

[60]

Zhao, T. T.; Zhu, D. L.; Li, W. R.; Li, A. J.; Zhang, J. J. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes. J. Power Sources 2019, 439, 227027.

[61]

Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2012, 2, 878–883.

[62]

Kim, N.; Park, H.; Yoon, N.; Lee, J. K. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 2018, 12, 3853–3864.

[63]

Zhu, G. J.; Jiang, W., Yang, J. P. Engineering carbon distribution in silicon-based anodes at multiple scales. Chem. -Eur. J. 2020, 26, 1488–1496.

[64]

Tian, H. J.; Tan, X. J.; Xin, F. X.; Wang, C. S.; Han, W. Q. Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy 2015, 11, 490–499.

[65]

Wang, K.; Pei, S. E.; He, Z. S.; Huang, L. A.; Zhu, S. S.; Guo, J. F.; Shao, H. B.; Wang, J. M. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 2019, 356, 272–281.

[66]

Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

[67]

Li, X. L.; Yan, P. F.; Xiao, X. C.; Woo, J. H.; Wang, C. M.; Liu, J.; Zhang, J. G. Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling. Energy Environ. Sci. 2017, 10, 1427–1434.

[68]

Ren, W. F.; Wang, Y. H.; Zhang, Z. L.; Tan, Q. Q.; Zhong, Z. Y.; Su, F. B. Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: Can the production process be cheaper and greener? J. Mater. Chem. A 2016, 4, 552–560.

[69]

Chen, B. H.; Chuang, S. I.; Duh, J. G. Double-plasma enhanced carbon shield for spatial/interfacial controlled electrodes in lithium ion batteries via micro-sized silicon from wafer waste. J. Power Sources 2016, 331, 198–207.

[70]

Chiu, K. F.; Lai, P. Recycled crystalline micro-sized silicon particles modified by pyrolytic coatings using poly(ether ether ketone) precursor for stable lithium ion battery anodes. Mater. Sci. Eng. B 2018, 228, 52–59.

[71]

Zhang, J. Y.; Zhang, C. Q.; Wu, S. M.; Zheng, J.; Zuo, Y. H.; Xue, C. L.; Li, C. B.; Cheng, B. W. High-performance lithium-ion battery with nano-porous polycrystalline silicon particles as anode. Electrochim. Acta 2016, 208, 174–179.

[72]

Zhou, X. Y.; Chen, S.; Zhou, H. C.; Tang, J. J.; Ren, Y. P.; Bai, T.; Zhang, J. M.; Yang, J. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling. Microporous Mesoporous Mater. 2018, 268, 9–15.

[73]

Choi, M. J.; Xiao, Y.; Hwang, J. Y.; Belharouak, I.; Sun, Y. K. Novel strategy to improve the Li-storage performance of micro silicon anodes. J. Power Sources 2017, 348, 302–310.

[74]

Yi, R.; Dai, F.; Gordin, M. L.; Chen, S. R.; Wang, D. H. Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv. Energy Mater. 2013, 3, 295–300.

[75]

Yi, R.; Dai, F.; Gordin, M. L.; Sohn, H.; Wang, D. H. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes. Adv. Energy Mater. 2013, 3, 1507–1515.

[76]

Yi, R.; Zai, J. T.; D, F.; Gordin, M. L.; Wang, D. H. Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 2014, 6, 211–218.

[77]

Li, B.; Xiao, Z. J.; Zai, J. T.; Chen, M.; Wang, H. H.; Liu, X. J.; Li, G.; Qian, X. F. A candidate strategy to achieve high initial Coulombic efficiency and long cycle life of Si anode materials: Exterior carbon coating on porous Si microparticles. Mater. Today Energy 2017, 5, 299–304.

[78]

Zhang, Y.; Zhang, R.; Chen, S. C.; Gao, H. P.; Li, M. Q.; Song, X. L.; Xin, H. L.; Chen, Z. Diatomite-derived hierarchical porous crystalline-amorphous network for high-performance and sustainable Si anodes. Adv. Funct. Mater. 2020, 30, 2005956.

