Journal Home > Volume 1 , Issue 2

With the disruptive carbon cycle being blamed for global warming, the plausible electrocatalytic CO2 reduction reaction (CO2RR) to form valuable C2+ hydrocarbons and feedstock is becoming a hot topic. Cu-based electrocatalysts have been proven to be excellent CO2RR alternatives for high energy value-added products in this regard. However, the selectivity of CO2RR to form C2+ products via Cu-based catalysts suffers from a high overpotential, slow reaction kinetics, and low selectivity. This review attempts to discuss various cutting-edge strategies for understanding catalytic design such as Cu-based catalyst surface engineering, tuning Cu bandgap via alloying, nanocatalysis, and the effect of the electrolyte and pH on catalyst morphology. The most recent advances in in situ spectroscopy and computational techniques are summarized to fully comprehend reaction mechanisms, structural transformation/degradation mechanisms, and crystal facet loss with subsequent effects on catalyst activity. Furthermore, approaches for tuning Cu interactions are discussed from four key perspectives: single-atom catalysts, interfacial engineering, metal-organic frameworks, and polymer-incorporated materials, which provide new insights into the selectivity of C2+ products. Finally, major challenges are outlined, and potential prospects for the rational design of catalysts for robust CO2RR are proposed. The integration of catalytic design with mechanistic understanding is a step forward in the promising advancement of CO2RR technology for industrial applications.


menu
Abstract
Full text
Outline
About this article

Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review

Show Author's information Touqeer Ahmad1Shuang Liu1Muhammad Sajid1Ke Li1Mohsin Ali1Liang Liu2Wei Chen1( )
Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA

Abstract

With the disruptive carbon cycle being blamed for global warming, the plausible electrocatalytic CO2 reduction reaction (CO2RR) to form valuable C2+ hydrocarbons and feedstock is becoming a hot topic. Cu-based electrocatalysts have been proven to be excellent CO2RR alternatives for high energy value-added products in this regard. However, the selectivity of CO2RR to form C2+ products via Cu-based catalysts suffers from a high overpotential, slow reaction kinetics, and low selectivity. This review attempts to discuss various cutting-edge strategies for understanding catalytic design such as Cu-based catalyst surface engineering, tuning Cu bandgap via alloying, nanocatalysis, and the effect of the electrolyte and pH on catalyst morphology. The most recent advances in in situ spectroscopy and computational techniques are summarized to fully comprehend reaction mechanisms, structural transformation/degradation mechanisms, and crystal facet loss with subsequent effects on catalyst activity. Furthermore, approaches for tuning Cu interactions are discussed from four key perspectives: single-atom catalysts, interfacial engineering, metal-organic frameworks, and polymer-incorporated materials, which provide new insights into the selectivity of C2+ products. Finally, major challenges are outlined, and potential prospects for the rational design of catalysts for robust CO2RR are proposed. The integration of catalytic design with mechanistic understanding is a step forward in the promising advancement of CO2RR technology for industrial applications.

Keywords:

electrocatalysis, CO2 reduction, C2+ hydrocarbon, Cu materials, nanostructures
Received: 31 May 2022 Revised: 13 June 2022 Accepted: 15 June 2022 Published: 24 August 2022 Issue date: September 2022
References(369)
[1]

Zhang, S. J.; Chen, Y. H.; Li, F. W.; Lu, X. M.; Dai, W. B.; Mori, R. Fixation and conversion of CO2 using ionic liquids. Catal. Today 2006, 115, 61–69.

[2]

Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919.

[3]

Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustainable Energy Rev. 2009, 13, 1513–1522.

[4]

Solomon, S.; Plattner, G. -K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.

[5]

Gattuso, J. P.; Magnan, A.; Billé, R.; Cheung, W. W. L.; Howes, E. L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S. R.; Eakin, C. M. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 2015, 349, aac4722.

[6]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[7]

Lugo-Morin, D. R. Global future: Low-carbon economy or high-carbon economy? World 2021, 2, 175–193.

[8]

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

[9]

Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129.

[10]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nature materials 2017, 16, 16–22.

[11]

Jhong, H. R.; Ma, S. C.; Kenis, P. J. Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2013, 2, 191–199.

[12]

Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

[13]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.

[14]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

[15]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[16]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[17]

Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19.

[18]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[19]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[20]

Fan, W. Q.; Zhang, Q. H.; Wang, Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 2013, 15, 2632–2649.

[21]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[22]

Hao, C. Y.; Wang, S. P.; Li, M. S.; Kang, L. Q.; Ma, X. B. Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catal. Today 2011, 160, 184–190.

[23]

Li, J.; Qi, X. J.; Wang, L. G.; He, Y. D.; Deng, Y. Q. New attempt for CO2 utilization: One-pot catalytic syntheses of methyl, ethyl and n-butyl carbamates. Catal. Commun. 2011, 12, 1224–1227.

[24]

Handoko, A. D.; Wei, F. X.; Jenndy.; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

[25]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[26]

Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658.

[27]

Wang, Y. H.; Liu, J. L.; Wang, Y. F.; Al-Enizi, A. M.; Zheng, G. F. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 2017, 13, 1701809.

[28]

Hoshi, N.; Kato, M.; Hori, Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag (111), Ag (100) and Ag (110). J. Electroanal. Chem. 1997, 440, 283–286.

[29]

Costentin, C.; Robert, M.; Savéant, J. -M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

[30]

Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem. 2021, 133, 20795–20816.

[31]

Yang, Y.; Ohnoutek, L.; Ajmal, S.; Zheng, X. Z.; Feng, Y. Q.; Li, K. J.; Wang, T.; Deng, Y.; Liu, Y.; Xu, D. et al. "Hot edges" in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization. J. Mater. Chem. A 2019, 7, 11836–11846.

[32]

Back, S.; Kim, J. -H.; Kim, Y. -T.; Jung, Y. Bifunctional interface of Au and Cu for improved CO2 electroreduction. ACS Appl. Mater. Interfaces. 2016, 8, 23022–23027.

[33]

Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

[34]

Wei, X.; Yin, Z. L.; Lyu, K.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.

[35]

Fu, X. B.; Zhang, J. H.; Kang, Y. J. Electrochemical reduction of CO2 towards multi-carbon products via a two-step process. React. Chem. Eng. 2021, 6, 612–628.

