Journal Home > Online First

Rechargeable aqueous zinc-iodine batteries have received extensive attention due to their inherent advantages such as low cost, flame retardancy and safety. To address the safety concern associated with Zn dendrites, tin functional layer is introduced to the Zn surface via a spontaneous galvanic replacement reaction. This provides rapid deposition kinetics, thereby achieving the uniform Zn plating/stripping with a low overpotential (13.9 mV) and good stability for over 900 h. Importantly, the coupling of the advanced Zn anode with iodine in Zn-I2 battery exhibits a high specific capacity of 196.4 mAh·g−1 with high capacity retention (90.7%). This work provides a reliable strategy to regulate the reversible redox of zinc for advanced rechargeable batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries

Show Author's information Yadong Tian1Song Chen1Yulong He1Qianwu Chen1Lili Zhang2( )Jintao Zhang1( )
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island 627833, Singapore

Abstract

Rechargeable aqueous zinc-iodine batteries have received extensive attention due to their inherent advantages such as low cost, flame retardancy and safety. To address the safety concern associated with Zn dendrites, tin functional layer is introduced to the Zn surface via a spontaneous galvanic replacement reaction. This provides rapid deposition kinetics, thereby achieving the uniform Zn plating/stripping with a low overpotential (13.9 mV) and good stability for over 900 h. Importantly, the coupling of the advanced Zn anode with iodine in Zn-I2 battery exhibits a high specific capacity of 196.4 mAh·g−1 with high capacity retention (90.7%). This work provides a reliable strategy to regulate the reversible redox of zinc for advanced rechargeable batteries.

Keywords:

tin, overpotential, induced deposition effect, Zn-I2 batteries
Received: 29 June 2022 Revised: 27 July 2022 Accepted: 27 July 2022 Published: 14 September 2022
References(47)
[1]

Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

[2]

Lv, C. D.; Zhou, X.; Zhong, L. X.; Yan, C. S.; Srinivasan, M.; Seh, Z. W.; Liu, C. T.; Pan, H. G.; Li, S. Z.; Wen, Y. G. et al. Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. Adv. Mater. 2021, 34, 2101474.

[3]

Yan, C. S.; Lv, C. D.; Jia, B. E.; Zhong, L. X.; Cao, X.; Guo, X. L.; Liu, H. J.; Xu, W. J.; Liu, D. B.; Yang, L. et al. Reversible Al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 2022, 144, 11444–11455.

[4]

Zeng, X. H.; Liu, J. T.; Mao, J. F.; Hao, J. N.; Wang, Z. J.; Zhou, S.; Ling, C. D.; Guo, Z. P. Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy Mater. 2020, 10, 1904163.

[5]

Wang, G.; Kohn, B.; Scheler, U.; Wang, F. X.; Oswald, S.; Löffler, M.; Tan, D. M.; Zhang, P. P.; Zhang, J.; Feng, X. L. A high-voltage, dendrite-free, and durable Zn-graphite battery. Adv. Mater. 2020, 32, 1905681.

[6]

Wu, Y. Z.; Wang, M. C.; Tao, Y.; Zhang, K.; Cai, M. L.; Ding, Y.; Liu, X. P.; Hayat, T.; Alsaedi, A.; Dai, S. Y. Electrochemically derived graphene-like carbon film as a superb substrate for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 2020, 30, 1907120.

[7]

Zou, Y. P.; Liu, T. T.; Du, Q. J.; Li, Y. Y.; Yi, H. B.; Zhou, X.; Li, Z. X.; Gao, L. J.; Zhang, L.; Liang, X. A four-electron Zn-I2 aqueous battery enabled by reversible I/I2/I+ conversion. Nat. Commun. 2021, 12, 170.

[8]

Naveed, A.; Yang, H. J.; Shao, Y. Y.; Yang, J.; Yanna, N.; Liu, J.; Shi, S. Q.; Zhang, L. W.; Ye, A. J.; He, B. et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv. Mater. 2019, 31, 1900668.

[9]

Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

[10]

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 2020, 32, 2004240.

[11]

Wang, F. X.; Tseng, J.; Liu, Z. C.; Zhang, P. P.; Wang, G.; Chen, G. B.; Wu, W. X.; Yu, M. H.; Wu, Y. P.; Feng, X. L. A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 2020, 32, 2000287.

[12]

Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

[13]

Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-Ion batteries. Adv. Mater. 2020, 32, 1908121.

[14]

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

[15]

Wang, Z. Q.; Zhou, M.; Qin, L. P.; Chen, M. H.; Chen, Z. X.; Guo, S.; Wang, L. B.; Fang, G. Z.; Liang, S. Q. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries. eScience 2022, 2, 209–218.

