Journal Home > Online First

Understanding the charge-transfer and Li-ion-migration mechanisms in complex electrochemical environments is critical to improving the performance of commercial lithium-ion batteries (LIBs). Advanced electron microscopy and the associated characterization techniques have significantly assisted in clarifying the structure–function relationships of commercial LIBs by providing localized nano/atomic-scale information concerning the following aspects: atomic structures of light/heavy elements, spatial distributions of structural phase transitions, Li+ occupation, interfacial phase structures, occupation and migration of elements, elemental distribution in the interfacial layer, Li+ concentration, and interfacial space charge layer. Besides, the development of various in situ techniques coupled with electron microscopy can enable comprehensive understanding of the structural evolution, growth of lithium dendrites at the anode, as well as the ion transport and charge accumulation at the electrode–electrolyte interface in LIBs during charging and discharging. This review summarizes the recent progress of how advanced electron microscopy contributes to elucidating key structural information and evolution in commercial LIBs. Emphasis is placed on (1) the discussions of transition metal dissolution and charge-transfer mechanisms during charging and discharging of LIB cathodes; (2) the morphologies, structures, and compositions of solid-electrolyte-interphase (SEI)/cathode– electrolyte-interface (CEI) films, along with their influence on battery performance; (3) the effects of crystal structures, internal crystal defects, and interface structure on ion transport. The lithiation and delithiation processes in LIBs are scrutinized, and strategies for optimizing ion migration are proposed. This information has been collated to enable a deeper understanding of the charge-transfer and ion-migration mechanisms in commercial LIBs, and to provide guidance for improving battery performance.


menu
Abstract
Full text
Outline
About this article

Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy

Show Author's information Chao Li1Bowen Liu1Ningyi Jiang1,2( )Yi Ding1( )
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

Abstract

Understanding the charge-transfer and Li-ion-migration mechanisms in complex electrochemical environments is critical to improving the performance of commercial lithium-ion batteries (LIBs). Advanced electron microscopy and the associated characterization techniques have significantly assisted in clarifying the structure–function relationships of commercial LIBs by providing localized nano/atomic-scale information concerning the following aspects: atomic structures of light/heavy elements, spatial distributions of structural phase transitions, Li+ occupation, interfacial phase structures, occupation and migration of elements, elemental distribution in the interfacial layer, Li+ concentration, and interfacial space charge layer. Besides, the development of various in situ techniques coupled with electron microscopy can enable comprehensive understanding of the structural evolution, growth of lithium dendrites at the anode, as well as the ion transport and charge accumulation at the electrode–electrolyte interface in LIBs during charging and discharging. This review summarizes the recent progress of how advanced electron microscopy contributes to elucidating key structural information and evolution in commercial LIBs. Emphasis is placed on (1) the discussions of transition metal dissolution and charge-transfer mechanisms during charging and discharging of LIB cathodes; (2) the morphologies, structures, and compositions of solid-electrolyte-interphase (SEI)/cathode– electrolyte-interface (CEI) films, along with their influence on battery performance; (3) the effects of crystal structures, internal crystal defects, and interface structure on ion transport. The lithiation and delithiation processes in LIBs are scrutinized, and strategies for optimizing ion migration are proposed. This information has been collated to enable a deeper understanding of the charge-transfer and ion-migration mechanisms in commercial LIBs, and to provide guidance for improving battery performance.

Keywords:

commercial lithium-ion batteries (LIBs), electron microscopy, mechanistic analysis, charge transfer, ion migration
Received: 27 July 2022 Revised: 01 September 2022 Accepted: 02 September 2022 Published: 27 September 2022
References(226)
[1]

Divakaran, A. M.; Minakshi, M.; Bahri, P. A.; Paul, S.; Kumari, P.; Divakaran, A. M.; Manjunatha, K. N. Rational design on materials for developing next generation lithium-ion secondary battery. Prog. Solid State Chem. 2021, 62, 100298.

[2]

Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

[3]

Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[4]

Cheng, H.; Shapter, J. G.; Li, Y. Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468.

[5]

Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416.

[6]

Fan, Z.; Zhang, L. Q.; Baumann, D.; Mei, L.; Yao, Y. X.; Duan, X. D.; Shi, Y. M.; Huang, J. Y.; Huang, Y.; Duan, X. F. In situ transmission electron microscopy for energy materials and devices. Adv. Mater. 2019, 31, 1900608.

[7]

Liu, X. Z.; Gu, L. Advanced transmission electron microscopy for electrode and solid-electrolyte materials in lithium-ion batteries. Small Methods 2018, 2, 1800006.

[8]

Wang, F. X.; Wu, X. W.; Li, C. Y.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Liu, X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 2016, 9, 3570–3611.

[9]

Li, W. D.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.

[10]

Liu, H. D.; Zhu, Z. Y.; Yan, Q. Z.; Yu, S. C.; He, X.; Chen, Y.; Zhang, R.; Ma, L.; Liu, T. C.; Li, M. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020, 585, 63–67.

[11]

Dubarry, M.; Svoboda, V.; Hwu, R.; Liaw, B. Y. Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge. J. Power Sources 2007, 174, 1121–1125.

[12]

Striebel, K.; Shim, J.; Sierra, A.; Yang, H.; Song, X. Y.; Kostecki, R.; McCarthy, K. The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources 2005, 146, 33–38.

[13]

Du, K. D.; Meng, Y. F.; Zhao, X. X.; Wang, X. T.; Luo, X. X.; Zhang, W.; Wu, X. L. A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery. Sci. China Mater. 2022, 65, 637–645.

[14]

Song, M. S.; Kang, Y. M.; Kim, Y. I.; Park, K. S.; Kwon, H. S. Nature of insulating-phase transition and degradation of structure and electrochemical reactivity in an olivine-structured material, LiFePO4. Inorg. Chem. 2009, 48, 8271–8275.

[15]

Omenya, F.; Chernova, N. A.; Wang, Q.; Zhang, R. B.; Whittingham, M. S. The structural and electrochemical impact of Li and Fe site substitution in LiFePO4. Chem. Mater. 2013, 25, 2691–2699.