[36]

Ebaid, M.; Jiang, K.; Zhang, Z. M.; Drisdell, W. S.; Bell, A. T.; Cooper, J. K. Production of C2/C3 oxygenates from planar copper nitride-derived mesoporous copper via electrochemical reduction of CO2. Chem. Mater. 2020, 32, 3304–3311.

[37]

Chen, Z. Q.; Wang, T.; Liu, B.; Cheng, D. F.; Hu, C. L.; Zhang, G.; Zhu, W. J.; Wang, H. Y.; Zhao, Z. J.; Gong, J. L. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. J. Am. Chem. Soc. 2020, 142, 6878–6883.

[38]

Haas, T.; Krause, R.; Weber, R.; Demler, M.; Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nature Catalysis 2018, 1, 32-39.

[39]

Popović, S.; Smiljanić, M.; Jovanovič, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. 2020, 132, 14844–14854.

[40]

Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K. "Deactivation of copper electrode" in electrochemical reduction of CO2. Electrochim. Acta 2005, 50, 5354–5369.

[41]

Jovanovič, P.; Hodnik, N.; Ruiz-Zepeda, F.; Arčon, I.; Jozinović, B.; Zorko, M.; Bele, M.; Šala, M.; Šelih, V. S.; Hočevar, S. et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: Transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study. J. Am. Chem. Soc. 2017, 139, 12837–12846.

[42]

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–602.

[43]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[44]

Wang, Z. L.; Li, C. L.; Yamauchi, Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 2016, 11, 373–39.

[45]

Iijima, G.; Inomata, T.; Yamaguchi, H.; Ito, M.; Masuda, H. Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS Catal. 2019, 9, 6305–6319.

[46]

Li, Z.; Yang, Y.; Yin, Z. L.; Wei, X.; Peng, H. Q.; Lyu, K.; Wei, F. Y.; Xiao, L.; Wang, G. W.; Abruña, H. D. et al. Interface-enhanced catalytic selectivity on the C2 products of CO2 electroreduction. ACS Catal. 2021, 11, 2473–2482.

[47]

Tursunov, O.; Kustov, L.; Kustov, A. A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts. Oil Gas Sci. Technol. 2017, 72, 30.

[48]

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110.

[49]

Spurgeon, J. M.; Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 2018, 11, 1536–1551.

[50]

Ma, M.; Clark, E. L.; Therkildsen, K. T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 2020, 13, 977–985.

[51]

Hung, S. -F. Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction. Pure Appl. Chem. 2020, 92, 1937–1951.

[52]
Afshar, A. A. N. Chemical Profile: Formic Acid [Online]. 2014. http://chemplan.biz/chemplan_demo/sample_reports/Formic_Acid_Profile.pdf (accessed Nov, 2017).
[53]

Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

[54]

IPCC. Climate Change 2007: Synthesis Report; IPCC: Geneva, 2007.

[55]

Gagarinskiy, A. Y. Energy sine Ira et studio. Phys. Atom. Nuclei 2019, 82, 1126–1130.

[56]

True, W. R. Global ethylene capacity poised for major expansion. Oil Gas J. 2013, 111, 90–95.

[57]

Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Advances and challenges for electrochemical reduction of CO2 to CO: From fundamental to industrialization. Angew. Chem., Int. Ed. Engl. 2021. 133, 20795–20816

[58]

Song, Y. F.; Junqueira, J. R. C.; Sikdar, N.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Seisel, S.; Masa, J.; Andronescu, C.; Schuhmann, W. B-Cu-Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities. Angew. Chem., Int. Ed. 2021, 60, 9135–9141.

[59]

Küngas, R. Review-electrochemical CO2 reduction for CO production: Comparison of low-and high-temperature electrolysis technologies. J. Electrochem. Soc. 2020, 167, 044508.

[60]

Webster-Gardiner, M. S.; Chen, J. Q.; Vaughan, B. A.; McKeown, B. A.; Schinski, W.; Gunnoe, T. B. Catalytic synthesis of "super" linear alkenyl arenes using an easily prepared Rh(I) catalyst. J. Am. Chem. Soc. 2017, 139, 5474–5480.

[61]

Kniel, L.; Winter, O.; Stork, K. Ethylene, Keystone to the Petrochemical Industry; M. Dekker: New York, 1980.

[62]

Mussatto, S. I.; Dragone, G.; Guimarães, P. M. R.; Silva, J. P. A.; Carneiro, L. M.; Roberto, I. C.; Vicente, A.; Domingues, L.; Teixeira, J. A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830.

[63]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[64]

Teeter, T. E.; Van Rysselberghe, P. Reduction of carbon dioxide on mercury cathodes. J. Chem. Phys. 1954, 22, 759–760.

[65]

Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698.

[66]

Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc., Chem. Commun. 1988, 1, 17–19.

[67]

Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc., Faraday Trans. 1989, 85, 2309–2326.

[68]

Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

[69]

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A Chem. 2003, 199, 39–47.

[70]

Yano, H.; Tanaka, T.; Nakayama, M.; Ogura, K. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J. Electroanal. Chem. 2004, 565, 287–293.

[71]

Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015, 5, 2814–2821.

[72]

Ma, S. C.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 2016, 301, 219–228.

[73]

Kwon, Y.; Lum, Y.; Clark, E. L.; Ager, J. W.; Bell, A. T. CO2 electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper. ChemElectroChem 2016, 3, 1012–1019.

[74]

Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789–5792.

[75]

Handoko, A. D.; Ong, C. W.; Huang, Y.; Lee, Z. G.; Lin, L. Y.; Panetti, G. B.; Yeo, B. S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 2016, 120, 20058–20067.

[76]

Xiao, Y.; Tang, L.; Zhang, W. B.; Shen, C. Theoretical insights into the selective and activity of CuAu catalyst for O2 and CO2 electroreduction. Comput. Mater. Sci. 2021, 192, 110402.

[77]

Jia, F. L.; Yu, X. X.; Zhang, L. Z. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J. Power Sources 2014, 252, 85–89.

[78]

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

[79]

Torelli, D. A.; Francis, S. A.; Crompton, J. C.; Javier, A.; Thompson, J. R.; Brunschwig, B. S.; Soriaga, M. P.; Lewis, N. S. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016, 6, 2100–2104.

[80]

Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 2016, 52, 10229–10232.

[81]

Calvinho, K. U. D.; Laursen, A. B.; Yap, K. M. K.; Goetjen, T. A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K. M.; Hall, E. S. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 2018, 11, 2550–2559.

