Journal Home > Volume 1 , issue 2

The processes of photocatalytic CO2 reduction (pCO2R) and electrochemical CO2 reduction (ECO2R) have attracted considerable interest owing to their high potential to address many environmental and energy-related issues. In this aspect, a single Cu atom decorated on a carbon nitride (CN) surface (Cu–CN) has gained increasing popularity because of its unique advantages, such as excellent atom utilization and ultrahigh catalytic activity. CN—particularly graphitic CN (g-C3N4)—is a photo- and electrocatalyst and used as an important support material for single Cu atom-based catalysts. These key functions of Cu–CN-based catalysts can improve the catalytic performance and stability in the pCO2R and ECO2R during the application process. In this review, we focus on Cu as a single metal atom decorated on CN for efficient photoelectrochemical CO2 reduction (pECO2R), where ECO2R increases the electrocatalytic active area and promotes electron transfer, while pCO2R enhances the surface redox reaction by efficiently using photogenerated charges and offering integral activity as well as an active interface between Cu and CN. Interactions of single Cu atom-based photo-, electro-, and photoelectrochemical catalysts with g-C3N4 are discussed. Moreover, for a deeper understanding of the history of the development of pCO2R and ECO2R, the basics of CO2 reduction, including pCO2R and ECO2R over g-C3N4, as well as the structural composition, characterization, unique design, and mechanism of a single atom site are reviewed in detail. Finally, some future prospects and key challenges are discussed.


menu
Abstract
Full text
Outline
About this article

Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review

Show Author's information Lulu Li1,§Israr Masood ul Hasan1,3,§ Farwa1,3Ruinan He1Luwei Peng1Nengneng Xu1Nabeel Khan Niazi3( )Jia-Nan Zhang4( )Jinli Qiao1,2( )
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

§ Lulu Li and Israr Masood ul Hasan contributed equally to this work.

Abstract

The processes of photocatalytic CO2 reduction (pCO2R) and electrochemical CO2 reduction (ECO2R) have attracted considerable interest owing to their high potential to address many environmental and energy-related issues. In this aspect, a single Cu atom decorated on a carbon nitride (CN) surface (Cu–CN) has gained increasing popularity because of its unique advantages, such as excellent atom utilization and ultrahigh catalytic activity. CN—particularly graphitic CN (g-C3N4)—is a photo- and electrocatalyst and used as an important support material for single Cu atom-based catalysts. These key functions of Cu–CN-based catalysts can improve the catalytic performance and stability in the pCO2R and ECO2R during the application process. In this review, we focus on Cu as a single metal atom decorated on CN for efficient photoelectrochemical CO2 reduction (pECO2R), where ECO2R increases the electrocatalytic active area and promotes electron transfer, while pCO2R enhances the surface redox reaction by efficiently using photogenerated charges and offering integral activity as well as an active interface between Cu and CN. Interactions of single Cu atom-based photo-, electro-, and photoelectrochemical catalysts with g-C3N4 are discussed. Moreover, for a deeper understanding of the history of the development of pCO2R and ECO2R, the basics of CO2 reduction, including pCO2R and ECO2R over g-C3N4, as well as the structural composition, characterization, unique design, and mechanism of a single atom site are reviewed in detail. Finally, some future prospects and key challenges are discussed.

Keywords:

carbon dioxide, single copper atom, g-C3N4, reduction
Received: 24 April 2022 Revised: 30 May 2022 Accepted: 07 June 2022 Published: 31 August 2022 Issue date: September 2022
References(142)
[1]
National Oceanic and Atmospheric Administration (NOAA) 2021.
[2]

Masood ul Hasan, I.; Peng, L. W.; Mao, J. F.; He, R. N.; Wang, Y. X.; Fu, J.; Xu, N. N.; Qiao, J. L. Carbon-based metal-free catalysts for electrochemical CO2 reduction: Activity, selectivity, and stability. Carbon Energy 2021, 3, 24–49.

[3]

Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D. J.; Hearty, P. J.; Hoegh-Guldberg, O.; Hsu, S. L.; Parmesan, C. et al. Assessing "dangerous climate change": Required reduction of carbon emissions to protect young people, future generations and nature. PLoS One 2013, 8, e81648.