[16]

Murugavel, S.; Sharma, M.; Shahid, R. Influence of lithium vacancies on the polaronic transport in olivine phosphate structure. J. Appl. Phys. 2016, 119, 045103.

[17]

Simolka, M.; Heger, J. F.; Kaess, H.; Biswas, I.; Friedrich, K. A. Influence of cycling profile, depth of discharge and temperature on commercial LFP/C cell ageing: Post-mortem material analysis of structure, morphology and chemical composition. J. Appl. Electrochem. 2020, 50, 1101–1117.

[18]

Gao, F.; Tang, Z. Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim. Acta 2008, 53, 5071–5075.

[19]

Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. , Int. Ed. 2008, 47, 7461–7465.

[20]

Liu, F. Q.; Siddique, N. A.; Mukherjee, P. P. Nonequilibrium phase transformation and particle shape effect in LiFePO4 materials for Li-ion batteries. Electrochem. Solid-State Lett. 2011, 14, A143.

[21]

Honda, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Horibuchi, K.; Kobayashi, T.; Sasaki, T. Microscopic mechanism of path-dependence on charge-discharge history in lithium iron phosphate cathode analysis using scanning transmission electron microscopy and electron energy-loss spectroscopy spectral imaging. J. Power Sources 2015, 291, 85–94.

[22]

Stewart, S. G.; Srinivasan, V.; Newman, J. Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation. J. Electrochem. Soc. 2008, 155, A664.

[23]

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

[24]

Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807.

[25]

Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359–376.

[26]

Zhang, Y. L.; Mu, Z. J.; Lai, J. P.; Chao, Y. G.; Yang, Y.; Zhou, P.; Li, Y. J.; Yang, W. X.; Xia, Z. H.; Guo, S. J. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 2019, 13, 2167–2175.

[27]

Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.

[28]

Park, J.; Park, S. S.; Won, Y. S. In situ XRD study of the structural changes of graphite anodes mixed with SiOx during lithium insertion and extraction in lithium ion batteries. Electrochim. Acta 2013, 107, 467–472.

[29]

Hu, X. C.; Yang, W. L.; Jiang, Z. Y.; Huang, Z. Y.; Wang, Y. J.; Wang, S. Q. Improving diffusion kinetics and phase stability of LiCoO2 via surface modification at elevated voltage. Electrochim. Acta 2021, 380, 138227.

[30]

Park, C. M.; Choi, W.; Hwa, Y.; Kim, J. H.; Jeong, G.; Sohn, H. J. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 2010, 20, 4854–4860.

[31]

Ni, L. S.; Guo, R. T.; Fang, S. S.; Chen, J.; Gao, J. Q.; Mei, Y.; Zhang, S.; Deng, W. T.; Zou, G. Q.; Hou, H. S. et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience 2022, 2, 116–124.

[32]

Yao, K. P. C.; Okasinski, J. S.; Kalaga, K.; Shkrob, I. A.; Abraham, D. P. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction. Energy Environ. Sci. 2019, 12, 656–665.

[33]

Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

[34]

Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edstrom, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.

[35]

Flores, E.; Vonrüti, N.; Novák, P.; Aschauer, U.; Berg, E. J. Elucidation of LixNi0.8Co0.15Al0.05O2 redox chemistry by operando Raman spectroscopy. Chem. Mater. 2018, 30, 4694–4703.

[36]

Shi, C. G.; Peng, X. X.; Dai, P.; Xiao, P. H.; Zheng, W. C.; Li, H. Y.; Li, H.; Indris, S.; Mangold, S.; Hong, Y. H. et al. Investigation and suppression of oxygen release by LiNi0.8Co0.1Mn0.1O2 cathode under overcharge conditions. Adv. Energy Mater. 2022, 12, 2200569.

[37]

Zeng, Z. D.; Liu, N.; Zeng, Q. S.; Lee, S. W.; Mao, W. L.; Cui, Y. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 2016, 22, 105–110.

[38]

Wu, H. L.; Huff, L. A.; Gewirth, A. A. In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 1709–1719.

[39]

Ogata, K.; Salager, E.; Kerr, C. J.; Fraser, A. E.; Ducati, C.; Morris, A. J.; Hofmann, S.; Grey, C. P. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat. Commun. 2014, 5, 3217.

[40]

Hu, B.; Lou, X. B.; Li, C.; Geng, F. S.; Zhao, C.; Wang, J. Y.; Shen, M.; Hu, B. W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. J. Power Sources 2019, 438, 226954.

[41]

Zhang, W. H.; Liang, L. W.; Zhao, F.; Liu, Y.; Hou, L. R.; Yuan, C. Z. Ni-rich LiNi0.8Co0.1Mn0.1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim. Acta 2020, 340, 135871.

[42]

Li, J. D.; Dong, S. M.; Wang, C.; Hu, Z. L.; Zhang, Z. Y.; Zhang, H.; Cui, G. L. A study on the interfacial stability of the cathode/polycarbonate interface: Implication of overcharge and transition metal redox. J. Mater. Chem. A 2018, 6, 11846–11852.

[43]

Li, W. J.; Zhuang, W. D.; Gao, M.; Zhou, Y. N.; Zhang, J.; Li, N.; Liu, X. H.; Huang, W.; Lu, S. G. New insight into the role of Mn doping on the bulk structure stability and interfacial stability of Ni-rich layered oxide. ChemNanoMat 2020, 6, 451–460.

[44]

Yang, J.; Gao, H. C.; Men, S.; Shi, Z. Q.; Lin, Z.; Kang, X. W.; Chen, S. W. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: High-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 2018, 5, 1800763.

[45]

Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.

[46]

Yan, X. X.; Chen, L.; Shah, S. A.; Liang, J. J.; Liu, Z. F. The effect of Co3O4 & LiCoO2 cladding layer on the high rate and storage property of high nickel material LiNi0.8Co0.15Al0.05O2 by simple one-step wet coating method. Electrochim. Acta 2017, 249, 179–188.

