Journal Home > Volume 1 , Issue 2

Photoelectrochemical (PEC) water splitting can directly convert solar energy into hydrogen energy for storage, effectively ending the energy crisis and solving environmental problems. With their modification by many researchers, photoanodes have rapidly improved in PEC performance. Nevertheless, the poor stability of PEC water-splitting devices has not been effectively corrected, seriously hindering their practical application and large-scale commercialization. In this review, we provide a detailed introduction to the photocorrosion mechanism of photoanodes and characterizations of stability, summarizing the current research progress on the stability of metal oxide/sulfide photoanode materials. According to the specificity of each semiconductor, the corrosion mechanism and modification strategy of each photoanode are discussed in detail. Finally, we summarize the deficiencies in the current stability research and propose influencing factors and possible solutions that need to be considered in the photocorrosion research field of photoanodes. This review can provide a reference for the stability research of photoanodes based on metal oxides and sulfides, especially for the design of efficient and stable metal sulfide-based photoanodes.


menu
Abstract
Full text
Outline
About this article

Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells

Show Author's information Linxing MengLiang Li( )
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China

Abstract

Photoelectrochemical (PEC) water splitting can directly convert solar energy into hydrogen energy for storage, effectively ending the energy crisis and solving environmental problems. With their modification by many researchers, photoanodes have rapidly improved in PEC performance. Nevertheless, the poor stability of PEC water-splitting devices has not been effectively corrected, seriously hindering their practical application and large-scale commercialization. In this review, we provide a detailed introduction to the photocorrosion mechanism of photoanodes and characterizations of stability, summarizing the current research progress on the stability of metal oxide/sulfide photoanode materials. According to the specificity of each semiconductor, the corrosion mechanism and modification strategy of each photoanode are discussed in detail. Finally, we summarize the deficiencies in the current stability research and propose influencing factors and possible solutions that need to be considered in the photocorrosion research field of photoanodes. This review can provide a reference for the stability research of photoanodes based on metal oxides and sulfides, especially for the design of efficient and stable metal sulfide-based photoanodes.

Keywords: stability, photoanode, metal oxide, metal sulfide, photocorrosion

References(192)

[1]

Lv, J. Q.; Xie, J. F.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. B. Photoelectrochemical energy storage materials: Design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 2022, 51, 1511–1528.

[2]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[3]

Tang, R.; Zhou, S. J.; Zhang, Z. Y.; Zheng, R. K.; Huang, J. Engineering nanostructure-interface of photoanode materials toward photoelectrochemical water oxidation. Adv. Mater. 2021, 33, 2005389.

[4]

Li, J. G.; Chen, H.; Triana, C. A.; Patzke, G. R. Hematite photoanodes for water oxidation: Electronic transitions, carrier dynamics, and surface energetics. Angew. Chem. , Int. Ed. 2021, 60, 18380–18396.

[5]

Corby, S.; Rao, R. R.; Steier, L.; Durrant, J. R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 2021, 6, 1136–1155.

[6]

Zhang, J. F.; Cui, J. Y.; Eslava, S. Oxygen evolution catalysts at transition metal oxide photoanodes: Their differing roles for solar water splitting. Adv. Energy Mater. 2021, 11, 2003111.

[7]

Pan, J. B.; Shen, S.; Chen, L.; Au, C. T.; Yin, S. F. Core–shell photoanodes for photoelectrochemical water oxidation. Adv. Funct. Mater. 2021, 31, 2104269.

[8]

Meng, L. X.; Tian, W.; Wu, F. L.; Cao, F. R.; Li, L. TiO2 ALD decorated CuO/BiVO4 p–n heterojunction for improved photoelectrochemical water splitting. J. Mater. Sci. Technol. 2019, 35, 1740–1746.

[9]

Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D. et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940.

[10]

Su, J.; Hisatomi, T.; Minegishi, T.; Domen, K. Enhanced photoelectrochemical water oxidation from CdTe photoanodes annealed with CdCl2. Angew. Chem. , Int. Ed. 2020, 59, 13800–13806.

[11]

Xu, W. W.; Gao, W. C.; Meng, L. X.; Tian, W.; Li, L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2021, 11, 2101181.

[12]

Jin, B. J.; Cho, Y.; Park, C.; Jeong, J.; Kim, S.; Jin, J.; Kim, W.; Wang, L. Y.; Lu, S. Y.; Zhang, S. L. et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 2022, 15, 672–679.

[13]

Tian, Z. L.; Guo, X. W.; Wang, D.; Sun, D.; Zhang, S. N.; Bu, K. J.; Zhao, W.; Huang, F. Q. Enhanced charge carrier lifetime of TiS3 photoanode by introduction of S22− vacancies for efficient photoelectrochemical hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2001286.

[14]

Bae, D.; Seger, B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 2017, 46, 1933–1954.

[15]

Minguzzi, A. How to improve the lifetime of an electrocatalyst. Nat. Catal. 2020, 3, 687–689.

[16]

Wick-Joliat, R.; Musso, T.; Prabhakar, R. R.; Löckinger, J.; Siol, S.; Cui, W.; Sévery, L.; Moehl, T.; Suh, J.; Hutter, J. et al. Stable and tunable phosphonic acid dipole layer for band edge engineering of photoelectrochemical and photovoltaic heterojunction devices. Energy Environ. Sci. 2019, 12, 1901–1909.

[17]

Chen, S.; Huang, D. L.; Xu, P.; Xue, W. J.; Lei, L.; Cheng, M.; Wang, R. Z.; Liu, X. G.; Deng, R. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? J. Mater. Chem. A 2020, 8, 2286–2322.

[18]

Zheng, L. X.; Teng, F.; Ye, X. Y.; Zheng, H. J.; Fang, X. S. Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 2020, 10, 1902355.

[19]

Tan, J. W.; Yang, W.; Oh, Y.; Lee, H.; Park, J.; Boppella, R.; Kim, J.; Moon, J. Fullerene as a photoelectron transfer promoter enabling stable TiO2-protected Sb2Se3 photocathodes for photo-electrochemical water splitting. Adv. Energy Mater. 2019, 9, 1900179.