[79]

An, W. L.; Gao, B.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

[80]

An, Y. L.; Fei, H. L.; Zeng, G. F.; Ci, L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 2018, 12, 4993–5002.

[81]

Sohn, M.; Lee, D. G.; Park, H. I.; Park, C.; Choi, J. H.; Kim, H. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Adv. Funct. Mater. 2018, 28, 1800855.

[82]

Cao, W. Y.; Chen, M. X.; Liu, Y. F.; Han, K.; Chen, X. F.; Ye, H. Q.; Sang, S. B. C2H2O4 etching of AlSi alloy powder: An efficient and mild preparation approach for high performance micro Si anode. Electrochim. Acta 2019, 320, 134615.

[83]

He, W.; Tian, H. J.; Xin, F. X.; Han, W. Q. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 17956– 17962.

[84]

Wang, J. Y.; Huang, W.; Kim, Y. S.; Jeong, Y. K.; Kim, S. C.; Heo, J.; Lee, H. K.; Liu, B. F.; Nah, J.; Cui, Y. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 2020, 13, 1558–1563.

[85]

Tao, Y.; Tian, Y.; An, Y. L.; Wei, C. L.; Li, Y.; Zhang, Q. K.; Feng, J. K. Green and facile fabrication of nanoporous silicon@carbon from commercial alloy with high graphitization degree for high-energy lithium-ion batteries. Sustainable Mater. Technol. 2021, 27, e00238.

[86]

Lv, Y. Y.; Shang, M. W.; Chen, X.; Nezhad, P. S.; Niu, J. J. Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode. ACS Nano 2019, 13, 12032–12041.

[87]

Han, X.; Zhang, Z. Q.; Zheng, G. R.; You, R.; Wang, J. Y.; Li, C.; Chen, S. Y.; Yang, Y. Scalable engineering of bulk porous Si anodes for high initial efficiency and high-areal-capacity lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 714–721.

[88]

Lu, Z. D.; Liu., N.; Lee, H. W.; Zhao, J.; Li, W. Y.; Li, Y. Z.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540–2547.

[89]

Zhang, C. F.; Ma, Q.; Cai, M. Y.; Zhao, Z. Q.; Xie, H. W.; Ning, Z. Q.; Wang, D. H.; Yin, H. Y. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes. Waste Manage. 2021, 135, 182–189.

[90]

Ma, J.; Sung, J.; Hong, J.; Chae, S.; Kim, N.; Choi, S. H.; Nam, G.; Son, Y.; Kim, S. Y.; Ko, M. et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun. 2019, 10, 475.

[91]

Yang, X. L.; Zhang, P. C.; Shi, C. C.; Wen, Z. Y. Porous graphite/silicon micro-sphere prepared by in-situ carbothermal reduction and spray drying for lithium ion batteries. ECS Solid State Lett. 2012, 1, M5–M7.

[92]

Guan, P.; Zhang, W.; Li, C. Y.; Han, N.; Wang, X. C.; Li, Q. F.; Song, G. J.; Peng, Z.; Li, J. J.; Zhang, L. et al. Low-cost urchin-like silicon-based anode with superior conductivity for lithium storage applications. J. Colloid. Interface Sci. 2020, 575, 150–157.

[93]

Han, J. W.; Kong, D. B.; Lv, W.; Tang, D. M.; Han, D. L.; Zhang, C.; Liu, D. H.; Xiao, Z. C.; Zhang, X. H.; Xiao, J. et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 2018, 9, 402.

[94]

Gauthier, M.; Mazouzi, D.; Reyter, D.; Lestriez, B.; Moreau, P.; Guyomard, Do.; Roué, L. A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 2013, 6, 2145–2155.

[95]

Yang, Y. X.; Qu, X. L.; Zhang, L. C.; Gao, M. X.; Liu, Y. F.; Pan, H. G. Reaction-ball-milling-driven surface coating strategy to suppress pulverization of microparticle Si anodes. ACS Appl. Mater. Interfaces 2018, 10, 20591–20598.