[47]

Zhu, Y. J.; Xu, Y. H.; Liu, Y. H.; Luo, C.; Wang, C. S. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 2013, 5, 780–787.

[48]

Li, Z.; Du, F.; Bie, X. F.; Zhang, D.; Cai, Y. M.; Cui, X. R.; Wang, C. Z.; Chen, G.; Wei, Y. J. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. J. Phys. Chem. C 2010, 114, 22751–22757.

[49]

Chen, C. H.; Planella, F. B.; O'Regan, K.; Gastol, D.; Widanage, W. D.; Kendrick, E. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models. J. Electrochem. Soc. 2020, 167, 080534.

[50]

Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842-A1846.

[51]

Tsai, P. C.; Wen, B. H.; Wolfman, M.; Choe, M. J.; Pan, M. S.; Su, L.; Thornton, K.; Cabana, J.; Chiang, Y. M. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. Energy Environ. Sci. 2018, 11, 860–871.

[52]

Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533–541.

[53]

Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J. G.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 2013, 6, 2518–2528.

[54]

Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.

[55]

Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

[56]

Wang, X. F.; Feng, Z. J.; Huang, J. T.; Deng, W.; Li, X. B.; Zhang, H. S.; Wen, Z. H. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon 2018, 127, 149–157.

[57]

Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater. 2012, 24, 1107–1115.

[58]

Zeng, W. W.; Wang, L.; Peng, X.; Liu, T. F.; Jiang, Y. Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K. F.; Zhou, Y. H. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702314.

[59]

Zhang, S. J.; Ye, J. J.; Ao, H. S.; Zhang, M. Y.; Li, X. L.; Xu, Z. B.; Hou, Z. G.; Qian, Y. T. In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4688-5.

[60]

Bates, S.; Zografi, G.; Engers, D.; Morris, K.; Crowley, K.; Newman, A. Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm. Res. 2006, 23, 2333–2349.

[61]

Nie, M. Y.; Abraham, D. P.; Chen, Y. J.; Bose, A.; Lucht, B. L. Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J. Phys. Chem. C 2013, 117, 13403–13412.

[62]

Shard, A. G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα X-rays. Surf. Interface Anal. 2014, 46, 175–185.

[63]

Dega-Szafran, Z.; Katrusiak, A.; Szafran, M. N, N'-Dimethylpiperazine mono-betaine complex with two molecules of 3-iodobenzoic acid and water studied by X-ray diffraction, DFT, FTIR and NMR methods. J. Mol. Struct. 2008, 875, 577–586.

[64]

Matsuda, Y.; Kuwata, N.; Okawa, T.; Dorai, A.; Kamishima, O.; Kawamura, J. In situ Raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery. Solid State Ionics 2019, 335, 7–14.

[65]

Tan, H. Y.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 2012, 116, 24–33.

[66]

Boulineau, A.; Simonin, L.; Colin, J. F.; Bourbon, C.; Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013, 13, 3857–3863.

[67]

Akita, T.; Taguchi, N. Practical analysis of Li distribution by EELS. Surf. Interface Anal. 2016, 48, 1226–1230.

[68]

Kübel, C.; Voigt, A.; Schoenmakers, R.; Otten, M.; Su, D.; Lee, T. C.; Carlsson, A.; Bradley, J. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 2005, 11, 378–400.

[69]

Ito, A.; Shoda, K.; Sato, Y.; Hatano, M.; Horie, H.; Ohsawa, Y. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources 2011, 196, 4785–4790.

[70]

Li, Q.; Xu, S.; Guo, S. H.; Jiang, K. Z.; Li, X.; Jia, M.; Wang, P.; Zhou, H. S. A superlattice-stabilized layered oxide cathode for sodium-ion batteries. Adv. Mater. 2020, 32, 1907936.

[71]

Chung, H.; Grenier, A.; Huang, R.; Wang, X. F.; Lebens-Higgins, Z.; Doux, J. M.; Sallis, S.; Song, C. Y.; Ercius, P.; Chapman, K. et al. Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. Nano Res. 2019, 12, 2238– 2249.

[72]

Huang, R.; Ikuhara, Y. STEM characterization for lithium-ion battery cathode materials. Curr. Opin. Solid State Mater. Sci. 2012, 16, 31–38.

[73]

Liberti, E.; Lozano, J. G.; Osorio, M. A. P.; Roberts, M. R.; Bruce, P. G.; Kirkland, A. I. Quantifying oxygen distortions in lithium-rich transition-metal-oxide cathodes using ABF STEM. Ultramicroscopy 2020, 210, 112914.

[74]

Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

[75]

Gao, R.; Liang, X.; Yin, P. G.; Wang, J. K.; Lee, Y. L.; Hu, Z. B.; Liu, X. F. An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy 2017, 41, 535–542.

[76]

Zhu, H. L.; Shen, F.; Luo, W.; Zhu, S. Z.; Zhao, M. H.; Natarajan, B.; Dai, J. Q.; Zhou, L. H.; Ji, X. L.; Yassar, R. S. et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 2017, 33, 37–44.

[77]

Wang, L. L.; Xie, R. C.; Chen, B. B.; Yu, X. R.; Ma, J.; Li, C.; Hu, Z. W.; Sun, X. W.; Xu, C. J.; Dong, S. M. et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 2020, 11, 5889.

[78]

Shibata, N.; Findlay, S. D.; Kohno, Y.; Sawada, H.; Kondo, Y.; Ikuhara, Y. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 2012, 8, 611–615.

[79]

Liu, B. W.; Hu, N. F.; Li, C.; Ma, J.; Zhang, J. W.; Yang, Y.; Sun, D. Y.; Yin, B. X.; Cui, G. L. Direct observation of Li-ion transport heterogeneity induced by nanoscale phase separation in Li-rich cathodes of solid-state batteries. Angew. Chem. , Int. Ed., in press, https://doi.org/10.1002/ange.202209626.

[80]

Yamamoto, K.; Iriyama, Y.; Hirayama, T. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy 2017, 66, 50–61.