[20]

Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.

[21]

Chen, Y. X.; Zhong, W.; Chen, F.; Wang, P.; Fan, J. J.; Yu, H. G. Photoinduced self-stability mechanism of CdS photocatalyst: The dependence of photocorrosion and H2-evolution performance. J. Mater. Sci. Technol. 2022, 121, 19–27.

[22]

Xiao, M.; Luo, B.; Wang, Z. L.; Wang, S. C.; Wang, L. Z. Recent advances of metal-oxide photoanodes: Engineering of charge separation and transportation toward efficient solar water splitting. Sol. RRL 2020, 4, 1900509.

[23]

Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L. Z.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: Similarities and differences. Adv. Mater. 2019, 32, 1904717.

[24]

Tang, S. T.; Qiu, W. T.; Xiao, S.; Tong, Y. X.; Yang, S. H. Harnessing hierarchical architectures to trap light for efficient photoelectrochemical cells. Energy Environ. Sci. 2020, 13, 660–684.

[25]

Xia, C. K.; Wang, H.; Kim, J. K.; Wang, J. Y. Rational design of metal oxide-based heterostructure for efficient photocatalytic and photoelectrochemical systems. Adv. Funct. Mater. 2021, 31, 2008247.

[26]

Ahsan, M. A.; He, T. W.; Noveron, J. C.; Reuter, K.; Puente-Santiago, A. R.; Luque, R. Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev. 2022, 51, 812–828.

[27]

Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192–5247.

[28]

Hu, R. L.; Meng, L. X.; Zhang, J. X.; Wang, X.; Wu, S. J.; Wu, Z.; Zhou, R.; Li, L.; Li, D. S.; Wu, T. A high-activity bimetallic OER cocatalyst for efficient photoelectrochemical water splitting of BiVO4. Nanoscale 2020, 12, 8875–8882.

[29]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[30]

Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675–688.

[31]

Feng, H.; Liu, D.; Zhang, Y.; Shi, X. Y.; Esan, O. C.; Li, Q.; Chen, R.; An, L. Advances and challenges in photoelectrochemical redox batteries for solar energy conversion and storage. Adv. Energy Mater. 2022, 12, 2200469.

[32]

Jiang, C. R.; Moniz, S. J. A.; Wang, A. Q.; Zhang, T.; Tang, J. W. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660.

[33]

Meng, L. X.; Rao, D. W.; Tian, W.; Cao, F. R.; Yan, X. H.; Li, L. Simultaneous manipulation of O-doping and metal vacancy in atomically thin Zn10In16S34 nanosheet arrays toward improved photoelectrochemical performance. Angew. Chem. , Int. Ed. 2018, 57, 16882–16887.

[34]

Moss, B.; Babacan, O.; Kafizas, A.; Hankin, A. A review of inorganic photoelectrode developments and reactor scale-up challenges for solar hydrogen production. Adv. Energy Mater. 2021, 11, 2003286.

[35]

Yang, Y.; Niu, S. W.; Han, D. D.; Liu, T. Y.; Wang, G. M.; Li, Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 2017, 7, 1700555.

[36]

Utomo, W. P.; Leung, M. K. H.; Yin, Z. Y.; Wu, H.; Ng, Y. H. Advancement of bismuth-based materials for electrocatalytic and photo(electro)catalytic ammonia synthesis. Adv. Funct. Mater. 2022, 32, 2106713.

[37]

Chu, S.; Vanka, S.; Wang, Y. C.; Gim, J.; Wang, Y. J.; Ra, Y. H.; Hovden, R.; Guo, H.; Shih, I.; Mi, Z. T. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett. 2018, 3, 307–314.

[38]

Chen, X. Y.; Shen, X.; Shen, S. H.; Reese, M. O.; Hu, S. Stable CdTe photoanodes with energetics matching those of a coating intermediate band. ACS Energy Lett. 2020, 5, 1865–1871.

[39]

Zhong, M.; Hisatomi, T.; Sasaki, Y.; Suzuki, S.; Teshima, K.; Nakabayashi, M.; Shibata, N.; Nishiyama, H.; Katayama, M.; Yamada, T. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem. , Int. Ed. 2017, 56, 4739–4743.

[40]

Wang, G. M.; Yang, Y.; Ling, Y. C.; Wang, H. Y.; Lu, X. H.; Pu, Y. C.; Zhang, J. Z.; Tong, Y. X.; Li, Y. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 2016, 4, 2849–2855.

[41]

Yang, L.; Nandakumar, D. K.; Suresh, L.; Zhang, S. L.; Zhang, Y. X.; Zhang, L.; Wang, J.; Ager, J. W.; Tan, S. C. Solar-driven gas-phase moisture to hydrogen with zero bias. ACS Nano 2021, 15, 19119–19127.

[42]

Fu, J.; Fan, Z. Y.; Nakabayashi, M.; Ju, H. X.; Pastukhova, N.; Xiao, Y. Q.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. B. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729.

[43]

He, B.; Jia, S.; Zhao, M.; Wang, Y.; Chen, T.; Zhao, S.; Li, Z.; Lin, Z.; Zhao, Y.; Liu, X. General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting. Adv. Mater. 2021, 33, 2004406.

[44]

Kranz, C.; Wächtler, M. Characterizing photocatalysts for water splitting: From atoms to bulk and from slow to ultrafast processes. Chem. Soc. Rev. 2021, 50, 1407–1437.

[45]

Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. Water oxidation at hematite photoelectrodes: The role of surface states, J. Am. Chem. Soc. 2012, 134, 4294–4302.

[46]

Xu, W. W.; Meng, L. X.; Tian, W.; Li, S. N.; Cao, F. R.; Li, L. Polypyrrole serving as multifunctional surface modifier for photoanode enables efficient photoelectrochemical water oxidation. Small 2022, 18, 2105240.

