Journal Home > Volume 1 , Issue 3

Seawater electrolysis is an extremely attractive approach for harvesting clean hydrogen energy, but detrimental chlorine species (i.e., chloride and hypochlorite) cause severe corrosion at the anode. Here, we report our recent finding that benzoate anions-intercalated NiFe-layered double hydroxide nanosheet on carbon cloth (BZ-NiFe-LDH/CC) behaves as a highly efficient and durable monolithic catalyst for alkaline seawater oxidation, affords enlarged interlayer spacing of LDH, inhibits chlorine (electro)chemistry, and alleviates local pH drop of the electrode. It only needs an overpotential of 320 mV to reach a current density of 500 mA·cm–2 in 1 M KOH. In contrast to the fast activity decay of NiFe-LDH/CC counterpart during long-term electrolysis, BZ-NiFe-LDH/CC achieves stable 100-h electrolysis at an industrial-level current density of 500 mA·cm–2 in alkaline seawater. Operando Raman spectroscopy studies further identify structural changes of disordered δ (NiIII-O) during the seawater oxidation process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation

Show Author's information Longcheng Zhang1,2,§Jie Liang1,§Luchao Yue1Kai Dong1Jun Li1Donglin Zhao1Zerong Li1Shengjun Sun1Yongsong Luo1Qian Liu3Guanwei Cui4Abdulmohsen Ali Alshehri5Xiaodong Guo2( )Xuping Sun1,4( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

§ Longcheng Zhang and Jie Liang contributed equally to this work.

Abstract

Seawater electrolysis is an extremely attractive approach for harvesting clean hydrogen energy, but detrimental chlorine species (i.e., chloride and hypochlorite) cause severe corrosion at the anode. Here, we report our recent finding that benzoate anions-intercalated NiFe-layered double hydroxide nanosheet on carbon cloth (BZ-NiFe-LDH/CC) behaves as a highly efficient and durable monolithic catalyst for alkaline seawater oxidation, affords enlarged interlayer spacing of LDH, inhibits chlorine (electro)chemistry, and alleviates local pH drop of the electrode. It only needs an overpotential of 320 mV to reach a current density of 500 mA·cm–2 in 1 M KOH. In contrast to the fast activity decay of NiFe-LDH/CC counterpart during long-term electrolysis, BZ-NiFe-LDH/CC achieves stable 100-h electrolysis at an industrial-level current density of 500 mA·cm–2 in alkaline seawater. Operando Raman spectroscopy studies further identify structural changes of disordered δ (NiIII-O) during the seawater oxidation process.

Keywords: layered double hydroxide, seawater oxidation, anticorrosion, three-dimensional (3D) self-supported electrocatalysts, operando Raman spectroscopy

References(54)

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Liu, Q.; Sun, S.; Zhang, L.; Luo, Y.; Yang, Q.; Dong, K.; Fang, X.; Zheng, D.; Alshehri, A. A.; Sun, X. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res., in press, https://doi.org/10.1007/s12274-022-4869-2.

[3]

Jin, H. Y.; Yu, H. M.; Li, H. B.; Davey, K.; Song, T.; Paik, U.; Qiao, S. Z. MXene analogue: A 2D nitridene solid solution for high-rate hydrogen production. Angew. Chem., Int. Ed. 2022, 61, e202203850.

[4]

Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 2017, 16, 646–651.

[5]

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

[6]

Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

[7]

Li, P. P.; Zhao, R. B.; Chen, H. Y.; Wang, H. B.; Wei, P. P.; Huang, H.; Liu, Q.; Li, T. S.; Shi, X. F.; Zhang, Y. Y. et al. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 2019, 15, 1805103.

[8]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[9]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[10]

Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.

[11]

Bennett, J. E. Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrogen Energy 1980, 5, 401–408.

[12]

Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

[13]

Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 1984, 29, 1503–1512.

[14]

Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972.

[15]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[16]

Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O. I.; Morante, J. R.; Maccato, C. Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process. Appl. Catal. B: Environ. 2021, 284, 119684.

[17]

Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

[18]

Gou, Y.; Liu, Q.; Liu, Z. A.; Asiri, A. M.; Sun, X. P.; Hu, J. M. FeMoO4 nanorod array: A highly active 3D anode for water oxidation under alkaline conditions. Inorg. Chem. Front. 2018, 5, 665–668.