[16]

Cao, L. S.; Li, D.; Deng, T.; Li, Q.; Wang, C. S. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 19292–19296.

[17]

Wang, M. M.; Meng, Y. H.; Li, K.; Ahmad, T.; Chen, N.; Xu, Y.; Sun, J. F.; Chuai, M. Y.; Zheng, X. H.; Yuan, Y. et al. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. eScience, in press, https://doi.org/10.1016/j.esci.2022.04.003.

[18]

Jin, S.; Yin, J. F.; Gao, X. S.; Sharma, A.; Chen, P. Y.; Hong, S. F.; Zhao, Q.; Zheng, J. X.; Deng, Y.; Joo, Y. L. et al. Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nat. Commun. 2022, 13, 2283.

[19]

Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

[20]

Zhao, R. R.; Yang, Y.; Liu, G. X.; Zhu, R. J.; Huang, J. B.; Chen, Z. Y.; Gao, Z. H.; Chen, X.; Qie, L. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 2021, 31, 2001867.

[21]

Yan, M. D.; Xu, C. L.; Sun, Y.; Pan, H. L.; Li, H. Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy. 2021, 82, 105739.

[22]

Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

[23]

He, P.; Huang, J. X. Chemical passivation stabilizes Zn anode. Adv. Mater. 2022, 34, 2109872.

[24]

Bhoyate, S.; Mhin, S.; Jeon, J. E.; Park, K.; Kim, J.; Choi, W. Stable and high-energy-density Zn-ion rechargeable batteries based on a MoS2-coated Zn anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257.

[25]

Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer dagger. Energy Environ. Sci. 2021, 14, 3120–3129.

[26]

Zheng, J. X.; Bock, D. C.; Tang, T.; Zhao, Q.; Yin, J. F.; Tallman, K. R.; Wheeler, G.; Liu, X. T.; Deng, Y.; Jin, S. et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding. Nat. Energy 2021, 6, 398–406.

[27]

Wu, T. H.; Zhang, Y.; Althouse, Z. D.; Liu, N. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 2019, 6, 100032.

[28]

Shi, J. Q.; Sun, T. J.; Bao, J. Q.; Zheng, S. B.; Du, H. H.; Li, L.; Yuan, X. M.; Ma, T.; Tao, Z. L. "Water-in-deep eutectic solvent" electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2102035.

[29]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[30]

Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

[31]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[32]

Li, S. Y.; Fu, J.; Miao, G. X.; Wang, S. P.; Zhao, W. Y.; Wu, Z. C.; Zhang, Y. J.; Yang, X. W. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 2021, 33, 2008424.

[33]

Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803.

[34]

Xie, F. X.; Li, H.; Wang, X. S.; Zhi, X.; Chao, D. L.; Davey, K.; Qiao, S. Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419.

[35]

Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy. 2018, 3, 310–316.

[36]

Cao, P. H.; Zhou, X. Y.; Wei, A. R.; Meng, Q.; Ye, H.; Liu, W. P.; Tang, J. J.; Yang, J. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2100398.

[37]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous Zinc-Ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[38]

Jin, Y.; Han, K. S.; Shao, Y. Y.; Sushko, M. L.; Xiao, J.; Pan, H. L.; Liu, J. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 2020, 30, 2003932.

[39]

Xu, X. L.; Chen, Y.; Zheng, D.; Ruan, P. C.; Cai, Y. H.; Dai, X. J.; Niu, X. X.; Pei, C. J.; Shi, W. H.; Liu, W. X. et al. Ultra-fast and scalable saline immersion strategy enabling uniform zn nucleation and deposition for high-performance Zn-ion batteries. Small. 2021, 17, 2101901.

[40]

Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 2020, 30, 2000599.

[41]

Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.

[42]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[43]

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

[44]

Zou, P. C.; Sui, Y. M.; Zhan, H. C.; Wang, C. Y.; Xin, H. L.; Cheng, H. M.; Kang, F. Y.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056.

[45]

Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, W. Jr.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 7213–7219.

[46]

Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

[47]

Chen, S.; Chen, Q. W.; Ma, J. Z.; Wang, J. J.; Hui, K. S.; Zhang, J. T. Interface coordination stabilizing reversible redox of zinc for high-performance zinc-iodine batteries. Small. 2022, 18, 2200168.

File
nre-2022-9120025_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 June 2022
Revised: 27 July 2022
Accepted: 27 July 2022
Published: 14 September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22175108), the Natural Scientific Foundation of Shandong Province (No. ZR2020JQ09) and Taishan Scholars Program of Shandong Province (No. tsqn20161004), and the Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province (No. 2019KJC025). The authors also acknowledge the assistance of the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return