Journal Home > Volume 1 , Issue 3

"Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries

Show Author's information Xin Guo1,§Changda Wang1,§ ( )Wenjie Wang1Quan Zhou1Wenjie Xu1Pengjun Zhang1Shiqiang Wei1Yuyang Cao1Kefu Zhu1Zhanfeng Liu1Xiya Yang1Yixiu Wang1Xiaojun Wu2Li Song1Shuangming Chen1( )Xiaosong Liu1( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei 230029, China

§ Xin Guo and Changda Wang contributed equally to this work.

Abstract

"Intrinsic" strategies for manipulating the local electronic structure and coordination environment of defect-regulated materials can optimize electrochemical storage performance. Nevertheless, the structure–activity relationship between defects and charge storage is ambiguous, which may be revealed by constructing highly ordered vacancy structures. Herein, we demonstrate molybdenum carbide MXene nanosheets with customized in-plane chemical ordered vacancies (Mo1.33CTx), by utilizing selective etching strategies. Synchrotron-based X-ray characterizations reveal that Mo atoms in Mo1.33CTx show increased average valence of +4.44 compared with the control Mo2CTx. Benefited from the introduced atomic active sites and high valence of Mo, Mo1.33CTx achieves an outstanding capacity of 603 mAh·g−1 at 0.2 A·g−1, superior to most original MXenes. Li+ storage kinetics analysis and density functional theory (DFT) simulations show that this optimized performance ensues from the more charge compensation during charge–discharge process, which enhances Faraday reaction compared with pure Mo2CTx. This vacancy manipulation provides an efficient way to realize MXene's potential as promising electrodes.

Keywords: mechanism, MXenes, X-ray absorption fine structure (XAFS), ordered vacancies, lithium-ion storage

References(42)

[1]

Sun, M. L.; Yun, S. N.; Shi, J.; Zhang, Y. W.; Arshad, A.; Dang, J. E.; Zhang, L. S.; Wang, X.; Liu, Z. L. Designing and understanding the outstanding tri-iodide reduction of N-coordinated magnetic metal modified defect-rich carbon dodecahedrons in photovoltaics. Small 2021, 17, 2102300.

[2]

Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

[3]

He, B. B.; Hu, B.; Yen, H. W.; Cheng, G. J.; Wang, Z. K.; Luo, H. W.; Huang, M. X. High dislocation density-induced large ductility in deformed and partitioned steels. Science 2017, 357, 1029–1032.

[4]

Fang, G. Z.; Wu, Z. X.; Zhou, J.; Zhu, C. Y.; Cao, X. X.; Lin, T. Q.; Chen, Y. M.; Wang, C.; Pan, A. Q.; Liang, S. Q. Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 2018, 8, 1703155.

[5]

Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

[6]

Zhang, Q.; Li, L.; Zhang, H. T.; He, N.; Wang, B. S.; Ying, D. X.; Zhang, X. L.; Jiang, B.; Tang, D. W. Defect-engineered MXene monolith enabling interfacial photothermal catalysis for high-yield solar hydrogen generation. Cell Rep. Phys. Sci. 2022, 3, 100877.

[7]

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

[8]

Chen, C. H.; Njagi, E. C.; Chen, S. Y.; Horvath, D. T.; Xu, L. P.; Morey, A.; Mackin, C.; Joesten, R.; Suib, S. L. Structural distortion of molybdenum-doped manganese oxide octahedral molecular sieves for enhanced catalytic performance. Inorg. Chem. 2015, 54, 10163–10171.

[9]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[10]

Hahn, B. P.; Long, J. W.; Mansour, A. N.; Pettigrew, K. A.; Osofsky, M. S.; Rolison, D. R. Electrochemical Li-ion storage in defect spinel iron oxides: The critical role of cation vacancies. Energy Environ. Sci. 2011, 4, 1495–1502.

[11]

Hahn, B. P.; Long, J. W.; Rolison, D. R. Something from nothing: Enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 2013, 46, 1181–1191.

[12]

Kovács, I.; El Sayed, H. Point defects in metals. J. Mater. Sci. 1976, 11, 529–559.

[13]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[14]

Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[15]

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

[16]

Wang, C. D.; Xie, H.; Chen, S. M.; Ge, B. H.; Liu, D. B.; Wu, C. Q.; Xu, W. J.; Chu, W. S.; Babu, G.; Ajayan, P. M. et al. Atomic cobalt covalently engineered interlayers for superior lithium-ion storage. Adv. Mater. 2018, 30, e1802525.

[17]

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

[18]

Lind, H.; Halim, J.; Simak, S. I.; Rosen, J. Investigation of vacancy-ordered Mo1.33C MXene from first principles and X-ray photoelectron spectroscopy. Phys. Rev. Mater. 2017, 1, 044002.

[19]

Yang, J. X.; Yao, G. Q.; Sun, S. L.; Chen, Z. H.; Yuan, S.; Wu, K.; Fu, X. X.; Wang, Q.; Cui, W. B. Structural, magnetic properties of in-plane chemically ordered (Mo2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) MAX phase and enhanced capacitance of Mo1.33C MXene derivatives. Carbon 2021, 179, 104–110.

[20]

Dahlqvist, M.; Petruhins, A.; Lu, J.; Hultman, L.; Rosen, J. Origin of chemically ordered atomic laminates (i-MAX): Expanding the elemental space by a theoretical/experimental approach. ACS Nano 2018, 12, 7761–7770.