[4]

Feldman, D. R.; Collins, W. D.; Gero, P. J.; Torn, M. S.; Mlawer, E. J.; Shippert, T. R. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 2015, 519, 339–343.

[5]

Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.

[6]

Xu, N. N.; Qiao, J. L. Recent progress in bifunctional catalysts for zinc-air batteries. J. Electrochem. 2020, 26, 531–562.

[7]

Guo, T. Z.; Zhou, D; Zhang, C. F. Perspectives on electrochemical nitrogen fixation catalyzed by two-dimensional MXenes. Mater. Rep. Energy 2022, 2, 100076

[8]

Zhao, Y. F.; Liu, Z. M. Recent advances in photocatalytic CO2 reduction using earth-abundant metal complexes-derived photocatalysts. Chin. J. Chem. 2018, 36, 455–460.

[9]

Wan, C. H.; Li, C. M.; Liu, J. L.; Guo, C. X. Engineering transition metal-based nanomaterials for high-performance electrocatalysis. Mater. Rep. Energy 2021, 1, 100006.

[10]

Du, P. J.; Su, T. M.; Luo, X.; Zhou, X. T.; Qin, Z. Z.; Ji, H. B.; Chen, J. H. Bi-, Y-codoped TiO2 for carbon dioxide photocatalytic reduction to formic acid under visible light irradiation. Chin. J. Chem. 2018, 36, 538–544.

[11]

Zhang, L. L.; Han, Z. B.; Zhang, L.; Li, M. X.; Ding, K. L. Advances in hydrogenation of carboxylic acid derivatives and CO2 using triphos as the coordination ligand. Chin. J. Org. Chem. 2016, 36, 1824–1838.

[12]

Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569.

[13]

Chen, X. L.; Zhao, J. J.; Li, G. S.; Zhang, D. Q.; Li, H. X. Recent advances in photocatalytic renewable energy production. Energy Mater. 2022, 2, 200001.

[14]

Wang, Q. T.; Fang, Z. X.; Zhang, W.; Zhang, D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv. Fiber Mater. 2022, 4, 342–360.

[15]

Deng, B. W.; Yin, H. Y.; Wang, D. H. Highly efficient CO2 utilization via molten salt CO2 capture and electrochemical transformation technology. J. Electrochem. 2020, 26, 628–638.

[16]

Hao, Y. N.; Hu, F.; Chen, Y.; Wang, Y. H.; Xue, J. J.; Yang, S. Y.; Peng, S. J. Recent progress of electrospun nanofibers for zinc-air batteries. Adv. Fiber Mater. 2022, 4, 185–202.

[17]

Shi, L.; Yang, G. H.; Tao, K.; Yoneyama, Y.; Tan, Y. S.; Tsubaki, N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Acc. Chem. Res. 2013, 46, 1838–1847.

[18]

Wang, Y.; Fu, J. B.; Yu, J. R. Song, Q. Q.; Zhu, J.; Wang, Y.; Hu, Z. M. Dissolving of ultra-high molecular weight polyethylene assisted through supercritical carbon dioxide to enhance the mechanical properties of fibers. Adv. Fiber Mater. 2022, 4, 280–292.

[19]

Schneider, J.; Jia, H. F.; Muckerman, J. T.; Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reductioncatalysts. Chem. Soc. Rev. 2012, 41, 2036–2051.

[20]

Li, Y. H.; Xia, C. R. Recent advances of CO2 electrochemical reduction in solid oxide electrolysis cells. J. Electrochem. 2020, 26, 159–174.

[21]

Mao, Q.; Li, B. Y.; Jing, W. Y.; Zhao, J.; Liu, S.; Huang, Y. Q.; Du, Z. L. Stability studies for a membrane electrode assembly type CO2 electro-reduction electrolytic cell. J. Electrochem. 2020, 26, 359–369.

[22]

Jones, J. P.; Prakash, G. K. S.; Olah, G. A. Electrochemical CO2 reduction: Recent advances and current trends. Isr. J. Chem. 2014, 54, 1451–1466.

[23]

Inglis, J. L.; MacLean, B. J.; Pryce, M. T.; Vos, J. G. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600.