[82]

Fan, Q.; Zhang, M. L.; Jia, M. W.; Liu, S. Z.; Qiu, J. S.; Sun, Z. Y. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 2018, 10, 280–301.

[83]

Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 2017, 3, 853–859.

[84]

Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

[85]

Schouten, K. J. P.; Kwon, Y.; Van Der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902–1909.

[86]

Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 2013, 3, 1292–1295.

[87]

Schouten, K. J. P.; Qin, Z. S.; Pérez Gallent, E.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.

[88]

Wuttig, A.; Liu, C.; Peng, Q. L.; Yaguchi, M.; Hendon, C. H.; Motobayashi, K.; Ye, S.; Osawa, M.; Surendranath, Y. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci. 2016, 2, 522–528.

[89]

Calle-Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 2015, 7, 403–410.

[90]

Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032–2037.

[91]

Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 2016, 7, 1471–1477.

[92]

Li, H. J.; Li, Y. D.; Koper, M. T. M.; Calle-Vallejo, F. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J. Am. Chem. Soc. 2014, 136, 15694–15701.

[93]

Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem. 2013, 52, 2459–2462.

[94]

Zhang, G. R.; Straub, S. D.; Shen, L. L.; Hermans, Y.; Schmatz, P.; Reichert, A. M.; Hofmann, J. P.; Katsounaros, I.; Etzold, B. J. M. Probing CO2 reduction pathways for copper catalysis using an ionic liquid as a chemical trapping agent. Angew. Chem., Int. Ed. 2020, 59, 18095–18102.

[95]

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499

[96]

Kim, Y.; Park, S.; Shin, S. J.; Choi, W.; Min, B. K.; Kim, H.; Kim, W.; Hwang, Y. J. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 2020, 13, 4301–4311.

[97]

Li, H.; Jiang, K.; Zou, S. Z.; Cai, W. B. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. Chin. J. Catal., in press, https://doi.org/10.1016/S1872-2067(22)64095-6.

[98]

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu (100) electrodes. Angew. Chem. 2017, 56, 3621–3624.

[99]

Kas, R.; Kortlever, R.; Yılmaz, H.; Koper, M. T. M.; Mul, G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2015, 2, 354–358.

[100]

Hanselman, S.; Koper, M. T. M.; Calle-Vallejo, F. Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species. ACS Energy Lett. 2018, 3, 1062–1067.

[101]

Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 2016, 262, 90–94.

[102]

Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. USA 2017, 114, 5918–5923.

[103]

Zhao, X.; Du, L. J.; You, B.; Sun, Y. J. Integrated design for electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 2711–2720.

[104]

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

[105]

Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017, 19, 2406–2415.

[106]

Zhuang, T. T.; Pang, Y. J.; Liang, Z. Q.; Wang, Z. Y.; Li, Y.; Tan, C. S.; Li, J.; Dinh, C. T.; De Luna, P.; Hsieh, P. L. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 2018, 1, 946–951.

[107]

Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20–24.

[108]

Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu (111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6706–6711.

[109]

Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600.

[110]

Politano, A.; Formoso, V.; Chiarello, G. Alkali-promoted CO dissociation on Cu (111) and Ni (111) at room temperature. J Chem. Phys. 2008, 129, 164703.

[111]

Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes. Angew. Chem. 2013, 125, 7423–7426.

[112]

Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 2016, 6, 3804–3814.

[113]

Raciti, D.; Livi, K. J.; Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015, 15, 6829–6835.

[114]

Sen, S.; Liu, D.; Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 2014, 4, 3091–3095.

[115]

Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

[116]

Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

[117]

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

[118]

Hammer, B.; Morikawa, Y.; Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 1996, 76, 2141–2144.

[119]

Sabatier, P. Hydrogénations et déshydrogénations par catalyse. Ber. Dtsch. Chem. Ges. 1911, 44, 1984–2001.

[120]

Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

[121]

Wang, Y. X.; Shen, H.; Livi, K. J. T.; Raciti, D.; Zong, H.; Gregg, J.; Onadeko, M.; Wan, Y. D.; Watson, A.; Wang, C. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 2019, 19, 8461–8468.

[122]

Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc. Chem. Res. 2013, 46, 1682–1691.

[123]

Ono, L. K.; Croy, J. R.; Heinrich, H.; Roldan Cuenya, B. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si (001): Size effects. J. Phys. Chem. C 2011, 115, 16856–16866.

[124]

Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Phys. Chem. C 2014, 136, 13319–13325.

[125]

Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, C. H.; Bluhm, H.; Africh, C.; Wang, L. W.; Somorjai, G. A.; Salmeron, M. Activation of Cu (111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475–478.

[126]

Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1–9.

[127]

Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827–6830.

[128]

Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 2017, 7, 1602114.

[129]
Padilla, M.; Baturina, O.; Gordon, J. P.; Artyushkova, K.; Atanassov, P.; Serov, A. Selective CO2 electroreduction to C2H4 on porous Cu films synthesized by sacrificial support method. 2017, 19, 137–145.
DOI
[130]

Ke, F. S.; Liu, X. C.; Wu, J. J.; Sharma, P. P.; Zhou, Z. Y.; Qiao, J. L.; Zhou, X. D. Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catal. Today 2017, 288, 18–23.

[131]

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

[132]

Gao, D. F.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 2017, 11, 4825–4831.

[133]

Wang, X. L.; Varela, A. S.; Bergmann, A.; Kühl, S.; Strasser, P. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx. ChemSusChem 2017, 10, 4642–4649.

[134]

Dinh, C. T.; Burdyny, T.; Kibria, G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[135]

Zhang, F. Y.; Sheng, T.; Tian, N.; Liu, L.; Xiao, C.; Lu, B. A.; Xu, B. B.; Zhou, Z. Y.; Sun, S. G. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols. Chem. Commun. 2017, 53, 8085–8088.

[136]

Gurudayal.; Bullock, J.; Srankó, D. F.; Towle, C. M.; Lum, Y.; Hettick, M.; Scott, M. C.; Javey, A.; Ager, J. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ. Sci. 2017, 10, 2222–2230.

[137]

Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L. B.; Wu, Z. L.; Meyer, H. M.; Chi, M. F.; Ma, C.; Sumpter, B. G. et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 2016, 1, 6055–6061.

[138]

Yuan, J.; Liu, L.; Guo, R. R.; Zeng, S.; Wang, H.; Lu, J. X. Electroreduction of CO2 into ethanol over an active catalyst: Copper supported on titania. Catalysts 2017, 7, 220.