[96]

Li, C.; Ju, Y. H.; Qi, L.; Yoshitake, H.; Wang, H. Y. A micro-sized Si-CNT anode for practical application via a one-step, low-cost and green method. RSC Adv. 2017, 7, 54844–54851.

[97]

Loveridge, M. J.; Lain, M. J.; Huang, Q. Y.; Wan, C. Y.; Roberts, A. J.; Pappas, G. S.; Bhagat, R. Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon-graphene hybrid anodes. Phys. Chem. Chem. Phys. 2016, 18, 30677–30685.

[98]

Liu, X. X.; Chao, D. L.; Zhang, Q.; Liu, H.; Hu, H. L.; Zhao, J. P.; Li, Y.; Huang, Y. Z.; Lin, J. Y.; Shen, Z. X. The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading. Sci. Rep. 2015, 5, 15665.

[99]

Kang, M. S.; Heo, I.; Kim, S.; Yang, J.; Kim, J.; Min, S. J.; Chae, J.; Yoo, W. C. High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes. Energy Stor. Mater. 2022, 50, 234–242.

[100]

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

[101]

Sung, J.; Ma, J.; Choi, S. H.; Hong, J.; Kim, N.; Chae, S.; Son, Y.; Kim, S. Y.; Cho, J. Fabrication of lamellar nanosphere structure for effective stress-management in large-volume-variation anodes of high-energy lithium-ion batteries. Adv. Mater. 2019, 31, 1900970.

[102]

Wang, J. Y.; Liao, L.; Li, Y. Z.; Zhao, J.; Shi, F. F.; Yan, K.; Pei, A.; Chen, G. X.; Li, G. D.; Lu, Z. Y. et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018, 18, 7060–7065.

[103]

Qin, Z.; Jung, G. S.; Kang, M. J.; Buehler, M. J. The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 2017, 3, e1601536.

[104]

Zhang, X. H.; Guo, R. Y.; Li, X. L.; Zhi, L. J. Scallop-inspired shell engineering of microparticles for stable and high volumetric capacity battery anodes. Small 2018, 14, 1800752.

[105]

Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1,000 Wh·L–1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.

[106]

Shen, Q. Y.; Zheng, R. B.; Lv, Y. Y.; Lou, Y. Y.; Shi, L. Y.; Yuan, S. Scalable fabrication of silicon-graphite microsphere by mechanical processing for lithium-ion battery anode with large capacity and high cycling stability. Batteries Supercaps 2022, 5, e202200186.

[107]

Wei, D. H.; Gao, X.; Zeng, S. Y.; Li, H. B.; Li, H. Y; Li, W. Z.; Tao, X. Q.; Xu, L. L.; Chen, P. Improving the performance of micro-silicon anodes in lithium-ion batteries with a functional carbon nanotube interlayer. ChemElectroChem 2018, 5, 3143–3149.

[108]

Ren, Y.; Yin, X. C.; Xiao, R.; Mu, T. S.; Huo, H.; Zuo, P. J.; Ma, Y. L.; Cheng, X. Q; Gao, Y. Z.; Yin, G. P. et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chem. Eng. J. 2022, 431, 133982.

[109]

Feng, X. J.; Ding, T. D.; Cui, H. M.; Yan, N. F.; Wang, F. A low-cost nano/micro structured-silicon-MWCNTs from nano-silica for lithium storage. Nano 2016, 11, 1650031.

[110]

Zhang, Z. Q.; Han, X.; Li, L. C.; Su, P. F.; Huang, W.; Wang, J. Y.; Xu, J. F.; Li, C.; Chen, S. Y.; Yang, Y. Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes. J. Power Sources 2020, 450, 227593.

[111]

Park, S. H.; King, P. J.; Tian, R. Y.; Boland, C. S.; Coelho, J.; Zhang, C. F.; McBean, P.; McEvoy, N.; Kremer, M. P.; Daly, D. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 2019, 4, 560–567.

[112]

Li, G.; Huang, L. B.; Yan, M. Y.; Li, J. Y.; Jiang, K. C.; Yin, Y. X.; Xin, S.; Xu, Q.; Guo, Y. G. An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 2020, 74, 104890.

