Journal Home > Volume 1 , Issue 2

Coupling the bi-functional mechanism with compressive lattice strain might be an effective way to boost the electrocatalysis of platinum (Pt)-based nanoparticles for methanol oxidation reaction (MOR). This strategy weakens the chemisorption of poisoning CO-like intermediates generated during MOR on the active Pt sites by lowering their d-band center. In this context, we herein report the synthesis of ternary copper-tungsten-platinum (CuWPt) nanoalloys with light doping of W element by simply co-reducing their precursors at elevated temperature. In this ternary alloy system, the presence of only small amount of W element not only weakens the chemisorption of CO-like intermediates by lowering the Pt d-band center through compressive lattice strain, but also cleans the active Pt sites by "hydrogen spillover effect", endowing the as-prepared CuWPt nanoalloys at an appropriate Cu/W/Pt ratio with good activity for MOR. In specific, the ternary CuWPt alloy nanoparticles at a Cu/W/Pt molar ratio of 21/4/75 show a specific activity of 2.5 mA·cm−2 and a mass activity of 2.11 A·mg−1 with a better durability, outperforming those ternary CuWPt alloy nanoparticles at other Cu/W/Pt ratios, binary CuPt alloys and commercial Pt/C catalyst as well as a large number of reported Pt-based electrocatalysts. In addition, a single direct methanol fuel cell (DMFC) assembled using ternary CuWPt nanoalloys as anodic catalysts shows a power density of 24.3 mW·cm−2 and an open-circle voltage of 0.6 V, also much higher than those of the single DMFC assembled from commercial Pt/C catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation

Show Author's information Danye Liu1,2Qing Zeng1,2Chaoquan Hu1,3Dong Chen1,3( )Hui Liu1,3Yongsheng Han1Lin Xu4( )Qingbo Zhang5Jun Yang1,2,3( )
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211100, China
School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
Department of Bioengineering, Rice University, Houston, Texas 77005, USA

Abstract

Coupling the bi-functional mechanism with compressive lattice strain might be an effective way to boost the electrocatalysis of platinum (Pt)-based nanoparticles for methanol oxidation reaction (MOR). This strategy weakens the chemisorption of poisoning CO-like intermediates generated during MOR on the active Pt sites by lowering their d-band center. In this context, we herein report the synthesis of ternary copper-tungsten-platinum (CuWPt) nanoalloys with light doping of W element by simply co-reducing their precursors at elevated temperature. In this ternary alloy system, the presence of only small amount of W element not only weakens the chemisorption of CO-like intermediates by lowering the Pt d-band center through compressive lattice strain, but also cleans the active Pt sites by "hydrogen spillover effect", endowing the as-prepared CuWPt nanoalloys at an appropriate Cu/W/Pt ratio with good activity for MOR. In specific, the ternary CuWPt alloy nanoparticles at a Cu/W/Pt molar ratio of 21/4/75 show a specific activity of 2.5 mA·cm−2 and a mass activity of 2.11 A·mg−1 with a better durability, outperforming those ternary CuWPt alloy nanoparticles at other Cu/W/Pt ratios, binary CuPt alloys and commercial Pt/C catalyst as well as a large number of reported Pt-based electrocatalysts. In addition, a single direct methanol fuel cell (DMFC) assembled using ternary CuWPt nanoalloys as anodic catalysts shows a power density of 24.3 mW·cm−2 and an open-circle voltage of 0.6 V, also much higher than those of the single DMFC assembled from commercial Pt/C catalysts.

Keywords: electrocatalysis, methanol oxidation reaction, lattice strain, d-band center, hydrogen spillover

References(50)

[1]

Xia, Z. X.; Zhang, X. M.; Sun, H.; Wang, S. L.; Sun, G. Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 2019, 65, 104048.

[2]

Gao, Y. J.; Liu, J. L.; Bashir S. Electrocatalysts for direct methanol fuel cells to demonstrate China's renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catal. Today 2021, 374, 135–153.

