Journal Home > Online First

The research and development of advanced nanocoatings for high-capacity cathode materials is currently a hot topic in the field of solid-state batteries (SSBs). Protective surface coatings prevent direct contact between the cathode material and solid electrolyte, thereby inhibiting detrimental interfacial decomposition reactions. This is particularly important when using lithium thiophosphate superionic solid electrolytes, as these materials exhibit a narrow electrochemical stability window, and therefore, are prone to degradation during battery operation. Herein we show that the cycling performance of LiNbO3-coated Ni-rich LiNixCoyMnzO2 cathode materials is strongly dependent on the sample history and (coating) synthesis conditions. We demonstrate that post-treatment in a pure oxygen atmosphere at 350 ℃ results in the formation of a surface layer with a unique microstructure, consisting of LiNbO3 nanoparticles distributed in a carbonate matrix. If tested at 45 ℃ and C/5 rate in pellet-stack SSB full cells with Li4Ti5O12 and Li6PS5Cl as anode material and solid electrolyte, respectively, around 80% of the initial specific discharge capacity is retained after 200 cycles (~ 160 mAh·g−1, ~ 1.7 mAh·cm−2). Our results highlight the importance of tailoring the coating chemistry to the electrode material(s) for practical SSB applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries

Show Author's information Seyedhosein Payandeh1( )Florian Strauss1Andrey Mazilkin1,2Aleksandr Kondrakov1,3Torsten Brezesinski1( )
Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen, Germany

Abstract

The research and development of advanced nanocoatings for high-capacity cathode materials is currently a hot topic in the field of solid-state batteries (SSBs). Protective surface coatings prevent direct contact between the cathode material and solid electrolyte, thereby inhibiting detrimental interfacial decomposition reactions. This is particularly important when using lithium thiophosphate superionic solid electrolytes, as these materials exhibit a narrow electrochemical stability window, and therefore, are prone to degradation during battery operation. Herein we show that the cycling performance of LiNbO3-coated Ni-rich LiNixCoyMnzO2 cathode materials is strongly dependent on the sample history and (coating) synthesis conditions. We demonstrate that post-treatment in a pure oxygen atmosphere at 350 ℃ results in the formation of a surface layer with a unique microstructure, consisting of LiNbO3 nanoparticles distributed in a carbonate matrix. If tested at 45 ℃ and C/5 rate in pellet-stack SSB full cells with Li4Ti5O12 and Li6PS5Cl as anode material and solid electrolyte, respectively, around 80% of the initial specific discharge capacity is retained after 200 cycles (~ 160 mAh·g−1, ~ 1.7 mAh·cm−2). Our results highlight the importance of tailoring the coating chemistry to the electrode material(s) for practical SSB applications.

Keywords:

solid-state battery, layered Ni-rich oxide cathode, superionic solid electrolyte, protective surface coating, side reactions
Received: 22 April 2022 Revised: 25 May 2022 Accepted: 27 May 2022 Published: 24 June 2022
References(55)
[1]

Myung, S. T.; Maglia, F.; Park, K. J.; Yoon, C. S.; Lamp, P.; Kim, S. J.; Sun, Y. K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Lett. 2017, 2, 196–223.

[2]

Ritchie, A.; Howard, W. Recent developments and likely advances in lithium-ion batteries. J. Power Sources 2006, 162, 809–812.

[3]

Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

[4]

Sun, Y. K. High-capacity layered cathodes for next-generation electric vehicles. ACS Energy Lett. 2019, 4, 1042–1044.

[5]

Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustainable Energy Rev. 2018, 89, 292–308.

[6]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[7]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[8]

Robinson, A. L.; Janek, J. Solid-state batteries enter EV fray. MRS Bull. 2014, 39, 1046–1047.

[9]

Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.

[10]

Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020, 5, 922–934.

[11]

Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y. M.; Chen, Z. B. Review-practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 2017, 164, A1731–A1744.

[12]

Banerjee, A.; Wang, X. F.; Fang, C. C.; Wu, E. A.; Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 2020, 120, 6878–6933.