[113]

Yi, Z.; Lin, N.; Zhao, Y. Y.; Wang, W. W; Qian, Y.; Zhu, Y. C.; Qian, Y. T. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Mater. 2019, 17, 93–100.

[114]

Zhang, Z. Y.; Li, Z. W.; Luo, Q.; Yang, B. Z.; Liu, Y.; Hu, Y. Y.; Liu, X. B.; Yin, Y. H.; Li, Y. S.; Wu, Z. P. Spontaneous nanominiaturization of silicon microparticles with structural stability as flexible anodes for lithium ion batteries. Carbon 2022, 188, 238–245.

[115]

Cai, H. Y.; Han, K.; Jiang, H.; Wang, J. W.; Liu, H. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. J. Phys. Chem. Solids 2017, 109, 9–17.

[116]

Lee, S. J.; Joe, Y. S.; Yeon, J. S.; Min, D. H.; Shin, K. H.; Baek, S. Ha.; Xiong, P. X.; Nakhanivej, P.; Park, H. S. Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium-ion battery anodes. Int. J. Energy Res. 2022, 46, 15627–15638.

[117]

Gao, X. F.; Wang, F. F; Gollon, S.; Yuan, C. Micro silicon-graphene-carbon nanotube anode for full cell lithium-ion battery. J. Electrochem. Energy Convers. Storage 2019, 16, 011009.

[118]

Shin, M. S.; Choi, C. K.; Park, M. S.; Lee, S. M. Spherical silicon/CNT/carbon composite wrapped with graphene as an anode material for lithium-ion batteries. J. Electrochem. Sci. Technol. 2022, 13, 159–166.

[119]

Lyu, F.; Sun, Z. F.; Nan, B.; Yu, S. C.; Cao, L. J.; Yang, M. Y.; Li, M. C.; Wang, W. X.; Wu, S. F.; Zeng, S. S. et al. Low-cost and novel Si-based gel for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 10699–10707.

[120]

Qu, F. M.; She, G. W.; Wang, J. T.; Qi, X. P.; Li, S. Y.; Zhang, S. Y.; Mu, L. X.; Shi, W. S. Coating nanoparticle-assembled Si microspheres with carbon for anode material in lithium-ion battery. J. Phys. Chem. Solids 2019, 124, 312–317.

[121]

Tao, J.; Wang, F.; Han, F.; He, Y. L.; Zhang, F. Q.; Liu, J. S. Improving the lithium storage performance of micro-sized SiOx particles by uniform carbon interphase encapsulation and suitable SiO2 buffer component. Electrochim. Acta 2021, 385, 138431.

[122]

Lee, Y.; Lee, T.; Hong, J.; Sung, J.; Kim, N.; Son, Y.; Ma, J.; Kim, S. Y.; Cho, J. Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2004841.

[123]

Wang, D. S.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Wang, J. H.; Li, S. Q.; Ge, H. W. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization. J. Alloys Compd. 2014, 604, 130–136.

[124]

Zhang, C. Q.; Yang, F.; Zhang, D. L.; Zhang, X.; Xue, C. L.; Zuo, Y. H.; Li, C. B.; Cheng, B. W.; Wang, Q. M. A binder-free Si-based anode for Li-ion batteries. RSC Adv. 2015, 5, 15940–15943.

[125]

Shen, C. X.; Fu, R. S.; Guo, H. C.; Wu, Y. K.; Fan, C. Z.; Xia, Y. G.; Liu, Z. P. Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. J. Alloys Compd. 2019, 783, 128–135.

[126]

Zhou, Y.; Tian, Z. Y.; Fan, R. J.; Zhao, S. R.; Zhou, R.; Guo, H. J.; Wang, Z. X. Scalable synthesis of Si/SiO2@C composite from micro-silica particles for high performance lithium battery anodes. Powder Technol. 2015, 284, 365–370.