[139]

Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 2015, 5, 161–168.

[140]

Durand, W. J.; Peterson, A. A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 2011, 605, 1354–1359.

[141]

Grosse, P.; Gao, D. F.; Scholten, F.; Sinev, I.; Mistry, H.; Roldan Cuenya, B. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: Size and support effects. Angew. Chem. 2018, 130, 6300–6305.

[142]

Raaijman, S. Insights into the mechanism of electrocatalytic CO2 reduction and concomitant catalyst degradation pathways. Leiden University, 2022.

[143]

Mangione, G.; Huang, J. F.; Buonsanti, R.; Corminboeuf, C. Dual-facet mechanism in copper nanocubes for electrochemical CO2 reduction into ethylene. J. Phys. Chem. Lett. 2019, 10, 4259–4265.

[144]

Dutta, A.; Rahaman, M.; Mohos, M.; Zanetti, A.; Broekmann, P. Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal. 2017, 7, 5431–5437.

[145]

Tang, W.; Peterson, A. A.; Varela, A. S.; Jovanov, Z. P.; Bech, L.; Durand, W. J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 2012, 14, 76–81.

[146]

Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 2017, 358, 1187–1192.

[147]

Gupta, N.; Gattrell, M.; MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 2006, 36, 161–172.

[148]

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 2002, 106, 15–17.

[149]

Liu, X. Y.; Xiao, J. P.; Peng, H. J.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 2017, 8, 15438.

[150]

Wang, Z. N.; Yang, G.; Zhang, Z. R.; Jin, M. S.; Yin, Y. J. D. Selectivity on etching: Creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano 2016, 10, 4559–4564.

[151]

Takahashi, I.; Koga, O.; Hoshi, N.; Hori, Y. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111)×(111)] and Cu(S)-[n(110)×(100)] electrodes. J. Electroanal. Chem. 2002, 533, 135–143.

[152]

Wuttig, A.; Surendranath, Y. Impurity ion complexation enhances carbon dioxide reduction catalysis. ACS Catal. 2015, 5, 4479–4484.

[153]

Bertheussen, E.; Hogg, T. V.; Abghoui, Y.; Engstfeld, A. K.; Chorkendorff, I.; Stephens, I. E. L. Electroreduction of CO on polycrystalline copper at low overpotentials. ACS Energy Lett. 2018, 3, 634–640.

[154]

Huang, J. F.; Hörmann, N.; Oveisi, E.; Loiudice, A.; De Gregorio, G. L.; Andreussi, O.; Marzari, N.; Buonsanti, R. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 2018, 9, 3117.

[155]

Ono, L. K.; Roldán-Cuenya, B. Effect of interparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ultrathin TiC films. Catal. Lett. 2007, 113, 86–94.

[156]

Seidel, Y. E.; Schneider, A.; Jusys, Z.; Wickman, B.; Kasemo, B.; Behm, R. J. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 2009, 140, 167–184.

[157]

Mistry, H.; Behafarid, F.; Reske, R.; Varela, A. S.; Strasser, P.; Roldan Cuenya, B. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 2016, 6, 1075–1080.

[158]

Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. 2015, 127, 5268–5271.

[159]

Liu, J.; Cheng, L.; Wang, Y.; Chen, R.; Xiao, C.; Zhou, X.; Zhu, Y.; Li, Y.; Li, C. Dynamic determination of Cu+ roles for CO2 reduction on electrochemically stable Cu2 O-based nanocubes. J. Mater. Chem. A. 2022, 10, 8459-8465.

[160]

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

[161]

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

[162]

Suen, N. T.; Kong, Z. R.; Hsu, C. S.; Chen, H. C.; Tung, C. W.; Lu, Y. R.; Dong, C. L.; Shen, C. C.; Chung, J. C.; Chen, H. M. Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide. ACS Catal. 2019, 9, 5217–5222.

[163]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[164]

Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.

[165]

Tiwari, A.; Maagaard, T.; Chorkendorff, I.; Horch, S. Effect of dissolved glassware on the structure-sensitive part of the Cu (111) voltammogram in KOH. ACS Energy Lett. 2019, 4, 1645–1649.

[166]

Li, Q.; Sun, S. H. Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy 2016, 29, 178–197.

[167]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[168]

Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017, 7, 1749–1756.

[169]

Kim, Y. G.; Javier, A.; Baricuatro, J. H.; Soriaga, M. P. Regulating the product distribution of CO reduction by the atomic-level structural modification of the Cu electrode surface. Electrocatalysis 2016, 7, 391–399.

[170]

Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 2015, 5, 4293–4299.

[171]

Back, S.; Yeom, M. S.; Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096.

[172]

Kyriacou, G.; Anagnostopoulos, A. Electroreduction of CO2 on differently prepared copper electrodes: The influence of electrode treatment on the current efficiences. J. Electroanal. Chem. 1992, 322, 233–246.

[173]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[174]

Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706.

[175]

Varela, A. S.; Schlaup, C.; Jovanov, Z. P.; Malacrida, P.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211). J. Phys. Chem. C 2013, 117, 20500–20508.

[176]

Sandberg, R. B.; Montoya, J. H.; Chan, K.; Nørskov, J. K. CO–CO coupling on Cu facets: Coverage, strain and field effects. Surf. Sci. 2016, 654, 56–62.

[177]

Guo, X.; Zhang, Y. X.; Deng, C.; Li, X. Y.; Xue, Y. F.; Yan, Y. M.; Sun, K. N. Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO2. Chem. Commun. 2015, 51, 1345–1348.

[178]

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

[179]

Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

[180]

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

[181]

Christophe, J.; Doneux, T.; Buess-Herman, C. Electroreduction of carbon dioxide on copper-based electrodes: Activity of copper single crystals and copper–gold alloys. Electrocatalysis 2012, 3, 139–146.

[182]

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

[183]

Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. D. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359–9363.

[184]

Monzó, J.; Malewski, Y.; Kortlever, R.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Koper, M. T. M.; Rodriguez, P. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J. Mater. Chem. A 2015, 3, 23690–23698.

[185]

Shi, C.; Hansen, H. A.; Lausche, A. C.; Nørskov, J. K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 2014, 16, 4720–4727.

[186]

Hou, L.; Han, J. Y.; Wang, C.; Zhang, Y. W.; Wang, Y. B.; Bai, Z. M.; Gu, Y. S.; Gao, Y.; Yan, X. Q. Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2 towards ethylene. Inorg. Chem. Front. 2020, 7, 2097–2106.