[3]

Kaur, A.; Kaur, G.; Singh, P. P.; Kaushal, S. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: A review. Int. J. Hydrogen Energy 2021, 46, 15820–15849.

[4]

Antolini, E. Formation of carbon-supported PtM alloys for low temperature fuel cells: A review. Mater. Chem. Phys. 2003, 78, 563–573.

[5]

Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.

[6]

Wasmus, S.; Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 1999, 461, 14–31.

[7]

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

[8]

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

[9]

Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

[10]

Yang, N. W.; Chen, D.; Cui, P. L.; Lu, T. Y.; Liu, H.; Hu, C. Q.; Xu, L.; Yang, J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat 2021, 2, 234–245.

[11]

Yang, N. W.; Hu, Z. Y.; Song, J.; Lu, T. Y.; Cui, P. L.; Xu, L.; Liu, H.; Yang, J. Electron density regulation of Pt-Co nanoalloys via P incorporation towards methanol electrooxidation. Mater. Adv. 2022, 3, 4268–4277.

[12]

Mukerjee, S.; Urian, R. C. Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 2002, 47, 3219–3231.

[13]

Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; Ha, H. Y.; Hong, S. A.; Kim, H.; Wieckowski, A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 2002, 106, 1869–1877.

[14]

Roth, C.; Papworth, A. J.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem. 2005, 581, 79–85.

[15]

Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039.

[16]

Huang, H. H.; Hu, X. L.; Zhang, J. B.; Su, N.; Cheng, J. X. Facile fabrication of platinum-cobalt alloy nanoparticles with enhanced electrocatalytic activity for a methanol oxidation reaction. Sci. Rep. 2017, 7, 45555.

[17]

Liu, H.; Li, C. Y.; Chen, D.; Cui, P. L.; Ye, F.; Yang, J. Uniformly dispersed platinum-cobalt alloy nanoparticles with stable compositions on carbon substrates for methanol oxidation reaction. Sci. Rep. 2017, 7, 11421.

[18]

Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao. M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.

[19]

Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B: Environ. 2019, 246, 277–283.

[20]

Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088–3097.

[21]

Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

[22]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[23]

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

[24]

Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

[25]

Wu, X. Q.; Jiang, Y.; Yan, Y. C.; Li, X.; Luo, S.; Huang, J. B.; Li, J. J.; Shen, R.; Yang, D. R.; Zhang, H. Tuning surface structure of Pd3Pb/Ptn Pb nanocrystals for boosting the methanol oxidation reaction. Adv. Sci. 2019, 6, 1902249.

[26]

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

[27]

Jeon, T. Y.; Yu, S. H.; Yoo, S. J.; Park, H. Y.; Kim, S. Y. Electrochemical determination of the degree of atomic surface roughness in Pt-Ni alloy nanocatalysts for oxygen reduction reaction. Carbon Energy 2021, 3, 375–383.

[28]

Liu, D. Y.; Zeng, Q.; Liu, H.; Hu, C. Q.; Chen, D.; Xu, L.; Yang, J. Combining the core–shell construction with an alloying effect for high efficiency ethanol electrooxidation. Cell Rep. Phys. Sci. 2021, 2, 100357.

[29]

Li, C.; Chen, X. B.; Zhang, L. H.; Yan, S. H.; Sharma, A.; Zhao, B.; Kumbhar, A.; Zhou, G. W.; Fang, J. Y. Synthesis of core@shell Cu-Ni@Pt-Cu Nano-octahedra and their improved MOR activity. Angew. Chem., Int. Ed. 2021, 60, 7675–7680.

[30]

Liao, Y.; Yu, G.; Zhang, Y.; Guo, T. T.; Chang, F. F.; Zhong, C. J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476–10484.

[31]

Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124–130.

[32]

Kuo, C. S.; Lyu, L. M.; Sia, R. F.; Lin, H. M.; Sneed, B. T.; Chen, C. F.; Chang, J.; Chiu, T. W.; Chuang, Y. C.; Kuo, C. H. Ultrathin octahedral CuPt nanocages obtained by facet transformation from rhombic dodecahedral core–shell nanocrystals. ACS Sustainable Chem. Eng. 2020, 8, 10544–10553.