[47]

Hou, J. G.; Yang, C.; Cheng, H. J.; Jiao, S. Q.; Takeda, O.; Zhu, H. M. High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3758–3768.

[48]

Tang, R.; Zhou, S. J.; Yuan, Z. M.; Yin, L. W. Metal-organic framework derived Co3O4/TiO2/Si heterostructured nanorod array photoanodes for efficient photoelectrochemical water oxidation. Adv. Funct. Mater. 2017, 27, 1701102.

[49]

Meng, L. X.; He, J. L.; Tian, W.; Wang, M.; Long, R.; Li, L. Ni/Fe codoped In2S3 nanosheet arrays boost photo-electrochemical performance of planar Si photocathodes. Adv. Energy Mater. 2019, 9, 1902135.

[50]

Han, J. H.; Liu, Z. F.; Guo, K. Y.; Wang, B.; Zhang, X. Q.; Hong, T. T. High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl. Catal. B Environ. 2015, 163, 179–188.

[51]

Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

[52]

Deng, J.; Su, Y. D.; Liu, D.; Yang, P. D.; Liu, B.; Liu, C. Nanowire photoelectrochemistry. Chem. Rev. 2019, 119, 9221–9259.

[53]

Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T. H.; Choi, W.; Moshfegh, A. Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59–95.

[54]

Long, X. F.; Gao, L. L.; Li, F.; Hu, Y. P.; Wei, S. Q.; Wang, C. L.; Wang, T.; Jin, J.; Ma, J. T. Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl. Catal. B Environ. 2019, 257, 117813.

[55]

Cai, L. L.; Zhao, J. H.; Li, H.; Park, J.; Cho, I. S.; Han, H. S.; Zheng, X. L. One-step hydrothermal deposition of Ni:FeOOH onto photoanodes for enhanced water oxidation. ACS Energy Lett. 2016, 1, 624–632.

[56]

Wang, Y.; Chen, X. Y.; Xiu, H.; Zhuang, H. L.; Li, J. M.; Zhou, Y.; Liu, D. Y.; Kuang, Y. B. General in situ photoactivation route with ipce over 80% toward CdS photoanodes for photoelectrochemical applications. Small 2021, 17, 2104307.

[57]

Sharma, M. D.; Mahala, C.; Basu, M. Band gap tuning to improve the photoanodic activity of ZnInxSy for photoelectrochemical water oxidation. Catal. Sci. Technol. 2019, 9, 6769–6781.

[58]

Cai, Q.; Hong, W. T.; Jian, C. Y.; Li, J.; Liu, W. Insulator layer engineering toward stable Si photoanode for efficient water oxidation. ACS Catal. 2018, 8, 9238–9244.

[59]

Kim, J. H.; Kim, J. H.; Jang, J. W.; Kim, J. Y.; Choi, S. H.; Magesh, G.; Lee, J.; Lee, J. S. Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv. Energy Mater. 2015, 5, 1401933.

[60]

Huang, G. P.; Fan, R. L.; Zhou, X. X.; Xu, Z. H.; Zhou, W. Y.; Dong, W.; Shen, M. R. A porous Ni-O/Ni/Si photoanode for stable and efficient photoelectrochemical water splitting. Chem. Commun. 2019, 55, 377–380.

[61]

Pesci, F. M.; Sokolikova, M. S.; Grotta, C.; Sherrell, P. C.; Reale, F.; Sharda, K.; Ni, N.; Palczynski, P.; Mattevi, C. MoS2/WS2 heterojunction for photoelectrochemical water oxidation. ACS Catal. 2017, 7, 4990–4998.

[62]

Wang, Z. Y.; Li, H. M.; Yi, S. S.; You, M. Z.; Jing, H. J.; Yue, X. Z.; Zhang, Z. T.; Chen, D. L. In-situ coating of multifunctional FeCo-bimetal organic framework nanolayers on hematite photoanode for superior oxygen evolution. Appl. Catal. B Environ. 2021, 297, 120406.

[63]

Liu, H. Y.; Cody, C. C.; Jacob-Dolan, J. A.; Crabtree, R. H.; Brudvig, G. W. Surface-attached molecular catalysts on visible-light-absorbing semiconductors: Opportunities and challenges for a stable hybrid water-splitting photoanode. ACS Energy Lett. 2020, 5, 3195–3202.

[64]

Naseri, N.; Janfaza, S.; Irani, R. Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion. RSC Adv. 2015, 5, 18642–18646.

[65]

Gao, C. M.; Wei, T.; Zhang, Y. Y.; Song, X. H.; Huan, Y.; Liu, H.; Zhao, M. W.; Yu, J. H.; Chen, X. D. A photoresponsive rutile TiO2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution. Adv. Mater. 2019, 31, 1806596.

[66]

Cao, F. R.; Xiong, J.; Wu, F. L.; Liu, Q.; Shi, Z. W.; Yu, Y. H.; Wang, X. D.; Li, L. Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239–12245.

[67]

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

[68]

Naseri, N.; Yousefi, M.; Moshfegh, A. Z. The role of TiO2 addition in ZnO nanocrystalline thin films: Variation of photoelectrochemical responsivity. Electrochim. Acta 2011, 56, 6284–6292.

[69]

Franz, S.; Arab, H.; Chiarello, G. L.; Bestetti, M.; Selli, E. Single-step preparation of large area TiO2 photoelectrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000652.

[70]

Cheng, X.; Dong, G. J.; Zhang, Y. J.; Feng, C. C.; Bi, Y. P. Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting. Appl. Catal. B Environ. 2020, 267, 118723.

[71]

Browne, M. P.; Plutnar, J.; Pourrahimi, A. M.; Sofer, Z.; Pumera, M. Atomic layer deposition as a general method turns any 3D-printed electrode into a desired catalyst: Case study in photoelectrochemisty. Adv. Energy Mater. 2019, 9, 1900994.

