AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction

Fanjuan Guo1Mingyue Zhang2Shicheng Yi1Xuxin Li1Rong Xin1Mei Yang1Bei Liu1Hongbiao Chen1( )Huaming Li1Yijiang Liu1( )
College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

Abstract

The exploration of high-efficiency, long-durability, and cost-effectiveness transition metal doped carbon materials to replace the commercial Pt/C in oxygen reduction reaction (ORR) is greatly desirable for promoting the advancement of sustainable energy devices. Herein, the Fe3N and FeCo alloy decorated N-doped carbon hybrid material (denoted Fe3N-FeCo@NC) is prepared and applied as the ORR catalyst, which is derived from the two-step pyrolysis of an intriguing complex consisted of metal-coordinated porous polydopamine (PDA) nanospheres (i.e., Fe-PDA@Co) and melamine. The resulting Fe3N-FeCo@NC delivers outstanding ORR activity with an onset potential (Eon) of 1.05 V, a half-wave potential (E1/2) of 0.89 V, as well as excellent long-term stability and methanol resistance over Pt/C. Interestingly, the home-made Zn-air battery with Fe3N-FeCo@NC as the air-cathode demonstrates much higher open-circuit voltage (1.50 vs. 1.48 V), power density (141 vs. 113 mW·cm−2) and specific capacity (806.6 vs. 660.6 mAh·gZn−1) than those of Pt/C counterpart. Such a remarkable ORR activity of Fe3N-FeCo@NC may stem from the synergistic effect of Fe3N and FeCo active species, the large surface area, the hierarchical porous structure and the exceptional sphere/sheet hybridized architecture.

Electronic Supplementary Material

Download File(s)
nre-2022-9120027_EMS.pdf (2.1 MB)

References

[1]

Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

[2]

Yan, Y.; Liang, S.; Wang, X.; Zhang, M. Y.; Hao, S. M.; Cui, X.; Li, Z. W.; Lin, Z. Q. Robust wrinkled MoS2/N-C bifunctional electrocatalysts interfaced with single Fe atoms for wearable zinc-air batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e2110036118.

[3]

Gu, J. W.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi, Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, 1, e9120009.

[4]

Peng X. W.; Zhang, L.; Chen, Z. X; Zhong, L. X; Zhao, D. K; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

[5]

Cheng, W. R.; Lu, X. F.; Luan, D. Y.; Lou, X. W. NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18234–18239.

[6]

Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells. J. Am. Chem. Soc. 2019, 141, 10744–10750.

[7]

Liu, L. N.; Yan, F.; Li, K. Y.; Zhu, C. L.; Xie, Y.; Zhang, X. T.; Chen, Y. J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 1083–1091.

[8]

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

[9]

Li, T. F.; Li, M.; Zhang, M. R.; Li, X.; Liu, K. H.; Zhang, M. Y.; Liu, X. E.; Sun, D. M.; Xu, L.; Zhang, Y. W. et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon 2019, 153, 364–371.

[10]

Hao, R.; Chen, J. J.; Wang, Z. Y.; Zhang, J. J.; Gan, Q. M.; Wang, Y. F.; Li, Y. Z.; Luo, W.; Wang, Z. Q.; Yuan, H. M. et al. Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Sci. China Mater. 2021, 64, 2987–2996.

[11]

Qian, Y. D.; Du, P.; Wu, P.; Cai, C. X.; Gervasio, D. F. Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen-doped carbon-supported non-noble metal catalysts. J. Phys. Chem. C 2016, 120, 9884–9896.

[12]

Lv, Y. R.; Zhai, X. J.; Wang, S.; Xu, H.; Wang, R.; Zang, S. Q. 3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction. Chin. J. Catal. 2021, 42, 490–500.

[13]

Li, G. X.; Yu, J. Y.; Yu, W. Q.; Yang, L. J.; Zhang, X. L.; Liu, X. Y.; Liu, H.; Zhou, W. J. Phosphorus-doped iron nitride nanoparticles encapsulated by nitrogen-doped carbon nanosheets on iron foam in situ derived from Saccharomycetes cerevisiae for electrocatalytic overall water splitting. Small 2020, 16, 2001980.

[14]

He, J. K.; Huang, J. Y.; Wang, Z. W.; Liu, Z.; Chen, Y.; Su, R. D.; Ni, X. Y.; Li, Y. W.; Xu, X.; Zhou, W. Z. et al. The enhanced catalytic degradation of sulfamethoxazole over Fe@nitrogen-doped carbon-supported nanocomposite: Insight into the mechanism. Chem. Eng. J. 2022, 439, 135784.

[15]

Radwan, A.; Jin, H. H.; Liu, B. S.; Chen, Z. B.; Wu, Q.; Zhao, X.; He, D. P.; Mu, S. C. 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 2021, 171, 368–375.

[16]

Hao, Y. R.; Xue, H.; Lv, L.; Sun, J.; Guo, N. K.; Song, T. S.; Dong, H. L.; Zhang, J. W.; Wang, Q. Unraveling the synergistic effect of defects and interfacial electronic structure modulation of pealike CoFe@Fe3N to achieve superior oxygen reduction performance. Appl. Catal. B: Environ. 2021, 295, 120314.

[17]

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

[18]

Chen, F.; Xing, Y. X.; Wang, Z. Q.; Zheng, X. Y.; Zhang, J. X.; Cai, K. Y. Nanoscale polydopamine (PDA) meets π-π interactions: An interface-directed coassembly approach for mesoporous nanoparticles. Langmuir 2016, 32, 12119–12128.