[187]

Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247

[188]

Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 2017, 139, 15848–15857.

[189]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[190]

Cave, E. R.; Montoya, J. H.; Kuhl, K. P.; Abram, D. N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F. Electrochemical CO2 reduction on Au surfaces: Mechanistic aspects regarding the formation of major and minor products. Phys. Chem. Chem. Phys. 2017, 19, 15856–15863.

[191]

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

[192]

Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem. 2017, 129, 13315–13319.

[193]

Chang, Z. Y.; Huo, S. J.; Zhang, W.; Fang, J. H.; Wang, H. L. The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 2017, 121, 11368–11379.

[194]

Lee, S.; Park, G.; Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.

[195]

Shi, G. D.; Yu, L.; Ba, X.; Zhang, X. S.; Zhou, J. Q.; Yu, Y. Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. 2017, 46, 10569–10577.

[196]

Jia, S. Q.; Zhu, Q. G.; Wu, H. H.; Chu, M. E.; Han, S. T.; Feng, R. T.; Tu, J. H.; Zhai, J. X.; Han, B. X. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper–antimony bimetallic alloy catalyst. Chin. J. Catal. 2020, 41, 1091–1098.

[197]

Su, X. S.; Sun, Y. M.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S. Z.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B: Environ. 2020, 269, 118800.

[198]

Chang, Z. Y.; Huo, S. J.; He, J. M.; Fang, J. H. Interfaces facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2 products at lower overpotential for CO2 electrochemical reduction. Surf. Interfaces 2017, 6, 116–121.

[199]

He, J. F.; Dettelbach, K. E.; Salvatore, D. A.; Li, T. F.; Berlinguette, C. P. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2017, 56, 6068–6072.

[200]

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

[201]

Xu, Z.; Wu, T. C.; Cao, Y.; Chen, C. C.; Zeng, X. R.; Lin, P.; Zhao, W. W. Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction. J. Catal. 2020, 383, 42–50.

[202]

Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 2016, 7, 1466–1470.

[203]

Xiao, H.; Cheng, T.; Goddard Ⅲ, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 2017, 139, 130–136.

[204]

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

[205]

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

[206]

Gao, D. F.; McCrum, I. T.; Deo, S.; Choi, Y. W.; Scholten, F.; Wan, W. M.; Chen, J. G.; Janik, M. J.; Roldan Cuenya, B. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 2018, 8, 10012–10020.

[207]

Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142.

[208]

Phillips, K. R.; Katayama, Y.; Hwang, J.; Shao-Horn, Y. Sulfide-derived copper for electrochemical conversion of CO2 to formic acid. J. Phys. Chem. Lett. 2018, 9, 4407–4412.

[209]

García-Muelas, R.; Dattila, F.; Shinagawa, T.; Martín, A. J.; Pérez-Ramírez, J.; López, N. Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copper. J. Phys. Chem. Lett. 2018, 9, 7153–7159.

[210]

Li, H. F.; Liu, T. F.; Wei, P. F.; Lin, L.; Gao, D. F.; Wang, G. X.; Bao, X. H. High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. 2021, 133, 14450–14454.

[211]

Clark, E. L.; Bell, A. T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 2018, 140, 7012–7020.

[212]

Higgins, D.; Landers, A. T.; Ji, Y. F.; Nitopi, S.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.; Jaramillo, T. F. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility. ACS Energy Lett. 2018, 3, 2947–2955.

[213]

Hoffman, Z. B.; Gray, T. S.; Xu, Y.; Lin, Q. Y.; Gunnoe, T. B.; Zangari, G. High selectivity towards formate production by electrochemical reduction of carbon dioxide at copper–bismuth dendrites. ChemSusChem 2019, 12, 231–239.

[214]

Larrazábal, G. O.; Shinagawa, T.; Martín, A. J.; Pérez-Ramírez, J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun. 2018, 9, 1477.

[215]

Lu, L.; Sun, X. F.; Ma, J.; Yang, D. X.; Wu, H. H.; Zhang, B. X.; Zhang, J. L.; Han, B. X. Highly efficient electroreduction of CO2 to methanol on palladium–copper bimetallic aerogels. Angew. Chem. 2018, 130, 14345–14349.

[216]

Gu, Z. X.; Shen, H.; Chen, Z.; Yang, Y. Y.; Yang, C.; Ji, Y. L.; Wang, Y. H.; Zhu, C.; Liu, J. L.; Li, J. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5, 429–440.

[217]

Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796–800.

[218]

Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

[219]

Wang, X. L.; Klingan, K.; Klingenhof, M.; Möller, T.; de Araújo, J. F.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, H. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 2021, 12, 794.

[220]

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2016, 2, 169–174.

[221]

Li, C. Y.; Dong, J. C.; Jin, X.; Chen, S.; Panneerselvam, R.; Rudnev, A. V.; Yang, Z. L.; Li, J. F.; Wandlowski, T.; Tian, Z. Q. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7648–7651.

[222]

Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 2015, 137, 9808–9811.

[223]

Eilert, A.; Cavalca, F.; Roberts, F. S.; Osterwalder, J.; Liu, C.; Favaro, M.; Crumlin, E. J.; Ogasawara, H.; Friebel, D.; Pettersson, L. G. M. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285–290.

[224]

Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

[225]

Jiang, K.; Huang, Y. F.; Zeng, G. S.; Toma, F. M.; Goddard Ⅲ, W. A.; Bell, A. T. Effects of surface roughness on the electrochemical reduction of CO2 over Cu. ACS Energy Lett. 2020, 5, 1206–1214.

[226]

Daiyan, R.; Saputera, W. H.; Zhang, Q. R.; Lovell, E.; Lim, S.; Ng, Y. H.; Lu, X. Y.; Amal, R. 3D heterostructured copper electrode for conversion of carbon dioxide to alcohols at low overpotentials. Adv. Sustainable Syst. 2019, 3, 1800064.

[227]

Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem., Int. Ed. 2017, 56, 3645–3649.

[228]

Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.

[229]

Klingan, K.; Kottakkat, T.; Jovanov, Z. P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Roldan Cuenya, B.; Roth, C. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 2018, 11, 3449–3459.

[230]

Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W. et al. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 2018, 10, 8574–8584.

[231]

Ren, D.; Fong, J.; Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nat. Commun. 2018, 9, 925.