[72]

Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

[73]

Lin, H.; Long, X.; An, Y. M.; Zhou, D.; Yang, S. H. Three-dimensional decoupling co-catalyst from a photoabsorbing semiconductor as a new strategy to boost photoelectrochemical water splitting. Nano Lett. 2019, 19, 455–460.

[74]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[75]

Bazri, B.; Kowsari, E.; Seifvand, N.; Naseri, N. RGO-α-Fe2O3/β-FeOOH ternary heterostructure with urchin-like morphology for efficient oxygen evolution reaction. J. Electroanal. Chem. 2019, 843, 1–11.

[76]

Saveh-Shemshaki, N.; Latifi, M.; Bagherzadeh, R.; Byranvand, M. M.; Naseri, N.; Dabirian, A. Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning. Polym. Adv. Technol. 2016, 27, 358–365.

[77]

Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Wang, L. Y.; Han, H.; Hubicka, Z.; Krysa, J.; Schmuki, P.; Zboril, R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769.

[78]

Tang, P. Y.; Han, L. J.; Hegner, F. S.; Paciok, P.; Biset-Peiró, M.; Du, H. C.; Wei, X. K.; Jin, L.; Xie, H. B.; Shi, Q. et al. Boosting photoelectrochemical water oxidation of hematite in acidic electrolytes by surface state modification. Adv. Energy Mater. 2019, 9, 1901836.

[79]

Li, C. C.; Li, A.; Luo, Z. B.; Zhang, J. J.; Chang, X. X.; Huang, Z. Q.; Wang, T.; Gong, J. L. Surviving high-temperature calcination: ZrO2-induced hematite nanotubes for photoelectrochemical water oxidation. Angew. Chem. , Int. Ed. 2017, 56, 4150–4155.

[80]

Yi, S. S.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Highly efficient photoelectrochemical water splitting: Surface modification of cobalt-phosphate-loaded Co3O4/Fe2O3 p–n heterojunction nanorod arrays. Adv. Funct. Mater. 2019, 29, 1801902.

[81]

Chong, R. F.; Wang, B. Y.; Su, C. H.; Li, D. L.; Mao, L. Q.; Chang, Z. X.; Zhang, L. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte. J. Mater. Chem. A 2017, 5, 8583–8590.

[82]

Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208.

[83]

Wang, Y.; Yan, L. T.; Dastafkan, K.; Zhao, C.; Zhao, X. B.; Xue, Y. Y.; Huo, J. M.; Li, S. N.; Zhai, Q. G. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation. Adv. Mater. 2021, 33, 2006351.

[84]

Fu, Y. M.; Lu, Y. R.; Ren, F.; Xing, Z.; Chen, J.; Guo, P. H.; Pong, W. F.; Dong, C. L.; Zhao, L.; Shen, S. H. Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation. Sol. RRL 2020, 4, 1900349.

[85]

Yuan, H.; Yang, S. W.; Yan, H.; Guo, J. Y.; Zhang, W. C.; Yu, Q.; Yin, X. Z.; Tan, Y. Q. Liquefied polysaccharides-based polymer with tunable condensed state structure for antimicrobial shield by multiple processing methods. Small Methods 2022, 6, 2200129.

[86]

Li, H. M.; Wang, Z. Y.; Jing, H. J.; Yi, S. S.; Zhang, S. X.; Yue, X. Z.; Zhang, Z. T.; Lu, H. X.; Chen, D. L. Synergetic integration of passivation layer and oxygen vacancy on hematite nanoarrays for boosted photoelectrochemical water oxidation. Appl. Catal. B Environ. 2021, 284, 119760.

[87]

Si, W. P.; Haydous, F.; Babic, U.; Pergolesi, D.; Lippert, T. Suppressed charge recombination in hematite photoanode via protonation and annealing. ACS Appl. Energy Mater. 2019, 2, 5438–5445.

[88]

Tang, P. Y.; Xie, H. B.; Ros, C.; Han, L. J.; Biset-Peiró, M.; He, Y. M.; Kramer, W.; Rodríguez, A. P.; Saucedo, E.; Galán-Mascarós, J. R. et al. Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy Environ. Sci. 2017, 10, 2124–2136.

[89]

Ma, J.; Long, R.; Liu, D.; Low, J.; Xiong, Y. J. Defect engineering in photocatalytic methane conversion. Small Struct. 2022, 3, 2100147.

[90]

Yoon, K. Y.; Park, J.; Jung, M.; Ji, S. G.; Lee, H.; Seo, J. H.; Kwak, M. J.; Il Seok, S.; Lee, J. H.; Jang, J. H. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nat. Commun. 2021, 12, 4309.

[91]

Meng, L. X.; Zhou, X. L.; Wang, S. Y.; Zhou, Y.; Tian, W.; Kidkhunthod, P.; Tunmee, S.; Tang, Y. B.; Long, R.; Xin, Y. et al. A plasma-triggered O–S bond and P–N junction near the surface of a SnS2 nanosheet array to enable efficient solar water oxidation. Angew. Chem. , Int. Ed. 2019, 58, 16668–16675.

[92]

Chen, D.; Liu, Z. F.; Zhang, S. C. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Appl. Catal. B Environ. 2020, 265, 118580.

[93]

Zhang, S. C.; Liu, Z. F.; Chen, D.; Yan, W. G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B Environ. 2020, 277, 119197.

[94]

Sun, Q.; Cheng, T.; Liu, Z. R.; Qi, L. M. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B Environ. 2020, 277, 119189.

[95]

Zhang, H. M.; Li, D. F.; Byun, W. J.; Wang, X. L.; Shin, T. J.; Jeong, H. Y.; Han, H. X.; Li, C.; Lee, J. S. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 2020, 11, 4622.

[96]

Xu, Y. F.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv. Funct. Mater. 2016, 26, 4414–4421.

[97]

Salimi, R.; Alvani, A. A.; Mei, B. T.; Naseri, N.; Du, S. F.; Mul, G. Ag-functionalized CuWO4/WO3 nanocomposites for solar water splitting. New J. Chem. 2019, 43, 2196–2203.