[81]

Yamamoto, K.; Iriyama, Y.; Hirayama, T. Visualization of electrochemical reactions in all-solid-state Li-ion batteries by spatially resolved electron energy-loss spectroscopy and electron holography. Mater. Trans. 2015, 56, 617–624.

[82]

Stavitski, E.; De Groot, F. M. F. The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 2010, 41, 687–694.

[83]

Kimoto, K.; Asaka, T.; Nagai, T.; Saito, M.; Matsui, Y.; Ishizuka, K. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 2007, 450, 702–704.

[84]

Wang, Z. Y.; Santhanagopalan, D.; Zhang, W.; Wang, F.; Xin, H. L.; He, K.; Li, J. C.; Dudney, N.; Meng, Y. S. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 2016, 16, 3760–3767.

[85]

Zhou, T.; Chang, L.; Li, W. Q.; Li, C.; Yuan, W. J.; An, C. H.; Luo, J. Visualization of crystal plane selectivity for irreversible phase transition in MnO@C anode. Chem. Commun. 2020, 56, 3753–3756.

[86]

Chen, S. L.; Zou, J.; Li, Y. H.; Li, N.; Wu, M.; Lin, J. H.; Zhang, J. M.; Cao, J.; Feng, J. C.; Niu, X. B. et al. Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window. Nano Res. 2019, 12, 1675–1681.

[87]

Yuan, Y. F.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 2017, 8, 15806.

[88]

Wang, C. M.; Xu, W.; Liu, J.; Choi, D. W.; Arey, B.; Saraf, L. V.; Zhang, J. G.; Yang, Z. G.; Thevuthasan, S.; Baer, D. R. et al. In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J. Mater. Res. 2010, 25, 1541–1547.

[89]

Liu, X. H.; Huang, J. Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 2011, 4, 3844–3860.

[90]

Chapman, J. N.; Batson, P. E.; Waddell, E. M.; Ferrier, R. P. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 1978, 3, 203–214.

[91]

Hachtel, J. A.; Idrobo, J. C.; Chi, M. F. Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv. Struct. Chem. Imaging 2018, 4, 10.

[92]

MacLaren, I.; Wang, L. Q.; McGrouther, D.; Craven, A. J.; McVitie, S.; Schierholz, R.; Kovács, A.; Barthel, J.; Dunin-Borkowski, R. E. On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material. Ultramicroscopy 2015, 154, 57–63.

[93]

Wang, Z. G.; Sasaki, K.; Kato, N.; Urata, K.; Hirayama, T.; Saka, H. Examination of electrostatic potential distribution across an implanted p-n junction by electron holography. J. Electron. Microsc. 2001, 50, 479–484.

[94]

Sasaki, H.; Otomo, S.; Minato, R.; Yamamoto, K.; Hirayama, T. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy. Microscopy 2014, 63, 235–242.

[95]

Yamamoto, K.; Hogg, C. R.; Yamamuro, S.; Hirayama, T.; Majetich, S. A. Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl. Phys. Lett. 2011, 98, 072509.

[96]

Yang, Y.; Cui, J.; Guo, H. J.; Shen, X.; Yao, Y.; Yu, R. C.; Wen, R. In situ electron holography for characterizing Li ion accumulation in the interface between electrode and solid-state-electrolyte. J. Mater. Chem. A 2021, 9, 15038–15044.

[97]

Ko, D. S.; Park, J. H.; Park, S.; Ham, Y. N.; Ahn, S. J.; Park, J. H.; Han, H. N.; Lee, E.; Jeon, W. S.; Jung, C. Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis. Nano Energy 2019, 56, 434–442.

[98]

Klein, S.; Van Wickeren, S.; Röser, S.; Bärmann, P.; Borzutzki, K.; Heidrich, B.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater. 2021, 11, 2003738.

[99]

Holtz, M. E.; Yu, Y. C.; Gunceler, D.; Gao, J.; Sundararaman, R.; Schwarz, K. A.; Arias, T. A.; Abruña, H. D.; Muller, D. A. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 2014, 14, 1453–1459.

[100]

Zhu, Y. J.; Wang, J. W.; Liu, Y.; Liu, X. H.; Kushima, A.; Liu, Y. H.; Xu, Y. H.; Mao, S. X.; Li, J.; Wang, C. S. et al. In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation. Adv. Mater. 2013, 25, 5461–5466.

[101]

Mu, X.; Kobler, A.; Wang, D.; Chakravadhanula, V.; Schlabach, S.; Szabó, D.; Norby, P.; Kübel, C. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM). Ultramicroscopy 2016, 170, 10–18.

[102]

Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier, C.; Tarascon, J. M. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 2006, 18, 5520–5529.

[103]

Sigle, W.; Amin, R.; Weichert, K.; Van Aken, P. A.; Maier, J. Delithiation study of LiFePO4 crystals using electron energy-loss spectroscopy. Electrochem. Solid-State Lett. 2009, 12, A151.

[104]

Chen, G. Y.; Song, X. Y.; Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 2006, 9, A295.

[105]

Niu, J. J.; Kushima, A.; Qian, X. F.; Qi, L.; Xiang, K.; Chiang, Y. M.; Li, J. In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett. 2014, 14, 4005–4010.

[106]

Gu, L.; Zhu, C. B.; Li, H.; Yu, Y.; Li, C. L.; Tsukimoto, S.; Maier, J.; Ikuhara, Y. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc. 2011, 133, 4661–4663.

[107]

Yang, L. T.; You, W. B.; Zhao, X. B.; Guo, H. Q.; Li, X.; Zhang, J.; Wang, Y. G.; Che, R. C. Dynamic visualization of the phase transformation path in LiFePO4 during delithiation. Nanoscale 2019, 11, 17557–17562.

[108]

Li, S. W.; Liu, Z. P.; Yang, L.; Shen, X.; Liu, Q. Y.; Hu, Z. W.; Kong, Q. Y.; Ma, J.; Li, J. D.; Lin, H. J. et al. Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. Nano Energy 2022, 98, 107335.