[21]

Mockute, A.; Tao, Q.; Dahlqvist, M.; Lu, J.; Calder, S.; Caspi, E. N.; Hultman, L.; Rosen, J. Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1−x)2AlC i-MAX phase used as parent material for MXene derivation. Phys. Rev. Mater. 2019, 3, 113607.

[22]

Ahmed, B.; El Ghazaly, A.; Rosen, J. i-MXenes for energy storage and catalysis. Adv. Funct. Mater. 2020, 30, 2000894.

[23]

Halim, J.; Etman, A. S.; Elsukova, A.; Polcik, P.; Palisaitis, J.; Barsoum, M. W.; Persson, P. O. Å.; Rosen, J. Tailored synthesis approach of (Mo2/3Y1/3)2AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: Enhancing the yield, quality, and performance in supercapacitor applications. Nanoscale 2021, 13, 311–319.

[24]

Ressler, T. WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 1998, 5, 118–122.

[25]

Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

[26]

Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949.

[27]

Naguib, M.; Unocic, R. R.; Armstrong, B. L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". Dalton Trans. 2015, 44, 9353–9358.

[28]

Zhu, S.; Wang, C. D.; Shou, H. W.; Zhang, P. J.; Wan, P.; Guo, X.; Yu, Z.; Wang, W. J.; Chen, S. M.; Chu, W. S. et al. In situ architecting endogenous heterojunction of MoS2 coupling with Mo2CTx MXenes for optimized Li+ storage. Adv. Mater. 2022, 34, 2108809.

[29]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[30]

Persson, I.; El Ghazaly, A.; Tao, Q. Z.; Halim, J.; Kota, S.; Darakchieva, V.; Palisaitis, J.; Barsoum, M. W.; Rosen, J.; Persson, P. O. Å. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 2018, 14, 1703676.

[31]

Abashian, A.; Eisenstein, B.; Hansen, J. D.; Mollet, W.; Morris, G. R.; Nelson, B.; O'Halloran, T.; Orr, J. R.; Rhines, D.; Schultz, P. et al. Backward production in πp → pπ+ππ at 8 GeV/c. Phys. Rev. D 1976, 13, 5–21.

[32]

Galland, D.; Herve, A. ESR spectra of the zinc vacancy in ZnO. Phys. Lett. A 1970, 33, 1–2.

[33]

Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T. et al. A 3D organically synthesized porous carbon material for lithium-ion batteries. Angew. Chem. , Int. Ed. 2018, 57, 11952–11956.

[34]

Zhang, Y. Q.; Ma, Q.; Wang, S. L.; Liu, X.; Li, L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS Nano 2018, 12, 4824–4834.

[35]

Velusamy, D. B.; El-Demellawi, J. K.; El-Zohry, A. M.; Giugni, A.; Lopatin, S.; Hedhili, M. N.; Mansour, A. E.; Fabrizio, E. D.; Mohammed, O. F.; Alshareef, H. N. MXenes for plasmonic photodetection. Adv. Mater. 2019, 31, 1807658.

[36]

Wang, C. D.; Shou, H. W.; Chen, S. M.; Wei, S. Q.; Lin, Y. X.; Zhang, P. J.; Liu, Z. F.; Zhu, K. F.; Guo, X.; Wu, X. J. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 2021, 33, 2101015.

[37]

Koo, B.; Xiong, H.; Slater, M. D.; Prakapenka, V. B.; Balasubramanian, M.; Podsiadlo, P.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 2012, 12, 2429–2435.

[38]

Kong, F.; Kostecki, R.; Nadeau, G.; Song, X.; Zaghib, K.; Kinoshita, K.; McLarnon, F. In situ studies of SEI formation. J. Power Sources 2001, 97–98, 58–66.

[39]

Iriyama, Y.; Kako, T.; Yada, C.; Abe, T.; Ogumi, Z. Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface. Solid State Ionics 2005, 176, 2371–2376.

[40]

Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W. H.; Wu, D. L.; Zuo, S. W.; Zhang, J.; Chen, B.; Dai, Z. W. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2008033.

[41]

Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F. D.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 2020, 14, 7328–7337.

[42]

Gao, G. Y.; Yang, S.; Wang, S. L.; Li, L. Construction of 3D porous MXene supercapacitor electrode through a dual-step freezing strategy. Scr. Mater. 2022, 213, 114605.

File
nre-2022-9120026_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 June 2022
Revised: 18 July 2022
Accepted: 19 July 2022
Published: 30 August 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (Nos. 2020YFA0405800 and 2019YFA0405601), the National Natural Science Foundation of China (NSFC) (Nos. U1932201 and U2032113), the Youth Innovation Promotion Association of CAS (No. 2022457), USTC Research Funds of the Double First-Class Initiative (No. YD2310002003), the Fundamental Research Funds for the Central Universities (Nos. WK2060000039 and WK2310000088), Institute of Energy, Hefei Comprehensive National Science Center, University Synergy Innovation Program of Anhui Province (No. GXXT-2020-002), Collaborative Innovation Program of Hefei Science Center, CAS (No. 2021HSC-CIP016). C. D. W. (No. 202006340190) acknowledge financial support from the China Scholarship Council (CSC). L. S. acknowledges support from the Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education). We thank the Beijing Synchrotron Radiation Facility (1W1B, BSRF), Hefei Synchrotron Radiation Facility (MCD-A and MCD-B Soochow Beamline for Energy Materials at NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for help with the characterization.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return