[33]

Umeda, M.; Ojima, H.; Mohamedi, M.; Uchida, I. Methanol electrooxidation at Pt-Ru-W sputter deposited on Au substrate. J. Power Sources 2004, 136, 10–15.

[34]

Zeng, J. H.; Lee, J. Y. Ruthenium-free, carbon-supported cobalt and tungsten containing binary & ternary Pt catalysts for the anodes of direct methanol fuel cells. Int. J. Hydrogen Energy 2007, 32, 4389–4396.

[35]

Ji, Z. Y.; Shen, X. P.; Zhu, G. X.; Chen, K. M.; Fu, G. H.; Tong, L. Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation. J. Electroanal. Chem. 2012, 682, 95–100.

[36]

Wang, Z. B.; Zuo, P. J.; Yin, G. P. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium. J. Alloys Compd. 2009, 479, 395–400.

[37]

Micoud, F.; Maillard, F.; Bonnefont, A.; Job, N.; Chatenet, M. The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOX vs. Pt/C. Phys. Chem. Chem. Phys. 2010, 12, 1182–1193.

[38]

Jeon, M. K.; Lee, K. R.; Jeon, H. J.; McGinn, P. J.; Kang, K. H.; Park, G. I. Quaternary Pt2Ru1Fe1M1/C (M = Ni, Mo, or W) catalysts for methanol electro-oxidation reaction. Korean J. Chem. Eng. 2015, 32, 206–215.

[39]

Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M. Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem., Int. Ed. 2005, 44, 2080–2084.

[40]

Yang, J. H.; Chen, X. J.; Ye, F.; Wang, C. X.; Zheng, Y. G.; Yang, J. Core–shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. J. Mater. Chem. 2011, 21, 9088–9094.

[41]

Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3d transition metal alloys for direct methanol fuel cells. J. Electrochem. Soc. 2006, 153, A20.

[42]

Kumar, S.; Zou, S. Z. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: Effects of film thickness. Langmuir 2007, 23, 7365–7371.

[43]

Chen, D.; Wang, Y. L.; Liu, D. Y.; Liu, H.; Qian, C.; He, H. Y.; Yang, J. Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. Carbon Energy 2020, 2, 443–451.

[44]

Liu, P.; Nørskov, J. K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 2001, 3, 3814–3818.

[45]

Deming, C. P.; Zhao, A.; Song, Y.; Liu, K.; Khan, M. M.; Yates, V. M.; Chen, S. W. Alkyne-protected AuPd alloy nanoparticles for electrocatalytic reduction of oxygen. ChemElectroChem 2015, 2, 1719–1727.

[46]

Antolini, E. Palladium in fuel cell catalysis. Energy Environ. Sci. 2009, 2, 915–931.

[47]

Ren, M. J.; Zhou, Y.; Tao, F. F.; Zou, Z. Q.; Akins, D. L.; Yang, H. Controllable modification of the electronic structure of carbon-supported core–shell Cu@Pd catalysts for formic acid oxidation. J. Phys. Chem. C 2014, 118, 12669–12675.

[48]
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy, in press, http://doi.org/10.26599/NRE.2022.9120010.
[49]

Kobayashi, D.; Kobayashi, H.; Wu, D. S.; Okazoe, S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y. et al. Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254.

[50]

Gao, L.; Yang, Z. L.; Sun, T. L.; Tan, X.; Lai, W. C.; Li, M. F.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. H. et al. Autocatalytic surface reduction-assisted synthesis of PtW ultrathin alloy nanowires for highly efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2103943.

File
nre-1-1-9120017_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 June 2022
Revised: 15 June 2022
Accepted: 17 June 2022
Published: 24 June 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 22075290, and 21972068), Beijing Natural Science Foundation (No. Z200012), the State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (No. MPCS-2021-A-05), and Nanjing IPE Institute of Green Manufacturing Industry (No. E0010725).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return