[98]

Zhang, X.; Wei, Y. Z.; Yu, R. B. Multidimensional tungsten oxides for efficient solar energy conversion. Small Struct. 2022, 3, 2100130.

[99]

Naseri, N.; Kim, H.; Choi, W.; Moshfegh, A. Z. Implementation of Ag nanoparticle incorporated WO3 thin film photoanode for hydrogen production. Int. J. Hydrogen Energy 2013, 38, 2117–2125.

[100]

Jeon, D.; Kim, N.; Bae, S.; Han, Y. J.; Ryu, J. WO3/conducting polymer heterojunction photoanodes for efficient and stable photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2018, 10, 8036–8044.

[101]

Kalanur, S. S.; Singh, R.; Seo, H. Enhanced solar water splitting of an ideally doped and work function tuned {002} oriented one-dimensional WO3 with nanoscale surface charge mapping insights. Appl. Catal. B Environ. 2021, 295, 120269.

[102]

Zhang, J. J.; Chang, X. X.; Li, C. C.; Li, A.; Liu, S. S.; Wang, T.; Gong, J. L. WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J. Mater. Chem. A 2018, 6, 3350–3354.

[103]

Tang, S. S.; Courté, M.; Peng, J. J.; Fichou, D. Oxygen-deficient WO3 via high-temperature two-step annealing for enhanced and highly stable water splitting. Chem. Commun. 2019, 55, 7958–7961.

[104]

Zhan, F. Q.; Liu, Y.; Wang, K. K.; Liu, Y. S.; Yang, X. T.; Yang, Y. H.; Qiu, X. Q.; Li, W. Z.; Li, J. In situ formation of WO3-based heterojunction photoanodes with abundant oxygen vacancies via a novel microbattery method. ACS Appl. Mater. Interfaces 2019, 11, 15467–15477.

[105]

Wang, S. C.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.

[106]

Gao, R. T.; Liu, S. J.; Guo, X. T.; Zhang, R. G.; He, J. L.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Wang, L. Pt-induced defects curing on BiVO4 photoanodes for near-threshold charge separation. Adv. Energy Mater. 2021, 11, 2102384.

[107]

Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. , Int. Ed. 2018, 57, 2248–2252.

[108]

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

[109]

Alam, S.; Qureshi, M. Interfacial bridging strategy for charge extraction/injection in the BiVO4/CoSn-layered double hydroxide p–n heterojunction approach using graphene quantum dots for enhanced water oxidation kinetics. J. Phys. Chem. Lett. 2021, 12, 8947–8955.

[110]

Yu, F. S.; Li, F.; Yao, T. T.; Du, J.; Liang, Y. Q.; Wang, Y.; Han, H. X.; Sun, L. C. Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode. ACS Catal. 2017, 7, 1868–1874.

[111]

Gao, L.; Li, F.; Hu, H.; Long, X.; Xu, N.; Hu, Y.; Wei, S.; Wang, C.; Ma, J.; Jin, J. Dual modification of a BiVO4 photoanode for enhanced photoelectrochemical performance. ChemSusChem 2018, 11, 2502–2509.

[112]

Ye, K. H.; Li, H. B.; Huang, D.; Xiao, S.; Qiu, W. T.; Li, M. Y.; Hu, Y. W.; Mai, W.; Ji, H. B.; Yang, S. H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 2019, 10, 3687.

[113]

Lee, D. K.; Choi, K. S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 2018, 3, 53–60.

[114]

Li, F. S.; Yang, H.; Zhuo, Q. M.; Zhou, D. H.; Wu, X. J.; Zhang, P. L.; Yao, Z. Y.; Sun, L. C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew. Chem. , Int. Ed. 2021, 60, 1976–1985.

[115]

Han, Z. P.; Zhang, X. Y.; Yuan, H.; Li, Z. D.; Li, G. Z.; Zhang, H. Y.; Tan, Y. Q. Graphene oxide/gold nanoparticle/graphite fiber microelectrodes for directing electron transfer of glucose oxidase and glucose detection. J. Power Sources 2022, 521, 230956.

[116]

Huang, M. R.; Huang, Z. W.; Zhu, H. W. Excellent stability of molecular catalyst/BiVO4 photoanode in borate buffer solution. Nano Energy 2020, 70, 104487.

[117]

Shi, Y. M.; Yu, Y. F.; Yu, Y.; Huang, Y.; Zhao, B. H.; Zhang, B. Boosting photoelectrochemical water oxidation activity and stability of Mo-doped BiVO4 through the uniform assembly coating of NiFe-phenolic networks. ACS Energy Lett. 2018, 3, 1648–1654.

[118]

Zhang, J.; Huang, Y.; Lu, X.; Yang, J.; Tong, Y. Enhanced BiVO4 photoanode photoelectrochemical performance via borate treatment and a NiFeOx cocatalyst. ACS Sustainable Chem. Eng. 2021, 9, 8306–8314.

[119]

Zhang, B. B.; Huang, X. J.; Zhang, Y.; Lu, G. X.; Chou, L. J.; Bi, Y. P. Unveiling the activity and stability origin of BiVO4 photoanodes with FeNi oxyhydroxides for oxygen evolution. Angew. Chem. , Int. Ed. 2020, 59, 18990–18995.

[120]

Zhang, Y. P.; Li, Y.; Ni, D. Q.; Chen, Z. W.; Wang, X.; Bu, Y. Y.; Ao, J. P. Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-doped SrTiO3 perovskite as a co-catalyst. Adv. Funct. Mater. 2019, 29, 1902101.

[121]

Huang, L. C.; Yao, R. Q.; Wang, X. Q.; Sun, S.; Zhu, X. X.; Liu, X. H.; Kim, M. G.; Lian, J. S.; Liu, F. Z.; Li, Y. Q. et al. In situ phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting. Energy Environ. Sci. 2022, 15, 2425–2434.