[109]

Liu, H. S.; Xie, Z.; Qu, W.; Dy, E.; Niketic, S.; Brueckner, S.; Tsay, K.; Fuller, E.; Bock, C.; Zaker, N. et al. High-voltage induced surface and intragranular structural evolution of Ni-rich layered cathode. Small 2022, 18, 2200627.

[110]

Liu, T. C.; Yu, L.; Liu, J. J.; Lu, J.; Bi, X. X.; Dai, A.; Li, M.; Li, M. F.; Hu, Z. X.; Ma, L. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 2021, 6, 277–286.

[111]

Liu, H. S.; Bugnet, M.; Tessaro, M. Z.; Harris, K. J.; Dunham, M. J. R.; Jiang, M.; Goward, G. R.; Botton, G. A. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 29064–29075.

[112]

Mukherjee, P.; Faenza, N. V.; Pereira, N.; Ciston, J.; Piper, L. F. J.; Amatucci, G. G.; Cosandey, F. Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions. Chem. Mater. 2018, 30, 8431–8445.

[113]

Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Tuning Li-excess to optimize Ni/Li exchange and improve stability of structure in LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4532-y.

[114]

Tang, D. C.; Sun, Y.; Yang, Z. Z.; Ben, L. B.; Gu, L.; Huang, X. J. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem. Mater. 2014, 26, 3535–3543.

[115]

Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. , Int. Ed. 2010, 49, 4414–4417.

[116]

Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Nonaka, K.; Miyahara, K.; Sugita, Y.; Ogumi, Z. Direct observation of lithium-ion movement around an in-situ-formed-negative-electrode/solid-state-electrolyte interface during initial charge–discharge reaction. Electrochem. Commun. 2012, 20, 113–116.

[117]

Shin, H.; Park, J.; Sastry, A. M.; Lu, W. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions. J. Power Sources 2015, 284, 416–427.

[118]

Nordh, T.; Younesi, R.; Hahlin, M.; Duarte, R. F.; Tengstedt, C.; Brandell, D.; Edström, K. Manganese in the SEI layer of Li4Ti5O12 studied by combined NEXAFS and HAXPES techniques. J. Phys. Chem. C 2016, 120, 3206–3213.

[119]

Evertz, M.; Horsthemke, F.; Kasnatscheew, J.; Börner, M.; Winter, M.; Nowak, S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J. Power Sources 2016, 329, 364–371.

[120]

Lin, Q. Y.; Guan, W. H.; Meng, J.; Huang, W.; Wei, X.; Zeng, Y. W.; Li, J. X.; Zhang, Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy 2018, 54, 313–321.

[121]

Urban, K. W. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 2008, 321, 506–510.

[122]

Kim, D.; Park, S.; Chae, O. B.; Ryu, J. H.; Kim, Y. U.; Yin, R. Z.; Oh, S. M. Re-deposition of manganese species on spinel LiMn2O4 electrode after Mn dissolution. J. Electrochem. Soc. 2012, 159, A193-A197.

[123]

Wang, L.; Qiu, J. Y.; Wang, X. D.; Chen, L.; Cao, G. P.; Wang, J. L.; Zhang, H.; He, X. M. Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2022, 2, 125–137.

[124]

Li, D.; Liu, X. Z.; Zhou, H. S. The size-dependent phase transition of LiFePO4 particles during charging and discharging in lithium-ion batteries. Energy Technol. 2014, 2, 542–547.

[125]

Lyu, Y. C.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

[126]

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

[127]

Kasnatscheew, J.; Evertz, M.; Kloepsch, R.; Streipert, B.; Wagner, R.; Laskovic, I. C.; Winter, M. Learning from electrochemical data: Simple evaluation and classification of LiMO2-type-based positive electrodes for Li-ion batteries. Energy Technol. 2017, 5, 1670–1679.

[128]

Kondrakov, A. O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries. J. Phys. Chem. C 2017, 121, 3286–3294.

[129]

Wu, F.; Tian, J.; Su, Y. F.; Wang, J.; Zhang, C. Z.; Bao, L. Y.; He, T.; Li, J. H.; Chen, S. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2015, 7, 7702–7708.

[130]

Nam, G. W.; Park, N. Y.; Park, K. J.; Yang, J. H.; Liu, J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent. ACS Energy Lett. 2019, 4, 2995–3001.

[131]

Ryu, H. H.; Park, G. T.; Yoon, C. S.; Sun, Y. K. Microstructural degradation of Ni-rich Li[NixCoyMn1-x-y]O2 cathodes during accelerated calendar aging. Small 2018, 14, 1803179.

[132]

Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

[133]

Yuan, K.; Li, N.; Ning, R. Q.; Shen, C.; Hu, N.; Bai, M. H.; Zhang, K.; Tian, Z. Y.; Shao, L.; Hu, Z. W. et al. Stabilizing surface chemical and structural Ni-rich cathode via a non-destructive surface reinforcement strategy. Nano Energy 2020, 78, 105239.

[134]

Zhu, W.; Hovington, P.; Bessette, S.; Clément, D.; Gagnon, C.; Gariépy, V.; Provencher, M.; Mathieu, M. C.; Trudeau, M. L.; Vijh, A. et al. Design parameters for enhanced performance of Li1+xNi0.6Co0.2Mn0.2O2 at high voltage: A phase transformation study by in situ XRD. J. Electrochem. Soc. 2021, 168, 100526.

[135]

Lu, Q. C.; Jiang, H. D.; Xie, W. N.; Zhang, G. W.; He, Y. Q.; Duan, C. L.; Zhang, J.; Yu, Z. Y. Improvement of leaching efficiency of cathode material of spent LiNixCoyMnzO2 lithium-ion battery by the in-situ thermal reduction. Physicochem. Probl. Miner. Process. 2021, 57, 71–83.

[136]

Si, Z.; Shi, B. Z.; Huang, J.; Yu, Y.; Han, Y.; Zhang, J. L.; Li, W. Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni0.8Co0.1Mn0.1)O2. J. Mater. Chem. A 2021, 9, 9354–9363.