[232]

Wang, L. Y.; Gupta, K.; Goodall, J. B. M.; Darr, J. A.; Holt, K. B. In situ spectroscopic monitoring of CO2 reduction at copper oxide electrode. Faraday Discuss. 2017, 197, 517–532.

[233]

Deng, Y. L.; Handoko, A. D.; Du, Y. H.; Xi, S. B.; Yeo, B. S. In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of Cu oxides as catalytically active species. ACS Catal. 2016, 6, 2473–2481.

[234]

Fields, M.; Hong, X.; Nørskov, J. K.; Chan, K. Role of subsurface oxygen on Cu surfaces for CO2 electrochemical reduction. J. Phys. Chem. C 2018, 122, 16209–16215.

[235]

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 2018, 9, 601–606.

[236]

Lopes, O. F.; Varela, H. Effect of annealing treatment on electrocatalytic properties of copper electrodes toward enhanced CO2 reduction. ChemistrySelect 2018, 3, 9046–9055.

[237]

Xiao, H.; Goddard, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.

[238]

Zhong, D. Z.; Zhao, Z. J.; Zhao, Q.; Cheng, D. F.; Liu, B.; Zhang, G.; Deng, W. Y.; Dong, H.; Zhang, L.; Li, J. K. et al. Coupling of Cu (100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. Angew. Chem., Int. Ed. 2021, 60, 4879–4885.

[239]

Velasco-Vélez, J. J.; Jones, T.; Gao, D. F.; Carbonio, E.; Arrigo, R.; Hsu, C. J.; Huang, Y. C.; Dong, C. L.; Chen, J. M.; Lee, J. F. et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons. ACS Sustainable Chem. Eng. 2019, 7, 1485–1492.

[240]

Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y. S.; Jiao, F.; Xu, B. J. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 2017, 139, 3774–3783.

[241]

Dunwell, M.; Yang, X.; Setzler, B. P.; Anibal, J.; Yan, Y. S.; Xu, B. J. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 2018, 8, 3999–4008.

[242]

Gunathunge, C. M.; Li, X.; Li, J. Y.; Hicks, R. P.; Ovalle, V. J.; Waegele, M. M. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 2017, 121, 12337–12344.

[243]

Gunathunge, C. M.; Ovalle, V. J.; Waegele, M. M. Probing promoting effects of alkali cations on the reduction of CO at the aqueous electrolyte/copper interface. Phys. Chem. Chem. Phys. 2017, 19, 30166–30172.

[244]

Gunathunge, C. M.; Ovalle, V. J.; Li, Y. W.; Janik, M. J.; Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 2018, 8, 7507–7516.

[245]

Heyes, J.; Dunwell, M.; Xu, B. J. CO2 reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. J. Phys. Chem. C 2016, 120, 17334–17341.

[246]

Lee, S.; Lee, J. Ethylene selectivity in co electroreduction when using Cu oxides: An in situ ATR-SEIRAS study. ChemElectroChem 2018, 5, 558–564.

[247]

Iijima, G.; Kitagawa, T.; Katayama, A.; Inomata, T.; Yamaguchi, H.; Suzuki, K.; Hirata, K.; Hijikata, Y.; Ito, M.; Masuda, H. CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified Au electrode at a low overpotential. ACS Catal. 2018, 8, 1990–2000.

[248]

Zhang, W.; Huang, C. Q.; Xiao, Q.; Yu, L.; Shuai, L.; An, P. F.; Zhang, J.; Qiu, M.; Ren, Z. F.; Yu, Y. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2020, 142, 11417–11427.

[249]

Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

[250]

Altaf, N.; Liang, S. Y.; Huang, L.; Wang, Q. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction. J. Energy Chem. 2020, 48, 169–180.

[251]

Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194–12201.

[252]

Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 2015, 17, 824–830.

[253]

Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.

[254]

Yadav, V. S. K.; Purkait, M. K. Electrochemical studies for CO2 reduction using synthesized Co3O4 (Anode) and Cu2O (Cathode) as electrocatalysts. Energy Fuels 2015, 29, 6670–6677.

[255]

Malik, M. I.; Malaibari, Z. O.; Atieh, M.; Abussaud, B. Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 2016, 152, 468–477.

[256]

Cheng, Y. S.; Li, H.; Ling, M.; Li, N.; Jiang, B. B.; Wu, F. H.; Yuan, G. Z.; Wei, X. W. Synthesis of Cu2O@Cu-Fe-K Prussian blue analogue core–shell nanocube for enhanced electroreduction of CO2 to multi-carbon products. Mater. Lett. 2020, 260, 126868

[257]

Chen, C. J.; Sun, X. F.; Lu, L.; Yang, D. X.; Ma, J.; Zhu, Q. G.; Qian, Q. L.; Han, B. X. Efficient electroreduction of CO2 to C2 products over B-doped oxide-derived copper. Green Chem. 2018, 20, 4579–4583.

[258]

Merino-Garcia, I.; Albo, J.; Solla-Gullón, J.; Montiel, V.; Irabien, A. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J. CO2 Util. 2019, 31, 135–142.

[259]

Yang, H. J.; Yang, H.; Hong, Y. H.; Zhang, P. Y.; Wang, T.; Chen, L. N.; Zhang, F. Y.; Wu, Q. H.; Tian, N.; Zhou, Z. Y. et al. Promoting ethylene selectivity from CO2 electroreduction on CuO supported onto CO2 capture materials. ChemSusChem 2018, 11, 881–887.

[260]

Deng, W. Y.; Zhang, L.; Li, L. L.; Chen, S.; Hu, C. L.; Zhao, Z. J.; Wang, T.; Gong, J. L. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2911–2915.

[261]

Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.

[262]

Lum, Y.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem., Int. Ed. 2018, 57, 551–554.

[263]

Xiang, H.; Rasul, S.; Scott, K.; Portoles, J.; Cumpson, P.; Yu, E. H. Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media. J. CO2 Util. 2019, 30, 214–221.

[264]

Cui, G. K.; Wang, J. J.; Zhang, S. J. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem. Soc. Rev. 2016, 45, 4307–4339.

[265]

Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

[266]

Wang, S. B.; Wang, X. C. Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem., Int. Ed. 2016, 55, 2308–2320.

[267]

James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288.

[268]

Sun, F. Z.; Yang, S. Q.; Krishna, R.; Zhang, Y. H.; Xia, Y. P.; Hu, T. L. Microporous metal–organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature. ACS Appl. Mater. Interfaces 2020, 12, 6105–6111.