[19]

Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

[20]

Ding, P.; Meng, C. Q.; Liang, J.; Li, T. S.; Wang, Y.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Asiri, A. M.; Lu, S. Y. et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: A 3D electrocatalyst for highly efficient water oxidation in alkaline media. Inorg. Chem. 2021, 60, 12703–12708.

[21]

Wu, L. B.; Yu, L.; Xiao, X.; Zhang, F. H.; Song, S. W.; Chen, S.; Ren, Z. F. Recent advances in self-supported layered double hydroxides for oxygen evolution reaction. Research 2020, 2020, 3976278.

[22]

Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.

[23]

Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

[24]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[25]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[26]

Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J. G.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.

[27]

Wang, H. P.; Wang, J.; Pi, Y. C.; Shao, Q.; Tan, Y. M.; Huang, X. Q. Double perovskite LaFexNi1−xO3 nanorods enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 2316–2320.

[28]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.

[29]

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

[30]

Andronescu, C.; Barwe, S.; Ventosa, E.; Masa, J.; Vasile, E.; Konkena, B.; Möller, S.; Schuhmann, W. Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 11258–11262.

[31]

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

[32]

Dresp, S.; Ngo Thanh, T.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

[33]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

[34]

Li, F.; Liu, J. J.; Evans, D. G.; Duan, X. Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 2004, 16, 1597–1602.

[35]

Ma, M.; Ge, R. X.; Ji, X. Q.; Ren, X.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Benzoate anions-intercalated layered nickel hydroxide nanobelts array: An earth-abundant electrocatalyst with greatly enhanced oxygen evolution activity. ACS Sustainable Chem. Eng. 2017, 5, 9625–9629.

[36]

Ge, R. X.; Ren, X.; Ji, X. Q.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P.; Chen, L. Benzoate anion-intercalated layered cobalt hydroxide nanoarray: An efficient electrocatalyst for the oxygen evolution reaction. ChemSusChem 2017, 10, 4004–4008.

[37]

Kaseem, M.; Ko, Y. G. Benzoate intercalated Mg-Al-layered double hydroxides (LDHs) as efficient chloride traps for plasma electrolysis coatings. J. Alloys Compd. 2019, 787, 772–778.

[38]

Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Jo, E.; Kim, J. H. Hierarchically coupled Ni: FeOOH nanosheets on 3D N-doped graphite foam as self-supported electrocatalysts for efficient and durable water oxidation. ACS Catal. 2019, 9, 5025–5034.

[39]

Zhao, P. P.; Nie, H. Q.; Zhou, Z. R.; Wang, J. B.; Cheng, G. Z. NiFe-LDH grown on three-dimensional Cu3P nano-array for highly efficient water oxidation. ChemistrySelect 2018, 3, 8064–8069.

[40]

Dong, G. F.; Fang, M.; Zhang, J. S.; Wei, R. J.; Shu, L.; Liang, X. G.; Yip, S.; Wang, F. Y.; Guan, L. H.; Zheng, Z. J. et al. In situ formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J. Mater. Chem. A 2017, 5, 11009–11015.

[41]

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

[42]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[43]

Kang, T.; Kim, K.; Kim, M.; Kim, J. Electronic structure modulation of nickel hydroxide and tungsten nanoparticles for fast structure transformation and enhanced oxygen evolution reaction activity. Chem. Eng. J. 2021, 418, 129403.

[44]

Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

[45]

Duan, S.; Liu, Z.; Zhuo, H. H.; Wang, T. Y.; Liu, J. Y.; Wang, L.; Liang, J. S.; Han, J. T.; Huang, Y. H.; Li, Q. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale 2020, 12, 21743–21749.

[46]

Luo, X.; Ji, P. X.; Wang, P. Y.; Tan, X.; Chen, L.; Mu, S. C. Spherical Ni3S2/Fe-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 2022, 9, 2104846.

[47]

Wang, X. S.; Xu, C. C.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 2019, 10, 4876.

[48]

Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.

[49]

Bantignies, J. L.; Deabate, S.; Righi, A.; Rols, S.; Hermet, P.; Sauvajol, J. L.; Henn, F. New insight into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering, far/mid-infrared and Raman spectroscopies. J. Phys. Chem. C 2008, 112, 2193–2201.

[50]

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

[51]

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

[52]

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from Monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

[53]

Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.

[54]

Campbell, J. A. Is ΔS naught or not? J. Chem. Educ. 1968, 45, 9.

File
nre-2022-9120028_ESM.pdf (8.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 July 2022
Revised: 31 July 2022
Accepted: 11 August 2022
Published: 05 September 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return