[137]

Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 2014, 4, 1300787.

[138]

Wang, C. Y.; Zhang, R.; Siu, C.; Ge, M. Y.; Kisslinger, K.; Shin, Y.; Xin, H. L. Chemomechanically stable ultrahigh-Ni single-crystalline cathodes with improved oxygen retention and delayed phase degradations. Nano Lett. 2021, 21, 9797–9804.

[139]

Ahmed, S.; Pokle, A.; Schweidler, S.; Beyer, A.; Bianchini, M.; Walther, F.; Mazilkin, A.; Hartmann, P.; Brezesinski, T.; Janek, J. et al. The role of intragranular nanopores in capacity fade of nickel-rich layered Li(Ni1-x-yCoxMny)O2 cathode materials. ACS Nano 2019, 13, 10694–10704.

[140]

Kimura, N.; Seki, E.; Tooyama, T.; Nishimura, S. STEM-EELS analysis of improved cycle life of lithium-ion cells with Al2O3-coated LiNi0.8Co0.1Mn0.1O2 cathode active material. J. Alloys Compd. 2021, 869, 159259.

[141]

Zhang, Q. Q.; Liu, K.; Li, C.; Li, L.; Liu, X. J.; Li, W.; Zhang, J. L. In situ induced surface reconstruction of single-crystal lithium-ion cathode toward effective interface compatibility. ACS Appl. Mater. Interfaces 2021, 13, 13771–13780.

[142]

Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.; Nakura, K. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Sources 2014, 258, 210–217.

[143]

Dupré, N.; Martin, J. F.; Oliveri, J.; Soudan, P.; Guyomard, D.; Yamada, A.; Kanno, R. Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J. Electrochem. Soc. 2009, 156, C180.

[144]

Wursig, A.; Buqa, H.; Holzapfel, M.; Krumeich, F.; Novak, P. Film formation at positive electrodes in lithium-ion batteries. Electrochem. Solid-State Lett. 2005, 8, A34.

[145]

Chen, D. C.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B. T.; Qu, C.; El-Sayed, M. A.; Liu, M. L. Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 2019, 19, 2037–2043.

[146]

Yang, P. F.; Zheng, J. M.; Kuppan, S.; Li, Q. Y.; Lv, D. P.; Xiao, J.; Chen, G. Y.; Zhang, J. G.; Wang, C. M. Phosphorus enrichment as a new composition in the solid electrolyte interphase of high-voltage cathodes and its effects on battery cycling. Chem. Mater. 2015, 27, 7447–7451.

[147]

Zhang, J. N.; Li, Q. H.; Wang, Y.; Zheng, J. Y.; Yu, X. Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7.

[148]

Minato, T.; Kawaura, H.; Hirayama, M.; Taminato, S.; Suzuki, K.; Yamada, N. L.; Sugaya, H.; Yamamoto, K.; Nakanishi, K.; Orikasa, Y. et al. Dynamic behavior at the interface between lithium cobalt oxide and an organic electrolyte monitored by neutron reflectivity measurements. J. Phys. Chem. C 2016, 120, 20082–20088.

[149]

Cuisinier, M.; Dupré, N.; Martin, J. F.; Kanno, R.; Guyomard, D. Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR. J. Power Sources 2013, 224, 50–58.

[150]

Schroder, K. W.; Celio, H.; Webb, L. J.; Stevenson, K. J. Examining solid electrolyte interphase formation on crystalline silicon electrodes: Influence of electrochemical preparation and ambient exposure conditions. J. Phys. Chem. C 2012, 116, 19737–19747.

[151]

Lin, F.; Markus, I. M.; Doeff, M. M.; Xin, H. L. Chemical and structural stability of lithium-ion battery electrode materials under electron beam. Sci. Rep. 2014, 4, 5694.

[152]

Zhang, Q. Y.; Ma, J. L.; Mei, L.; Liu, J.; Li, Z. Y.; Li, J.; Zeng, Z. Y. In situ TEM visualization of LiF nanosheet formation on the cathode-electrolyte interphase (CEI) in liquid-electrolyte lithium-ion batteries. Matter 2022, 5, 1235–1250.

[153]

Zhang, Z. W.; Yang, J. L.; Huang, W.; Wang, H. S.; Zhou, W. J.; Li, Y. B.; Li, Y. Z.; Xu, J. W.; Huang, W. X.; Chiu, W. et al. Cathode-electrolyte interphase in lithium batteries revealed by cryogenic electron microscopy. Matter 2021, 4, 302–312.

[154]

Nagarajan, S.; Weiland, C.; Hwang, S.; Balasubramanian, M.; Arava, L. M. R. Depth-dependent understanding of cathode electrolyte interphase (CEI) on the layered Li-ion cathodes operated at extreme high temperature. Chem. Mater. 2022, 34, 4587–4601.

[155]

Yang, K.; Chen, L. K.; Ma, J. B.; Lai, C.; Huang, Y. F.; Mi, J. S.; Biao, J.; Zhang, D. F.; Shi, P. R.; Xia, H. Y. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. , Int. Ed. 2021, 60, 24668–24675.

[156]

Chen, Z.; Nguyen, H. D.; Zarrabeitia, M.; Liang, H. P.; Geiger, D.; Kim, J. K.; Kaiser, U.; Passerini, S.; Iojoiu, C.; Bresser, D. Lithium phosphonate functionalized polymer coating for high-energy Li[Ni0.8Co0.1Mn0.1]O2 with superior performance at ambient and elevated temperatures. Adv. Funct. Mater. 2021, 31, 2105343.

[157]

Lu, W.; Zhang, J. S.; Xu, J. J.; Wu, X. D.; Chen, L. W. In situ visualized cathode electrolyte interphase on LiCoO2 in high voltage cycling. ACS Appl. Mater. Interfaces 2017, 9, 19313–19318.

[158]

Zhang, J. X.; Wang, P. F.; Bai, P. X.; Wan, H. L.; Liu, S. F.; Hou, S.; Pu, X. J.; Xia, J. L.; Zhang, W. R.; Wang, Z. Y. et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 2022, 34, 2108353.