[13]

Strauss, F.; Kitsche, D.; Ma, Y.; Teo, J. H.; Goonetilleke, D.; Janek, J.; Bianchini, M.; Brezesinski, T. Operando characterization techniques for all-solid-state lithium-ion batteries. Adv. Energy Sustainability Res. 2021, 2, 2100004.

[14]

Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180.

[15]

Wu, J. H.; Shen, L.; Zhang, Z. H.; Liu, G. Z.; Wang, Z. Y.; Zhou, D.; Wan, H. L.; Xu, X. X.; Yao, X. Y. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 2021, 4, 101–135.

[16]

Culver, S. P.; Koerver, R.; Zeier, W. G.; Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv. Energy Mater. 2019, 9, 1900626.

[17]

Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 2014, 26, 4248–4255.

[18]

Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 2016, 28, 266–273.

[19]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[20]

Xu, L.; Tang, S.; Cheng, Y.; Wang, K. Y.; Liang, J. Y.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Interfaces in solid-state lithium batteries. Joule 2018, 2, 1991–2015.

[21]

Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W. B.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 2017, 29, 5574–5582.

[22]

Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvère, R. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 2017, 29, 3883–3890.

[23]

Auvergniot, J.; Cassel, A.; Foix, D.; Viallet, V.; Seznec, V.; Dedryvère, R. Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study. Solid State Ionics. 2017, 300, 78–85.

[24]

Yao, X. Y.; Liu, D.; Wang, C. S.; Long, P.; Peng, G.; Hu, Y. S.; Li, H.; Chen, L. Q.; Xu, X. X. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 2016, 16, 7148–7154.

[25]

Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L. Q.; Ma, R. Z.; Fukuda, K.; Osada, M.; Sasaki, T. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 2007, 9, 1486–1490.

[26]

Kim, A. Y.; Strauss, F.; Bartsch, T.; Teo, J. H.; Hatsukade, T.; Mazilkin, A.; Janek, J.; Hartmann, P.; Brezesinski, T. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries. Chem. Mater. 2019, 31, 9664–9672.

[27]

Walther, F.; Strauss, F.; Wu, X. H.; Mogwitz, B.; Hertle, J.; Sann, J.; Rohnke, M.; Brezesinski, T.; Janek, J. The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries. Chem. Mater. 2021, 33, 2110–2125.

[28]

Kim, A. Y.; Strauss, F.; Bartsch, T.; Teo, J. H.; Janek, J.; Brezesinski, T. Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Sci. Rep. 2021, 11, 5367.

[29]

Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A. Y.; Janek, J.; Hartmann, P.; Brezesinski, T. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 2018, 3, 992–996.

[30]

Hatsukade, T.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes. ACS Appl. Mater. Interfaces 2018, 10, 38892–38899.

[31]

Strauss, F.; Stepien, D.; Maibach, J.; Pfaffmann, L.; Indris, S.; Hartmann, P.; Brezesinski, T. Influence of electronically conductive additives on the cycling performance of argyrodite-based all-solid-state batteries. RSC Adv. 2020, 10, 1114–1119.

[32]

Kaufman, L. A.; McCloskey, B. D. Surface lithium carbonate influences electrolyte degradation via reactive oxygen attack in lithium-excess cathode materials. Chem. Mater. 2021, 33, 4170–4176.

[33]

Renfrew, S. E.; McCloskey, B. D. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J. Am. Chem. Soc. 2017, 139, 17853–17860.

[34]

Doo, S. W.; Kim, K.; Kim, H.; Lee, S.; Choi, S. H.; Lee, K. T. Residual Li compounds-selective washing process for Ni-rich layered oxide cathode materials for Li-ion batteries. J. Electrochem. Soc. 2021, 168, 100529.

[35]

Kim, J.; Hong, Y.; Ryu, K. S.; Kim, M. G.; Cho, J. Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water. Electrochem. Solid-State Lett. 2006, 9, A19–A23.

[36]

Pritzl, D.; Teufl, T.; Freiberg, A. T. S.; Strehle, B.; Sicklinger, J.; Sommer, H.; Hartmann, P.; Gasteiger, H. A. Editors' choice-washing of nickel-rich cathode materials for lithium-ion batteries: Towards a mechanistic understanding. J. Electrochem. Soc. 2019, 166, A4056–A4066.