[127]

Mishra, K.; George, K.; Zhou, X. D. Submicron silicon anode stabilized by single-step carbon and germanium coatings for high capacity lithium-ion batteries. Carbon 2018, 138, 419–426.

[128]

Yang, T. T.; Ying, H. J.; Zhang, S. L.; Wang, J. L.; Zhang, Z.; Han, W. Q. Electrochemical performance enhancement of micro-sized porous Si by integrating with nano-Sn and carbonaceous materials. Materials 2021, 14, 920.

[129]

Liu, C.; Xia, Q.; Liao, C.; Wu, S. P. Pseudocapacitance contribution to three-dimensional micro-sized silicon@Fe3O4@few-layered graphene for high-rate and long-life lithium ion batteries. Mater. Today Commun. 2019, 18, 66–73.

[130]

Li, S. F.; Huang, J. H.; Wang, J.; Han, K. Micro-sized porous silicon@PEDOT with high rate capacity and stability for Li-ion battery anode. Mater. Lett. 2021, 293, 129712.

[131]

Huang, S. Q.; Cheong, L. Z.; Wang, D. Y.; Shen, C. Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 23672–23678.

[132]

Kim, S. O.; Manthiram, A. A facile, low-cost synthesis of high-performance silicon-based composite anodes with high tap density for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 2399–2406.

[133]

Yang, Y. X.; Ni, C. L.; Gao, M. X.; Wang, J. W.; Liu, Y. F.; Pan, H. G. Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Mater. 2018, 14, 279–288.

[134]

Liao, C.; Wu, S. P. Pseudocapacitance behavior on Fe3O4-pillared SiOx microsphere wrapped by graphene as high performance anodes for lithium-ion batteries. Chem. Eng. J. 2019, 355, 805–814.

[135]

Cheng, X. L.; Hu, M.; Huang, R.; Jiang, J. S. HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 19176–19183.

[136]

Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C. Z.; Smith, S. C.; Lu, G. Q.; Yang, H. G. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem. Commun. 2010, 46, 6129–6131.

[137]

Xiao, Z. X.; Yu, C. H.; Lin, X. Q.; Chen, X.; Zhang, C. X.; Jiang, H. R.; Zhang, R. F.; Wei, F. TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy 2020, 77, 105082.

[138]

Xia, Q.; Xu, A. D.; Du, L.; Yan, Y. R.; Wu, S. P. High-rate, long-term performance of LTO-pillared silicon/carbon composites for lithium-ion batteries anode under high temperature. J. Alloys Compd. 2019, 800, 50–57.

[139]

Heist, A.; Piper, D. M.; Evans, T.; Kim, S. C.; Han, S. S.; Oh, K. H.; Lee, S. H. Self-contained fragmentation and interfacial stability in crude micron-silicon anodes. J. Electrochem. Soc. 2018, 165, A244–A250.

[140]

Kim, D.; Park, M.; Kim, S. M.; Shim, H. C.; Hyun, S.; Han, S. M. Conversion reaction of nanoporous ZnO for stable electrochemical cycling of binderless Si microparticle composite anode. ACS Nano 2018, 12, 10903–10913.

[141]

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

[142]

Munaoka, T.; Yan, X. Z.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. N. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 2018, 8, 1703138.

[143]

Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

[144]

Deng, L.; Zheng, Y.; Zheng, X. M.; Or, T.; Ma, Q. Y.; Qian, L. T.; Deng, Y. P.; Yu, A. P.; Li, J. T.; Chen, Z. W. Design criteria for silicon-based anode binders in half and full cells. Adv. Energy Mater. 2022, 12, 2200850.

[145]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[146]

Guan, X.; Yong, Y. X.; Wu, Q. P.; Zhang, X. W.; Guo, X. H.; Li, C. L.; Xu, J. Metal-chelated biomimetic polyelectrolyte as a powerful binder for high-performance micron silicon anodes. Energy Technol. 2020, 8, 2000278.

[147]

Tian, M.; Wu, P. Y. Nature plant polyphenol coating silicon submicroparticle conjugated with polyacrylic acid for achieving a high-performance anode of lithium-ion battery. ACS Appl. Energy Mater. 2019, 2, 5066–5073.