[122]

Lee, M. G.; Jin, K.; Kwon, K. C.; Sohn, W.; Park, H.; Choi, K. S.; Go, Y. K.; Seo, H.; Hong, J. S.; Nam, K. T. et al. Efficient water splitting cascade photoanodes with ligand-engineered MnO cocatalysts. Adv. Sci. 2018, 5, 1800727.

[123]

Gao, R. T.; He, D.; Wu, L. J.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew. Chem. , Int. Ed. 2020, 59, 6213–6218.

[124]

Shah, S. S. A.; Najam, T.; Wen, M.; Zang, S. Q.; Waseem, A.; Jiang, H. L. Metal-organic framework-based electrocatalysts for CO2 reduction. Small Struct. 2022, 3, 2100090.

[125]

Meyer, K.; Ranocchiari, M.; van Bokhoven, J. A. Metal organic frameworks for photo-catalytic water splitting. Energy Environ. Sci. 2015, 8, 1923–1937.

[126]

Ahn, C. H.; Deshpande, N. G.; Lee, H. S.; Cho, H. K. Energy transfer-induced photoelectrochemical improvement from porous zeolitic imidazolate framework-decorated BiVO4 photoelectrodes. Small Methods 2021, 5, 2000753.

[127]

Wang, H.; Jian, M. P.; Qi, Z. L.; Li, Y. F.; Liu, R. P.; Qu, J. H.; Zhang, X. W. Specific anion effects on the stability of zeolitic imidazolate framework-8 in aqueous solution. Microporous Mesoporous Mater. 2018, 259, 171–177.

[128]

Zhang, B. B.; Dong, G. J.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Efficient hydrogen production from MIL-53(Fe) catalyst-modified Mo: BiVO4 photoelectrodes. Catal. Sci. Technol. 2017, 7, 4971–4976.

[129]

Zhou, S. Q.; Yue, P. F.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chem. Eng. J. 2019, 371, 885–892.

[130]

Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Preparation of heterometallic CoNi-MOFs-modified BiVO4: A steady photoanode for improved performance in photoelectrochemical water splitting. Appl. Catal. B Environ. 2020, 266, 118513.

[131]

She, H. D.; Yue, P. F.; Ma, X. Y.; Huang, J. W.; Wang, L.; Wang, Q. Z. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B Environ. 2020, 263, 118280.

[132]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. , Int. Ed. 2021, 60, 1433–1440.

[133]

Ning, X. M.; Yin, D.; Fan, Y. P.; Zhang, Q.; Du, P. Y.; Zhang, D. X.; Chen, J.; Lu, X. Q. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation. Adv. Energy Mater. 2021, 11, 2100405.

[134]

Zhang, K.; Jin, B. J.; Park, C.; Cho, Y.; Song, X. F.; Shi, X. J.; Zhang, S. L.; Kim, W.; Zeng, H. B.; Park, J. H. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 2019, 10, 2001.

[135]

Wang, Y. X.; Chen, D. M.; Zhang, J. N.; Balogun, M. S.; Wang, P. S.; Tong, Y. X.; Huang, Y. C. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv. Funct. Mater. 2022, 32, 2112738.

[136]

Kuang, Y. B.; Jia, Q. X.; Ma, G. J.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2017, 2, 16191.

[137]

Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J. Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

[138]

Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

[139]

Vo, T. G.; Tai, Y. A.; Chiang, C. Y. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl. Catal. B Environ. 2019, 243, 657–666.

[140]

Guan, P.; Bai, H.; Wang, F.; Yu, H.; Xu, D.; Fan, W.; Shi, W. In-situ anchoring Ag through organic polymer for configuring efficient plasmonic BiVO4 photoanode. Chem. Eng. J. 2019, 385, 658–665.

[141]

Cao, X. H.; Xu, C. J.; Liang, X. M.; Ma, J. R.; Yue, M. E.; Ding, Y. Rationally designed/assembled hybrid BiVO4-based photoanode for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 2020, 260, 118136.

[142]

Zhang, Y.; Lv, H. F.; Zhang, Z.; Wang, L.; Wu, X. J.; Xu, H. X. Stable unbiased photo-electrochemical overall water splitting exceeding 3% efficiency via covalent triazine framework/metal oxide hybrid photoelectrodes. Adv. Mater. 2021, 33, 2008264.

[143]

Lu, X.; Ye, K. H.; Zhang, S.; Zhang, J.; Yang, J.; Huang, Y.; Ji, H. Amorphous type FeOOH modified defective BiVO4 photoanodes for photoelectrochemical water oxidation. Chem. Eng. J. 2022, 428, 131027.

[144]

Zhang, Q.; Ning, X.; Fan, Y.; Yin, D.; Zhao, H.; Zhang, Z.; Du, P.; Lu, X. Insight into interface charge regulation through the change of the electrolyte temperature toward enhancing photoelectrochemical water oxidation. J. Colloid Interface Sci. 2021, 588, 31–39.

[145]

Liu, S. J.; Gao, R. T.; Zhang, R. A.; Wang, Z. W.; Liu, X. H.; Nakajima, T.; Zhang, X. Y.; Su, Y. G.; Wang, L. Tungsten induced defects control on BiVO4 photoanodes for enhanced solar water splitting performance and photocorrosion resistance. Appl. Catal. B Environ. 2021, 298, 120610.

[146]

Prasad, U.; Young, J.; Johnson, J.; McGott, D.; Gu, H.; Garfunkel, E.; Kannan, A. Enhancing interfacial charge transfer in a WO3/BiVO4 photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi2O3 interfacial layer. J. Mater. Chem. A 2021, 9, 16137–16149.

[147]

Tian, Z. L.; Zhang, P. F.; Qin, P.; Sun, D.; Zhang, S. N.; Guo, X. W.; Zhao, W.; Zhao, D. Y.; Huang, F. Q. Novel black BiVO4/TiO2−x photoanode with enhanced photon absorption and charge separation for efficient and stable solar water splitting. Adv. Energy Mater. 2019, 9, 1901287.