[159]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[160]

Peled, E.; Menkin, S. Review-SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

[161]

Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

[162]

Chen, A. L.; Shang, N.; Ouyang, Y.; Mo, L. L.; Zhou, C. Y.; Tjiu, W. W.; Lai, F. L.; Miao, Y. E.; Liu, T. X. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience 2022, 2, 192–200.

[163]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[164]

Scarr, R. F. Kinetics of the solid lithium electrode in propylene carbonate. J. Electrochem. Soc. 1970, 117, 295.

[165]

Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678.

[166]

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56–72.

[167]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[168]

Huang, A. M.; Ma, Y. C.; Peng, J.; Li, L. L.; Chou, S. L.; Ramakrishna, S.; Peng, S. J. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 1, 141–162.

[169]

Wu, H.; Zheng, G. Y.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012, 12, 904–909.

[170]

Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341.

[171]

Malmgren, S.; Ciosek, K.; Hahlin, M.; Gustafsson, T.; Gorgoi, M.; Rensmo, H.; Edström, K. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy. Electrochim. Acta 2013, 97, 23–32.

[172]

Abe, K.; Miyoshi, K.; Hattori, T.; Ushigoe, Y.; Yoshitake, H. Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery. J. Power Sources 2008, 184, 449–455.

[173]

Shin, J.; Kim, T. H.; Lee, Y.; Cho, E. Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Storage Mater. 2020, 25, 764–781.

[174]

Matsui, M.; Deguchi, S.; Kuwata, H.; Imanishi, N. In-operando FTIR spectroscopy for composite electrodes of lithium-ion batteries. Electrochemistry 2015, 83, 874–878.

[175]

Wood, K. N.; Teeter, G. XPS on Li-battery-related compounds: Analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 2018, 1, 4493–4504.

[176]

Gittleson, F. S.; Yao, K. P.; Kwabi, D. G.; Sayed, S. Y.; Ryu, W. H.; Shao-Horn, Y.; Taylor, A. D. Raman spectroscopy in lithium– oxygen battery systems. ChemElectroChem 2015, 2, 1446–1457.

[177]

Andersson, A. M.; Henningson, A.; Siegbahn, H.; Jansson, U.; Edström, K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J. Power Sources 2003, 119121, 522–527.

[178]

Ai, Q.; Li, D. P.; Guo, J. G.; Hou, G. M.; Sun, Q.; Sun, Q. D.; Xu, X. Y.; Zhai, W.; Zhang, L.; Feng, J. K. et al. Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries. Adv. Mater. Interfaces 2019, 6, 1901187.

[179]

Nanda, J.; Yang, G.; Hou, T. Z.; Voylov, D. N.; Li, X.; Ruther, R. E.; Naguib, M.; Persson, K.; Veith, G. M.; Sokolov, A. P. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy. Joule 2019, 3, 2001–2019.

[180]

Abe, K.; Yoshitake, H.; Kitakura, T.; Hattori, T.; Wang, H. Y.; Yoshio, M. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim. Acta 2004, 49, 4613–4622.

[181]

Cho, J. H.; Picraux, S. T. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation. Nano Lett. 2014, 14, 3088–3095.

[182]

Boniface, M.; Quazuguel, L.; Danet, J.; Guyomard, D.; Moreau, P.; Bayle-Guillemaud, P. Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS. Nano Lett. 2016, 16, 7381–7388.

[183]

He, Y.; Jiang, L.; Chen, T. W.; Xu, Y. B.; Jia, H. P.; Yi, R.; Xue, D. C.; Song, M.; Genc, A.; Bouchet-Marquis, C. et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat. Nanotechnol. 2021, 16, 1113–1120.

[184]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[185]

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

[186]

Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From Lab to market. Joule 2019, 3, 2334–2363.

[187]

Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E. Electro-chemomechanics of lithium dendrite growth. Energy Environ. Sci. 2019, 12, 3595–3607.

[188]

Jana, A.; García, R. E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 2017, 41, 552–565.

[189]

Chen, C. Y.; Tsuda, T.; Oshima, Y.; Kuwabata, S. In situ monitoring of lithium metal anodes and their solid electrolyte interphases by transmission electron microscopy. Small Struct. 2021, 2, 2100018.

[190]

Xu, Y. B.; Wu, H. P.; He, Y.; Chen, Q. S.; Zhang, J. G.; Xu, W.; Wang, C. M. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Lett. 2020, 20, 418–425.

[191]

Zhuang, Q. C.; Yang, Z.; Zhang, L.; Cui, Y. H. Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries. Prog. Chem. 2020, 32, 761–791.

[192]

Lin, Y. B.; Lin, Y.; Zhou, T.; Zhao, G. Y.; Huang, Y. D.; Yang, Y. M.; Huang, Z. G. Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries. Mater. Chem. Phys. 2013, 138, 313–318.

[193]

Wang, S. H.; Kuo, P. L.; Hsieh, C. T.; Teng, H. S. Design of poly(Acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19360– 19370.

[194]

Wang, J.; Tian, J. M.; Wei, J. C.; Wang, C. M. Studies on the electrochemical behavior of Sio/C anode materials by AC impedance method. Adv. Mater. Res. 2013, 690–693, 967–970.

[195]

Liu, X. H.; Zheng, H.; Zhong, L.; Huang, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011, 11, 3312–3318.

[196]

Lee, S. W.; McDowell, M. T.; Choi, J. W.; Cui, Y. Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 2011, 11, 3034–3039.

[197]

Yuk, J. M.; Seo, H. K.; Choi, J. W.; Lee, J. Y. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 2014, 8, 7478–7485.

[198]

Chang, L.; Liu, D. Q.; Zhou, T.; Hu, M.; Wang, Y. C.; Ge, S. M.; He, J.; Li, C.; An, C. H. The phase-change evolution from surface to bulk of MnO anodes upon cycling. Nanoscale 2020, 12, 20425–20431.