[269]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; de Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal–organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386

[270]

Yap, M. H.; Fow, K. L.; Chen, G. Z. Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2017, 2, 218–245.

[271]

Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J. Mater. Chem. A 2013, 1, 11126–11129.

[272]

Malik, K.; Bajaj, N. K.; Verma, A. Effect of catalyst layer on electrochemical reduction of carbon dioxide using different morphologies of copper. J. CO2 Util. 2018, 27, 355–365.

[273]

Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 2012, 25, 70–73.

[274]

Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 2012, 1, H17–H19.

[275]

Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079

[276]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[277]

Wu, J. X.; Hou, S. Z.; Zhang, X. D.; Xu, M.; Yang, H. F.; Cao, P. S.; Gu, Z. Y. Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 2019, 10, 2199–2205.

[278]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[279]

Tan, X. Y.; Yu, C.; Zhao, C. T.; Huang, H. W.; Yao, X. C.; Han, X. T.; Guo, W.; Cui, S.; Huang, H. L.; Qiu, J. S. Restructuring of Cu2O to Cu2O@Cu-metal–organic frameworks for selective electrochemical reduction of CO2. ACS Appl. Mater. Interfaces 2019, 11, 9904–9910.

[280]

Zhao, K.; Liu, Y. M.; Quan, X.; Chen, S.; Yu, H. T. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl. Mater. Interfaces 2017, 9, 5302–5311.

[281]

Luz, I.; Soukri, M.; Lail, M. Confining metal–organic framework nanocrystals within mesoporous materials: A general approach via "solid-state" synthesis. Chem. Mater. 2017, 29, 9628–9638.

[282]

Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H. F.; Xia, B. Y. Metal/covalent–organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 15905–15926.

[283]

Rayer, A. V.; Reid, E.; Kataria, A.; Luz, I.; Thompson, S. J.; Lail, M.; Zhou, J.; Soukri, M. Electrochemical carbon dioxide reduction to isopropanol using novel carbonized copper metal organic framework derived electrodes. J. CO2 Util. 2020, 39, 101159.

[284]

Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 2017, 10, 1100–1109.

[285]

Yao, K. L.; Xia, Y. J.; Li, J.; Wang, N.; Han, J. R.; Gao, C. C.; Han, M.; Shen, G. Q.; Liu, Y. C.; Seifitokaldani, A. et al. Metal–organic framework derived copper catalysts for CO2 to ethylene conversion. J. Mater. Chem. A 2020, 8, 11117–11123.

[286]

Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of boron-imidazolate framework nanosheet with dimer Cu units for CO2 electroreduction to ethylene. Angew. Chem. 2021, 133, 16823–16828.

[287]

Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal–organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242–7246.

[288]

Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.

[289]

Cai, Y. M.; Fu, J. J.; Zhou, Y.; Chang, Y. C.; Min, Q. H.; Zhu, J. J.; Lin, Y. H.; Zhu, W. L. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.

[290]

Chen, C.; Kotyk, J. F. K.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

[291]

Burdyny, T.; Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 2019, 12, 1442–1453.

[292]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(Ⅰ) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[293]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[294]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[295]

Zhu, W. L.; Fu, J. J.; Liu, J.; Chen, Y.; Li, X.; Huang, K. K.; Cai, Y. M.; He, Y. M.; Zhou, Y.; Su, D. et al. Tuning single atom-nanoparticle ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B: Environ. 2020, 264, 118502.

[296]

Zhu, C. Z.; Fu, S. F.; Song, J. H.; Shi, Q. R.; Su, D.; Engelhard, M. H.; Li, X. L.; Xiao, D. D.; Li, D. S.; Estevez, L. et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.

[297]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[298]

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. 2019, 131, 15013–15018.

[299]

Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

[300]

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

[301]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[302]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[303]

Hu, X. M.; Hval, H. H.; Bjerglund, E. T.; Dalgaard, K. J.; Madsen, M. R.; Pohl, M. M.; Welter, E.; Lamagni, P.; Buhl, K. B.; Bremholm, M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018, 8, 6255–6264.

[304]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[305]

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

[306]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[307]

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[308]

Fu, S. J.; Liu, X.; Ran, J. R.; Jiao, Y.; Qiao, S. Z. CO2 reduction by single copper atom supported on g-C3N4 with asymmetrical active sites. Appl. Surf. Sci. 2021, 540, 148293.

[309]

Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053

[310]

Yuan, H.; Li, Z. Y.; Zeng, X. C.; Yang, J. L. Descriptor-based design principle for two-dimensional single-atom catalysts: Carbon dioxide electroreduction. J. Phys. Chem. Lett. 2020, 11, 3481–3487.

[311]

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[312]

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

[313]

Pei, W.; Zhou, S.; Zhao, J. J.; Xu, X.; Du, Y.; Dou, S. X. Immobilized trimeric metal clusters: A family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano Energy 2020, 76, 105049.

[314]

Chen, Z. P.; Wang, N. L.; Yao, S. Y.; Liu, L. C. The flaky Cd film on Cu plate substrate: An active and efficient electrode for electrochemical reduction of CO2 to formate. J. CO2 Util. 2017, 22, 191–196.

[315]

Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

[316]

Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

[317]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[318]

Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

[319]

Tan, Y. C.; Lee, K. B.; Song, H.; Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule 2020, 4, 1104–1120.

[320]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513

[321]

Thevenon, A.; Rosas-Hernández, A.; Peters, J. C.; Agapie, T. In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem., Int. Ed. 2019, 58, 16952–16958.

[322]

Cheng, T.; Xiao, H.; Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 2017, 139, 11642–11645.

[323]

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

[324]

Li, J.; Ozden, A.; Wan, M. Y.; Hu, Y. F.; Li, F. W.; Wang, Y. H.; Zamani, R. R.; Ren, D.; Wang, Z. Y.; Xu, Y. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 2021, 12, 2808.

[325]

Widrig, C. A.; Chung, C.; Porter, M. D. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1991, 310, 335–359.

[326]

Tsakova, V.; Borissov, D.; Ranguelov, B.; Stromberg, C.; Schultze, J. W. Electrochemical incorporation of copper in polyaniline layers. Electrochim. Acta. 2001, 46, 4213–4222.

[327]

Grace, A. N.; Choi, S. Y.; Vinoba, M.; Bhagiyalakshmi, M.; Chu, D. H.; Yoon, Y.; Nam, S. C.; Jeong, S. K. Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl. Energy 2014, 120, 85–94.