[19]

Zhang, L.; Wang, Q.; Jian, R. K.; Wang, D. Y. Bioinspired iron-loaded polydopamine nanospheres as green flame retardants for epoxy resin via free radical scavenging and catalytic charring. J. Mater. Chem. A 2020, 8, 2529–2538.

[20]

Ding, Y. C.; Xu, W. H.; Yu, Y.; Hou, H. Q.; Zhu, Z. T. One-step preparation of highly hydrophobic and oleophilic melamine sponges via metal-ion-induced wettability transition. ACS Appl. Mater. Interfaces 2018, 10, 6652–6660.

[21]

Wang, T.; He, Y.; Liu, Y. J.; Guo, F. J.; Li, X. F.; Chen, H. B.; Li, H. M.; Lin, Z. Q. A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 2021, 79, 105487.

[22]

Xue, N.; Liu, J.; Wang, P. Y.; Wang, C. Y.; Li, S.; Zhu, H.; Yin, J. Scalable synthesis of Fe3N nanoparticles within N-doped carbon frameworks as efficient electrocatalysts for oxygen reduction reaction. J. Colloid Interface Sci. 2020, 580, 460–469.

[23]

Cui, Z. H.; Liang, X. Z.; Wang, P.; Zhou, P.; Zhang, Q. Q.; Wang, Z. Y.; Zheng, Z. K.; Liu, Y. Y.; Dai, Y.; Huang, B. B. In situ integration of Fe3N@Co4N@CoFe alloy nanoparticles as efficient and stable electrocatalyst for overall water splitting. Electrochim. Acta 2021, 395, 139218.

[24]

Zhang, Y. P.; Wang, N.; Jia, N.; Wang, J.; Sun, J.; Shi, F.; Liu, Z. H.; Jiang, R. B. A low-cost and facile method for the preparation of Fe-N/C-Based hybrids with superior catalytic performance toward oxygen reduction reaction. Adv. Mater. Interfaces 2019, 6, 1900273.

[25]

Wang, T.; Yang, C.; Liu, Y. J.; Yang, M.; Li, X. F.; He, Y.; Li, H. M.; Chen, H. B.; Lin, Z. Q. Dual-shelled multidoped hollow carbon nanocages with hierarchical porosity for high-performance oxygen reduction reaction in both alkaline and acidic media. Nano Lett. 2020, 20, 5639–5645.

[26]

Li, G. J.; Tang, Y. B.; Fu, T. T.; Xiang, Y.; Xiong, Z. P.; Si, Y. J.; Guo, C. Z.; Jiang, Z. Q. S, N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chem. Eng. J. 2022, 429, 132174.

[27]

Huang, X. X.; Yang, Z. Y.; Dong, B.; Wang, Y. Z.; Tang, T. Y.; Hou, Y. L. In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 2017, 9, 8102–8106.

[28]

Choi, C. H.; Choi, W. S.; Kasian, O.; Mechler, A. K.; Sougrati, M. T.; Brüller, S.; Strickland, K.; Jia, Q. Y.; Mukerjee, S.; Mayrhofer, K. J. J. et al. Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew. Chem., Int. Ed. 2017, 56, 8809–8812.

[29]

Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei, G. F.; Yu, C. Z. Amorphous metal-organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 3630–3637.

[30]

Yu, H.; Zhang, D. D.; Fang, Z.; Xu, S.; Liu, Q.; Hou, H. L.; Wang, L.; Zhou, Z. Y.; Shao, G.; Yang, W. Y. et al. N and S co-doped carbon nanofibers with embedded candle soot and designed surface decoration for efficient bifunctional electrocatalysts. Electrochim. Acta 2021, 380, 138261.

[31]

Wang, C. Y.; Chen, W. X.; Xia, K. L.; Xie, N. H.; Wang, H. M.; Zhang, Y. Y. Silk-derived 2D porous carbon nanosheets with atomically-dispersed Fe-Nx-C sites for highly efficient oxygen reaction catalysts. Small 2019, 15, 1804966.

[32]

Li, X. F.; Liu, Y. J.; Chen, H. B.; Yang, M.; Yang, D. G.; Li, H. M.; Lin, Z. Q. Rechargeable Zn-air batteries with outstanding cycling stability enabled by ultrafine FeNi nanoparticles-encapsulated N-doped carbon nanosheets as a bifunctional electrocatalyst. Nano Lett. 2021, 21, 3098–3105.

[33]

Jannath, K. A.; Huang, Y. H.; Seo, K. D.; Park, D. S.; Shim, Y. B. Fe3N decorated S/N doped carbon derived from a coordinated polymer as a bifunctional electrocatalyst for oxygen reduction and catecholamines oxidation. Carbon 2022, 187, 1–12.

[34]

Yan, P.; Kong, D. W.; Yuan, W. J.; Xie, A. J.; Shen, Y. H. In situ synthesis and electrocatalytic performance of Fe/Fe2.5C/Fe3N/nitrogen-doped carbon nanotubes for the oxygen reduction reaction. ChemElectroChem 2019, 6, 3030–3038.

[35]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

Nano Research Energy
Article number: 9120027
Cite this article:
Guo F, Zhang M, Yi S, et al. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Research Energy, 2022, 1: 9120027. https://doi.org/10.26599/NRE.2022.9120027

9999

Views

2361

Downloads

120

Crossref

117

Scopus

Altmetrics

Received: 23 July 2022
Revised: 11 August 2022
Accepted: 15 August 2022
Published: 09 October 2022
© The Author(s) 2022. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return