[148]

Yu, Y. Y.; Gao, H. H; Zhu, J. D; Li, D. Z.; Wang, F. X.; Jiang, C. H.; Zhong, T. H. Y.; Liang, S. H.; Jiang, M. J. Ionic/electronic conductivity regulation of n-type polyoxadiazole lithium sulfonate conductive polymer binders for high-performance silicon microparticle anodes. Chin. Chem. Lett. 2021, 32, 203–209.

[149]

Song, Z. B.; Chen, S. M.; Zhao, Y.; Xue, S. D.; Qian, G. Y.; Fang, J. J.; Zhang, T. H.; Long, C. J.; Yang, L. Y.; Pan, F. Constructing a resilient hierarchical conductive network to promote cycling stability of SiOx anode via binder design. Small 2021, 17, 2102256.

[150]

Song, Z. B.; Zhang, T. H.; Wang, L.; Zhao, Y.; Li, Z. K.; Zhang, M.; Wang, K.; Xue, S. D.; Fang, J. J.; Ji, Y. C. et al. Bio-inspired binder design for a robust conductive network in silicon-based anodes. Small Methods 2022, 6, 2101591.

[151]

Yu, Y. Y.; Zhu, J. D.; Zeng, K.; Jiang, M. J. Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. A 2021, 9, 3472–3481.

[152]

Woo, H.; Gil, B.; Kim, J.; Park, K.; Yun, A. J.; Kim, J.; Nam, S.; Park, B. Metal-coordination mediated polyacrylate for high performance silicon microparticle anode. Batteries Supercaps 2020, 3, 1287–1295.

[153]

Hu, Y. Y.; You, J. H.; Zhang, S. J.; Lin, H.; Ren, W. F.; Deng, L.; Pan, S. Y.; Huang, L.; Zhou, Y.; Li, J. T. et al. Li0.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery. Electrochim. Acta 2021, 386, 138361.

[154]

Huang, L. H.; Chen, D.; Li, C. C.; Chang, Y. L.; Lee, J. T. Dispersion homogeneity and electrochemical performance of Si anodes with the addition of various water-based binders. J. Electrochem. Soc. 2018, 165, A2239–A2246.

[155]

Lopez, J.; Chen, Z.; Wang, C.; Andrews, S. C.; Cui, Y.; Bao, Z. N. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 2016, 8, 2318–2324.

[156]

Luo, C.; Du, L. L.; Wu, W.; Xu, H. L; Zhang, G. Z.; Li, S.; Wang, C. Y.; Lu, Z. G.; Deng, Y. H. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 12621–12629.

[157]

Ma, L.; Niu, S. L.; Zhao, F. F.; Tang, R. X.; Zhang, Y.; Su, W. D.; Wei, L. M.; Tang, G.; Wang, Y.; Pang, A. M. et al. A high-performance polyurethane-polydopamine polymeric binder for silicon microparticle anodes in lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 7571–7581.

[158]

Ren, W. F.; Le, J. B.; Li, J. T.; Hu, Y. Y.; Pan, S. Y.; Deng, L.; Zhou, Y.; Huang, L.; Sun, S. G. Improving the electrochemical property of silicon anodes through hydrogen-bonding cross-linked thiourea-based polymeric binders. ACS Appl. Mater. Interfaces 2021, 13, 639–649.

[159]

Wu, H.; Du, N.; Zhang, H.; Yang, D. Voltage-controlled synthesis of Cu-Li2O@Si core-shell nanorod arrays as high-performance anodes for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 20510–20514.

[160]

Wang, B.; Li, X. L.; Luo, B.; Zhang, X. F.; Shang, Y. Y.; Cao, A. Y.; Zhi, L. J. Intertwined network of Si/C nanocables and carbon nanotubes as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2013, 5, 6467–6472.

[161]

Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study. J. Am. Chem. Soc. 2013, 135, 9829–9842.

[162]

Chen, L. B.; Wang, K.; Xie, X. H.; Xie, J. Y. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 2007, 174, 538–543.