[37]

Kim, Y.; Park, H.; Warner, J. H.; Manthiram, A. Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett. 2021, 6, 941–948.

[38]

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

[39]

Sicklinger, J.; Metzger, M.; Beyer, H.; Pritzl, D.; Gasteiger, H. A. Ambient storage derived surface contamination of NCM811 and NCM111: Performance implications and mitigation strategies. J. Electrochem. Soc. 2019, 166, A2322–A2335.

[40]

Jung, R.; Morasch, R.; Karayaylali, P.; Phillips, K.; Maglia, F.; Stinner, C.; Shao-Horn, Y.; Gasteiger, H. A. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 2018, 165, A132–A141.

[41]

Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89–126.

[42]

Bartsch, T.; Strauss, F.; Hatsukade, T.; Schiele, A.; Kim, A. Y.; Hartmann, P.; Janek, J.; Brezesinski, T. Gas evolution in all-solid-state battery cells. ACS Energy Lett. 2018, 3, 2539–2543.

[43]

Strauss, F.; Teo, J. H.; Maibach, J.; Kim, A. Y.; Mazilkin, A.; Janek, J.; Brezesinski, T. Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: Role of surface carbonates in the cycling performance. ACS Appl. Mater. Interfaces 2020, 12, 57146–57154.

[44]

Ma, Y.; Teo, J. H.; Walther, F.; Ma, Y. J.; Zhang, R. Z.; Mazilkin, A.; Tang, Y. S.; Goonetilleke, D.; Janek, J.; Bianchini, M. et al. Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 2022, 32, 2111829.

[45]

Shi, T.; Zhang, Y. Q.; Tu, Q. S.; Wang, Y. H.; Scott, M. C.; Ceder, G. Characterization of mechanical degradation in an all-solid-state battery cathode. J. Mater. Chem. A 2020, 8, 17399–17404.

[46]

Kitsche, D.; Strauss, F.; Tang, Y. S.; Bartnick, N.; Kim, A. Y.; Ma, Y.; Kübel, C.; Janek, J.; Brezesinski, T. A quasi-multinary composite coating on a nickel-rich NCM cathode material for all-solid-state batteries. Batter. Supercaps 2022, 5, e202100397.

[47]

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805–815.

[48]

Usiskin, R.; Maier, J. Interfacial effects in lithium and sodium batteries. Adv. Energy Mater. 2021, 11, 2001455.

[49]

Koerver, R.; Zhang, W. B.; de Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158.

[50]

Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 2019, 1, 845–857.

[51]

Song, Y. B.; Kwak, H.; Cho, W.; Kim, K. S.; Jung, Y. S.; Park, K. H. Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100977.

[52]

Teo, J. H.; Strauss, F.; Walther, F.; Ma, Y.; Payandeh, S.; Scherer, T.; Bianchini, M.; Janek, J.; Brezesinski, T. The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of thiophosphate-based solid-state batteries. Mater. Futures 2022, 1, 015102.

[53]

Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries? Adv. Energy Mater. 2021, 11, 2100126.

[54]

Wang, S.; Zhang, W. B.; Chen, X.; Das, D.; Ruess, R.; Gautam, A.; Walther, F.; Ohno, S.; Koerver, R.; Zhang, Q. et al. Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries. Adv. Energy Mater. 2021, 11, 2100654.

[55]

Strauss, F.; Payandeh, S.; Kondrakov, A.; Brezesinski, T. On the role of surface carbonate species in determining the cycling performance of all-solid-state batteries. Mater. Futures 2022, 1, 023501.

File
nre-1-1-9120016_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 April 2022
Revised: 25 May 2022
Accepted: 27 May 2022
Published: 24 June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This study was supported by BASF SE. F. S. acknowledges the Fonds der Chemischen Industrie im Verband der Chemischen Industrie e. V. for financial support through a Liebig fellowship. The authors acknowledge the support from the Karlsruhe Nano Micro Facility (KNMFi, www.knmf.kit.edu), a Helmholtz research infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). We also thank D. Goonetilleke and R. Zhang for assistance with the XRD measurements and analysis, as well as M. Bianchini for fruitful discussions.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return