[328]

Ponnurangam, S.; Yun, C. M.; Chernyshova, I. V. Robust electroreduction of CO2 at a poly(4-vinylpyridine)-copper electrode. ChemElectroChem 2016, 3, 74–82.

[329]

Huang, Y.; Deng, Y. L.; Handoko, A. D.; Goh, G. K. L.; Yeo, B. S. Rational design of sulfur-doped copper catalysts for the selective electroreduction of carbon dioxide to formate. ChemSusChem 2018, 11, 320–326.

[330]

Huan, T. N.; Simon, P.; Benayad, A.; Guetaz, L.; Artero, V.; Fontecave, M. Cu/Cu2O electrodes and CO2 reduction to formic acid: Effects of organic additives on surface morphology and activity. Chem. —Eur. J. 2016, 22, 14029–14035.

[331]

Aydın, R.; Doğan, H. Ö.; Köleli, F. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol. Appl. Catal. B: Environ. 2013, 140, 478–482.

[332]

Xie, M. S.; Xia, B. Y.; Li, Y. W.; Yan, Y.; Yang, Y. H.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 2016, 9, 1687–1695.

[333]

Andreoli, E.; Dillon, E. P.; Cullum, L.; Alemany, L. B.; Barron, A. R. Cross-linking amine-rich compounds into high performing selective CO2 absorbents. Sci. Rep. 2014, 4, 7304.

[334]

Koutsianos, A.; Barron, A. R.; Andreoli, E. CO2 capture partner molecules in highly loaded PEI sorbents. J. Phys. Chem. C 2017, 121, 21772–21781.

[335]

Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

[336]

Singh, M. R.; Kwon, Y.; Lum, Y.; Ager Ⅲ, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

[337]

Ayemoba, O.; Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 2017, 9, 27377–27382.

[338]

Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 2017, 139, 11277–11287.

[339]

Cheng, M. J.; Clark, E. L.; Pham, H. H.; Bell, A. T.; Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 2016, 6, 7769–7777.

[340]

Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta. 2012, 78, 171–176.

[341]

Huang, Y.; Ong, C. W.; Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 2018, 11, 3299–3306.

[342]

Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 2016, 6, 2136–2144.

[343]

Schouten, K. J. P.; Gallent, E. P.; Koper, M. T. M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 2014, 716, 53–57.

[344]

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910–918.

[345]

Jouny, M.; Luc, W.; Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 2018, 1, 748–755.

[346]

Todoroki, M.; Hara, K.; Kudo, A.; Sakata, T. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J. Electroanal. Chem. 1995, 394, 199–203.

[347]

Melchaeva, O.; Voyame, P.; Bassetto, V. C.; Prokein, M.; Renner, M.; Weidner, E.; Petermann, M.; Battistel, A. Electrochemical reduction of protic supercritical CO2 on copper electrodes. ChemSusChem 2017, 10, 3660–3670.

[348]

Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

[349]

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

[350]

Gao, D. F.; Scholten, F.; Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 2017, 7, 5112–5120.

[351]

Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem. 2015, 127, 14914–14918.

[352]

Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C. 2017, 121, 14191-14203.

[353]

Gao, D. F.; Wang, J.; Wu, H. H.; Jiang, X. L.; Miao, S.; Wang, G. X.; Bao, X. H. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochem. Commun. 2015, 55, 1–5.

[354]

Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123–127.

[355]

Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 1997, 101, 7075–7081.

[356]

Varela, A. S. The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opin. Green Sustainable Chem. 2020, 26, 100371.

[357]

Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8–13.

[358]

Hashiba, H.; Weng, L. C.; Chen, Y. K.; Sato, H. K.; Yotsuhashi, S.; Xiang, C. X.; Weber, A. Z. Effects of electrolyte buffer capacity on surface reactant species and the reaction rate of CO2 in electrochemical CO2 reduction. J. Phys. Chem. C 2018, 122, 3719–3726.

[359]

Montoya, J. H.; Peterson, A. A.; Nørskov, J. K. Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 2013, 5, 737–742.

[360]

Pérez-Gallent, E.; Marcandalli, G.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Structure-and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 2017, 139, 16412–16419.

[361]

Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 1987, 109, 5022–5023.

[362]

Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 2018, 8, 7445–7454.

[363]

Dutta, A.; Morstein, C. E.; Rahaman, M.; Cedeño López, A.; Broekmann, P. Beyond copper in CO2 electrolysis: Effective hydrocarbon production on silver-nanofoam catalysts. ACS Catal. 2018, 8, 8357–8368.

[364]

Kim, Y. G.; Baricuatro, J. H.; Soriaga, M. P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction. Electrocatalysis 2018, 9, 526–530.

[365]

Kim, Y. G.; Baricuatro, J. H.; Javier, A.; Gregoire, J. M.; Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu (111) and then to Cu (100), at a fixed CO2RR potential: A study by operando EC-STM. Langmuir 2014, 30, 15053–15056.

[366]

Simon, G. H.; Kley, C. S.; Roldan Cuenya, B. Potential-dependent morphology of copper catalysts during CO2 electroreduction revealed by in situ atomic force microscopy. Angew. Chem., Int. Ed. 2021, 60, 2561–2568.

[367]

Zhu, C.; Liang, S. X.; Song, E. H.; Zhou, Y. J.; Wang, W.; Shan, F.; Shi, Y. T.; Hao, C.; Yin, K. B.; Zhang, T. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 1–7.

[368]

Sánchez, O. G.; Birdja, Y. Y.; Bulut, M.; Vaes, J.; Breugelmans, T.; Pant, D. Recent advances in industrial CO2 electroreduction. Curr. Opin. Green Sustainable Chem. 2019, 16, 47–56.

[369]

Zheng, T. T.; Zhang, M. L.; Wu, L. H.; Guo, S. Y.; Liu, X. J.; Zhao, J. K.; Xue, W. Q.; Li, J. W.; Liu, C. X.; Li, X. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 2022, 5, 388–396.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 May 2022
Revised: 13 June 2022
Accepted: 15 June 2022
Published: 24 August 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was financially supported by the University of Science and Technology of China (USTC) (No. KY2060000150) and the Fundamental Research Funds for the Central Universities (No. WK2060000040). We are thankful for the support from the USTC Center for Micro and Nanoscale Research and Fabrication and the Supercomputing Center of the USTC.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return