[148]

Xie, J. L.; Guo, C. X.; Yang, P. P.; Wang, X. D.; Liu, D. Y.; Li, C. M. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 2017, 31, 28–36.

[149]

Song, Y. R.; Zhang, X. M.; Zhang, Y. X.; Zhai, P. L.; Li, Z. W.; Jin, D. F.; Cao, J. Q.; Wang, C.; Zhang, B.; Gao, J. F. et al. Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew. Chem. , Int. Ed. 2022, 61, e202200946.

[150]

Reddy, D. A.; Reddy, K. A. J.; Hong, D. H.; Gopannagari, M.; Kumar, D. P.; Kim, T. K. Constructing ordered paths to improve the charge separation and light harvesting capacity towards efficient solar water oxidation performance. Appl. Catal. B Environ. 2020, 269, 118761.

[151]

Jian, J.; Wang, S. Y.; Ye, Q.; Li, F.; Su, G. R.; Liu, W.; Qu, C. Z.; Liu, F.; Li, C.; Jia, L. C. et al. Activating a semiconductor-liquid junction via laser-derived dual interfacial layers for boosted photoelectrochemical water splitting. Adv. Mater. 2022, 34, 2201140.

[152]

Beetz, M.; Häringer, S.; Elsässer, P.; Kampmann, J.; Sauerland, L.; Wolf, F.; Günther, M.; Fischer, A.; Bein, T. Ultra-thin protective coatings for sustained photoelectrochemical water oxidation with Mo:BiVO4. Adv. Funct. Mater. 2021, 31, 2011210.

[153]

Meng, L. X.; Wang, M.; Sun, H. X.; Tian, W.; Xiao, C. H.; Wu, S. L.; Cao, F. R.; Li, L. Designing a transparent CdIn2S4/In2S3 bulk-heterojunction photoanode integrated with a perovskite solar cell for unbiased water splitting. Adv. Mater. 2020, 32, 2002893.

[154]

Najafi, L.; Romano, V.; Oropesa-Nuñez, R.; Prato, M.; Lauciello, S.; D'Angelo, G.; Bellani, S.; Bonaccorso, F. Hybrid organic/inorganic photocathodes based on WS2 flakes as hole transporting layer material. Small Struct. 2021, 2, 2000098.

[155]

Yu, Y.; Huang, Y.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy 2018, 43, 236–243.

[156]

Bai, Z. M.; Yan, X. Q.; Li, Y.; Kang, Z.; Cao, S. Y.; Zhang, Y. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv. Energy Mater. 2016, 6, 1501459.

[157]

Bhat, S. S. M.; Pawar, S. A.; Potphode, D.; Moon, C. K.; Suh, J. M.; Kim, C.; Choi, S.; Patil, D. S.; Kim, J. J.; Shin, J. C. et al. Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Appl. Catal. B Environ. 2019, 259, 118102.

[158]

Mumtaz, A.; Mohamed, N. M.; Mazhar, M.; Ehsan, M. A.; Mohamed Saheed, M. S. Core–shell vanadium modified titania@β-In2S3 hybrid nanorod arrays for superior interface stability and photochemical activity. ACS Appl. Mater. Interfaces 2016, 8, 9037–9049.

[159]

Li, M.; Tu, X. L.; Su, Y. J.; Lu, J.; Hu, J.; Cai, B. F.; Zhou, Z. H.; Yang, Z.; Zhang, Y. F. Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 2018, 10, 1153–1161.

[160]

Ai, G. J.; Li, H. X.; Liu, S. P.; Mo, R.; Zhong, J. X. Solar water splitting by TiO2/CdS/Co–Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber. Adv. Funct. Mater. 2015, 25, 5706–5713.

[161]

Zhu, C.; Liu, C. G.; Zhou, Y. J.; Fu, Y. J.; Guo, S. J.; Li, H.; Zhao, S. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal. B Environ. 2017, 216, 114–121.

[162]

Yoo, I. H.; Kalanur, S. S.; Seo, H. A nanoscale p–n junction photoelectrode consisting of an NiOx layer on a TiO2/CdS nanorod core–shell structure for highly efficient solar water splitting. Appl. Catal. B Environ. 2019, 250, 200–212.

[163]

Wang, R. Y.; Wang, L.; Zhou, Y.; Zou, Z. G. Al-ZnO/CdS photoanode modified with a triple functions conformal TiO2 film for enhanced photoelectrochemical efficiency and stability. Appl. Catal. B Environ. 2019, 255, 117738.

[164]

Cao, S. Y.; Yan, X. Q.; Kang, Z.; Liang, Q. J.; Liao, X. Q.; Zhang, Y. Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy 2016, 24, 25–31.

[165]

Li, Y. L.; Yuan, H.; Chen, Y. B.; Wei, X. Y.; Sui, K. Y.; Tan, Y. Q. Application and exploration of nanofibrous strategy in electrode design. J. Mater. Sci. Technol. 2021, 74, 189–202.

[166]

Ho, T. A.; Bae, C.; Joe, J.; Yang, H.; Kim, S.; Park, J. H.; Shin, H. Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays. ACS Appl. Mater. Interfaces 2019, 11, 37586–37594.

[167]

Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater. 2018, 30, 1705941.

[168]

Xiong, Y. L.; Yang, L.; Nandakumar, D. K.; Yang, Y. B.; Dong, H. M.; Ji, X.; Xiao, P.; Tan, S. C. Highly efficient photoelectrochemical water oxidation enabled by enhanced interfacial interaction in 2D/1D In2S3@Bi2S3 heterostructures. J. Mater. Chem. A 2020, 8, 5612–5621.

[169]

Hou, J. G.; Cao, S. Y.; Sun, Y. Q.; Wu, Y. Z.; Liang, F.; Lin, Z. S.; Sun, L. C. Atomically thin mesoporous In2O3−x/In2S3 lateral heterostructures enabling robust broadband-light photo-electrochemical water splitting. Adv. Energy Mater. 2018, 8, 1701114.