[163]

Chang, Z. H.; Li, X.; Yun, F. L.; Shao, Z. C.; Wu, Z. H.; Wang, J. T.; Lu, S. G. Effect of dual-salt concentrated electrolytes on the electrochemical performance of silicon nanoparticles. ChemElectroChem 2020, 7, 1135–1141.

[164]

Chang, Z. H.; Wang, J. T.; Wu, Z. H.; Gao, M.; Wu, S. J.; Lu, S. G. The electrochemical performance of silicon nanoparticles in concentrated electrolyte. ChemSusChem 2018, 11, 1787–1796.

[165]

Zeng, G. F.; An, Y. L.; Xiong, S. L.; Feng, J. K. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 23229–23235.

[166]

Jia, H. P.; Zou, L. F.; Gao, P. Y.; Cao, X.; Zhao, W. G.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X. D. et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 2019, 9, 1900784.

[167]

Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

[168]

Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Cycling a lithium metal anode at 90 ℃ in a liquid electrolyte. Angew. Chem. , Int. Ed. 2020, 59, 15109–15113.

[169]

Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K.; Sayed, F. N.; Kato, K.; Joyner, J.; Ajayan, P. M. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2017, 2, 17108.

[170]

Liu, H. Q.; Wei, Z. B.; He, W. D.; Zhao, J. Y. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manage. 2017, 150, 304–330.

[171]

Cao, Z.; Zheng, X. Y.; Qu, Q. T.; Huang, Y. H.; Zheng, H. H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv. Mater. 2021, 33, 2103178.

[172]

Markevich, E.; Salitra, G.; Rosenman, A.; Talyosef, Y.; Aurbach, D.; Garsuch, A. High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature. RSC Adv. 2014, 4, 48572–48575.

[173]

Kerr, R.; Mazouzi, D.; Eftekharnia, M.; Lestriez, B.; Dupré, N.; Forsyth, M.; Guyomard, D.; Howlett, P. C. High-capacity retention of Si anodes using a mixed lithium/phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1804–1809.

[174]

Campion, C. L.; Li, W. T.; Lucht, B. L. Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A2327–A2334.

[175]

Wang, Q. S.; Sun, J. H.; Yao, X. L.; Chen, C. H. Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries. J. Electrochem. Soc. 2006, 153, A329–A333.

[176]

Liu, Q.; Meng, T.; Yu, L.; Guo, S. T.; Hu, Y. H.; Liu, Z. F.; Hu, X. L. Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries. Small Methods 2022, 6, 2200380.

[177]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[178]

Wu, Y. J.; Wang, S.; Li, H.; Chen, L. Q.; Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 2021, 3, 827–853.

[179]

Huang, Q. Q.; Song, J. X.; Gao, Y.; Wang, D. W.; Liu, S.; Peng, S. F.; Usher, C.; Goliaszewski, A.; Wang, D. H. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat. Commun. 2019, 10, 5586.

[180]

Cho, Y. G.; Park, H.; Lee, J. I.; Hwang, C.; Jeon, Y.; Park, S.; Song, H. K. Organogel electrolyte for high-loading silicon batteries. J. Mater. Chem. A 2016, 4, 8005–8009.

[181]

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

[182]

Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47–60.

[183]

Fu, L. L.; Xu, A. D.; Song, Y.; Ju, J. H.; Sun, H.; Yan, Y. R.; Wu, S. P. Pinecone-like silicon@carbon microspheres covered by Al2O3 nano-petals for lithium-ion battery anode under high temperature. Electrochim. Acta 2021, 387, 138461.

[184]

Jung, C. H.; Kim, K. H.; Hong, S. H. An in situ formed graphene oxide-polyacrylic acid composite cage on silicon microparticles for lithium ion batteries via an esterification reaction. J. Mater. Chem. A 2019, 7, 12763–12772.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 July 2022
Revised: 06 October 2022
Accepted: 07 October 2022
Published: 25 October 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52272206, 51972132, and 52002141), and Program for HUST Academic Frontier Youth Team (2016QYTD04).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return