[199]

Gong, Y.; Zhang, J. N.; Jiang, L. W.; Shi, J. A.; Zhang, Q. H.; Yang, Z. Z.; Zou, D. L.; Wang, J. Y.; Yu, X. Q.; Xiao, R. J. et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J. Am. Chem. Soc. 2017, 139, 4274–4277.

[200]

Yang, Z. Z.; Ong, P. V.; He, Y.; Wang, L.; Bowden, M. E.; Xu, W.; Droubay, T. C.; Wang, C. M.; Sushko, P. V.; Du, Y. G. Direct visualization of Li dendrite effect on LiCoO2 cathode by in situ TEM. Small 2018, 14, 1803108.

[201]

Tan, H. Y.; Takeuchi, S.; Bharathi, K. K.; Takeuchi, I.; Bendersky, L. A. Microscopy study of structural evolution in epitaxial LiCoO2 positive electrode films during electrochemical cycling. ACS Appl. Mater. Interfaces 2016, 8, 6727–6735.

[202]

Li, S.; Yao, Z. P.; Zheng, J. M.; Fu, M. S.; Cen, J. J.; Hwang, S.; Jin, H. L.; Orlov, A.; Gu, L.; Wang, S. et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew. Chem. , Int. Ed. 2020, 59, 22092–22099.

[203]

Nomura, Y.; Yamamoto, K.; Hirayama, T.; Igaki, E.; Saitoh, K. Visualization of lithium transfer resistance in secondary particle cathodes of bulk-type solid-state batteries. ACS Energy Lett. 2020, 5, 2098–2105.

[204]

Nomura, Y.; Yamamoto, K.; Yamagishi, Y.; Igaki, E. Lithium transport pathways guided by grain architectures in Ni-rich layered cathodes. ACS Nano 2021, 15, 19806–19814.

[205]

Huang, J.; Peng, Z. Q. Understanding the reaction interface in lithium-oxygen batteries. Batteries Supercaps 2019, 2, 5.

[206]

Yuan, H.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Sulfur redox reactions at working interfaces in lithium-sulfur batteries: A perspective. Adv. Mater. Interfaces 2019, 6, 1802046.

[207]

Minato, T.; Abe, T. Surface and interface sciences of Li-ion batteries: -Research progress in electrode–electrolyte interface. Prog. Surf. Sci. 2017, 92, 240–280.

[208]

Wu, X. Y.; Li, S. M.; Yang, B.; Wang, C. M. In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries. Electrochem. Energy Rev. 2019, 2, 467–491.

[209]

Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z. L.; Zhang, X. Y.; He, P.; Zhou, H. S.; Wagemaker, M. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries. Joule 2020, 4, 1311–1323.

[210]

Yang, L. T.; Li, X.; Pei, K.; You, W. B.; Liu, X. H.; Xia, H.; Wang, Y. G.; Che, R. C. Direct view on the origin of high Li+ transfer impedance in all-solid-state battery. Adv. Funct. Mater. 2021, 31, 2103971.

[211]

Wang, Z. Y.; Lee, J. Z.; Xin, H. L.; Han, L. L.; Grillon, N.; Guy-Bouyssou, D.; Bouyssou, E.; Proust, M.; Meng, Y. S. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power Sources 2016, 324, 342–348.

[212]

Nomura, Y.; Yamamoto, K.; Fujii, M.; Hirayama, T.; Igaki, E.; Saitoh, K. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nat. Commun. 2020, 11, 2824.

[213]

Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ohkawa, M.; Igaki, E.; Hojo, N.; Saitoh, K. Quantitative operando visualization of electrochemical reactions and Li ions in all-solid-state batteries by STEM-EELS with hyperspectral image analyses. Nano Lett. 2018, 18, 5892–5898.

[214]

McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

[215]

McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034–6041.

[216]

Liu, X. H.; Fan, F. F.; Yang, H.; Zhang, S. L.; Huang, J. Y.; Zhu, T. Self-limiting lithiation in silicon nanowires. ACS Nano 2013, 7, 1495–1503.

[217]

Adkins, E. R.; Jiang, T. Z.; Luo, L. L.; Wang, C. M.; Korgel, B. A. In situ transmission electron microsopy of oxide shell-induced pore formation in (De)lithiated silicon nanowires. ACS Energy Lett. 2018, 3, 2829–2834.

[218]

Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F. F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 2012, 7, 749–756.

[219]

Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

[220]

Hu, S. J.; Pillai, A. S.; Liang, G. M.; Pang, W. K.; Wang, H. Q.; Li, Q. Y.; Guo, Z. P. Li-rich layered oxides and their practical challenges: Recent progress and perspectives. Electrochem. Energy Rev. 2019, 2, 277–311.

[221]

Zhuang, Y.; Du, F. H.; Zhu, L. L.; Cao, H. S.; Dai, H.; Adkins, J.; Zhou, Q.; Zheng, J. W. Trimethylsilyl (trimethylsiloxy) acetate as a novel electrolyte additive for improvement of electrochemical performance of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode in lithium-ion batteries. Electrochim. Acta 2018, 290, 220–227.

[222]

Klein, S.; Harte, P.; Van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2, 100521.

[223]

Nzereogu, P. U.; Omah, A. D.; Ezema, F. I.; Iwuoha, E. I.; Nwanya, A. C. Anode materials for lithium-ion batteries: A review. Appl. Surf. Sci. Adv. 2022, 9, 100233.

[224]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[225]

Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Are solid-state batteries safer than lithium-ion batteries? Joule 2022, 6, 742–755.

[226]

Bai, L. X.; Xue, W. D.; Li, Y.; Liu, X. G.; Li, Y.; Sun, J. L. The interfacial behaviours of all-solid-state lithium ion batteries. Ceram. Int. 2018, 44, 7319–7328.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 July 2022
Revised: 01 September 2022
Accepted: 02 September 2022
Published: 27 September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0705700), the National Natural Science Foundation of China (Nos. U2102214 and U1804255), and the National Science Fund for Distinguished Young Scholars (No. 51825102).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return