[170]

Park, J.; Lee, T. H.; Kim, C.; Lee, S. A.; Choi, M. J.; Kim, H.; Yang, J. W.; Lim, J.; Jang, H. W. Hydrothermally obtained type-Ⅱ heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 295, 120276.

[171]

Meng, L. X.; Wang, S. Y.; Cao, F. R.; Tian, W.; Long, R.; Li, L. Doping-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew. Chem. , Int. Ed. 2019, 131, 6833–6837.

[172]

Zuo, Y.; Liu, Y. P.; Li, J. S.; Du, R. F.; Yu, X. T.; Xing, C. C.; Zhang, T.; Yao, L.; Arbiol, J.; Llorca, J. et al. Solution-processed ultrathin SnS2-Pt nanoplates for photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 2019, 11, 6918–6926.

[173]

Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y. et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169.

[174]

Lin, J. F.; Liu, Y.; Liu, Y. P.; Huang, C.; Liu, W. H.; Mi, X. H.; Fan, D. Y.; Fan, F. T.; Lu, H. D.; Chen, X. B. SnS2 nanosheets/H-TiO2 nanotube arrays as a type Ⅱ heterojunctioned photoanode for photoelectrochemical water splitting. ChemSusChem 2019, 12, 961–967.

[175]

Giri, B.; Masroor, M.; Yan, T.; Kushnir, K.; Carl, A. D.; Doiron, C.; Zhang, H. C.; Zhao, Y. Y.; McClelland, A.; Tompsett, G. A. et al. Balancing light absorption and charge transport in vertical SnS2 nanoflake photoanodes with stepped layers and large intrinsic mobility. Adv. Energy Mater. 2019, 9, 1901236.

[176]

Chen, L. D.; Liu, E. Z.; Teng, F.; Zhang, T. X.; Feng, J.; Kou, Y. M.; Sun, Q.; Fan, J.; Hu, X. Y.; Miao, H. Two-dimensional SnS2 nanosheets arrays as photoelectrode by low temperature CVD method for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 2019, 467–468, 698–707.

[177]

Liu, G. B.; Li, Z. H.; Hasan, T.; Chen, X. S.; Zheng, W.; Feng, W.; Jia, D. C.; Zhou, Y.; Hu, P. A. Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 1989–1995.

[178]

Cao, Z.; Yin, Y. L.; Fu, P.; Li, D.; Zhou, Y. L.; Deng, Y. W.; Peng, Y. H.; Wang, W. K.; Zhou, W. C.; Tang, D. S. TiO2 nanosheet arrays with layered SnS2 and CoOx nanoparticles for efficient photoelectrochemical water splitting. Nanoscale Res. Lett. 2019, 14, 342.

[179]

Mu, J. L.; Teng, F.; Miao, H.; Wang, Y. S.; Hu, X. Y. In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Appl. Surf. Sci. 2020, 501, 143974.

[180]

Meng, L. X.; He, J. L.; Zhou, X. L.; Deng, K. M.; Xu, W. W.; Kidkhunthod, P.; Long, R.; Tang, Y. B.; Li, L. Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nat. Commun. 2021, 12, 5247.

[181]

Xu, W. W.; Tian, W.; Meng, L. X.; Cao, F. R.; Li, L. Ion sputtering-assisted double-side interfacial engineering for CdIn2S4 photoanode toward improved photoelectrochemical water splitting. Adv. Mater. Interfaces 2020, 7, 1901947.

[182]

Mahadik, M. A.; Shinde, P. S.; Cho, M.; Jang, J. S. Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 2016, 184, 337–346.

[183]

Wu, P. D.; Liu, Z. F.; Guo, Z. G.; Li, X. F.; Zhao, L. Zn1−xCdxS nanowall photoanode prepared via seed layer epitaxial growth method and modified by dual co-catalyst for photoelectrochemical water splitting. Appl. Surf. Sci. 2019, 467–468, 65–74.

[184]

Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.

[185]

Song, J. P.; Yin, P. F.; Mao, J.; Qiao, S. Z.; Du, X. W. Catalytically active and chemically inert CdIn2S4 coating on a CdS photoanode for efficient and stable water splitting. Nanoscale 2017, 9, 6296–6301.

[186]

Liu, Y. C.; Kang, Z.; Si, H. N.; Li, P. F.; Cao, S. Y.; Liu, S.; Li, Y.; Zhang, S. C.; Zhang, Z.; Liao, Q. L. et al. Cactus-like hierarchical nanorod-nanosheet mixed dimensional photoanode for efficient and stable water splitting. Nano Energy 2017, 35, 189–198.

[187]

Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 2016, 3, 1500345.

[188]

Geng, H.; Ying, P.; Li, K.; Zhao, Y.; Gu, X. Epitaxial In2S3/ZnIn2S4 heterojunction nanosheet arrays on FTO substrates for photoelectrochemical water splitting. Appl. Surf. Sci. 2021, 563, 150289.

[189]

Zhou, M.; Liu, Z. H.; Song, Q. G.; Li, X. F.; Chen, B. W.; Liu, Z. F. Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2019, 244, 188–196.

[190]

Cao, S. Y.; Wu, Y. Z.; Hou, J. G.; Zhang, B.; Li, Z. W.; Nie, X. W.; Sun, L. C. 3D porous pyramid heterostructure array realizing efficient photo-electrochemical performance. Adv. Energy Mater. 2020, 10, 1902935.

[191]

Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. , Int. Ed. 2015, 127, 9398–9402.

[192]

Wu, Y.; Liu, X. Q.; Zhang, H. J.; Li, J.; Zhou, M.; Li, L.; Wang, Y. Atomic sandwiched p–n homojunctions. Angew. Chem., Int. Ed. 2021, 133, 3529–3534.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 May 2022
Revised: 17 June 2022
Accepted: 23 June 2022
Published: 02 July 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the support from the National Key Research and Development Program of China (No. 2021YFA1500800), the National Natural Science Foundation of China (No. 52025028), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return