[24]

Mao, X. W.; Hatton, T. A. Recent advances in electrocatalytic reduction of carbon dioxide using metal-free catalysts. Ind. Eng. Chem. Res. 2015, 54, 4033–4042.

[25]

Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; Jin, R. C. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 2015, 7, 15626–15632.

[26]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[27]

Taheri Najafabadi, A. CO2 chemical conversion to useful products: An engineering insight to the latest advances toward sustainability. Int. J. Energy Res. 2013, 37, 485–499.

[28]

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[29]

Wang, X.; Wang, Z. Y.; García de Arquer, F. P.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

[30]

Geioushy, R. A.; Khaled, M. M.; Alhooshani, K.; Hakeem, A. S.; Rinaldi, A. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Electrochim. Acta 2017, 245, 456–462.

[31]

Liu, P. X.; Peng, L. W.; He, R. N.; Li, L. L.; Qiao, J. L. A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate. J. Electrochemistry 2022, 28, 2104231.

[32]

Siltamaki, D.; Chen, S. A.; Rahmati, F.; Lipkowski, J.; Chen. A. C. Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction. J. Electrochem. 2021, 27, 278–290.

[33]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[34]

Wang, W. N.; Soulis, J.; Yang, Y. J.; Biswas, P. Comparison of CO2 photoreduction systems: A review. Aerosol Air Qual. Res. 2014, 14, 533–549.

[35]

Qin, J.; Larionov, V. A.; Harms, K.; Meggers, E. Kinetic resolution of epoxides with CO2 catalyzed by a chiral-at-iridium complex. ChemSusChem 2019, 12, 320–325.

[36]

Guo, Y. T.; Yang, P. J.; Zhang, S. J.; Jiang, B. Y.; Khan, A.; Zhu, L.; Fu, Z. S.; Fan, Z. Q. Study on 2-thiophenecarbonyl chloride-quenched olefin polymerization with α-diimine nickel catalysts. Iran. Poly. J. 2018, 27, 153–159.

[37]

Chen, C.; Kotyk, J. F. K.; Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 2018, 4, 2571–2586.

[38]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[39]

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

[40]

Tian, N.; Zhang, Y. H.; Li, X. W.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G. I. N.; Zhang, T. R.; Huang, H. W. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 2017, 38, 72–81.

[41]

Li, C. M.; Chen, G.; Sun, J. X.; Rao, J. C.; Han, Z. H.; Hu, Y. D.; Xing, W. N.; Zhang, C. M. Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water. Appl. Catal. B. 2016, 188, 39–47.

[42]

Zhang, Q.; Lima, D. Q.; Lee, I.; Zaera, F.; Chi, M. F.; Yin, Y. D. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem., Int. Ed. 2011, 50, 7088–7092.

[43]

Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. Jr. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956.

[44]

Chen, C.; Cai, W. M.; Long, M. C.; Zhou, B. X.; Wu, Y. H.; Wu, D. Y.; Feng, Y. J. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432.

[45]

Xu, T. G.; Zhang, L. W.; Cheng, H. Y.; Zhu, Y. F. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B. 2011, 101, 382–387.

[46]

Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. Acs Catal. 2012, 2, 1817–1828.

[47]

Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D. L.; Antonietti, M.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 2009, 113, 4940–4947.

[48]

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. . 2012, 51, 68–89.

[49]

Zhang, J. S.; Wang, B.; Wang, X. C. Chemical synthesis and applications of graphitic carbon nitride. Acta Phys. Chem. Sin. 2013, 29, 1865–1876.

[50]

Volokh, M.; Peng, G. M.; Barrio, J.; Shalom, M. Carbon nitride materials for water splitting photoelectrochemical cells. Angew. Chem., Int. Ed. 2019, 58, 6138–6151.

[51]

Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–2459.

[52]

Shen, M.; Zhang, L. X.; Shi, J. L. Converting CO2 into fuels by graphitic carbon nitride-based photocatalysts. Nanotechnology 2018, 29, 412001.

[53]

Lu, L. H.; Lv, Z. Z.; Si, Y. J.; Liu, M. Y.; Zhang, S. Recent progress on band and surface engineering of graphitic carbon nitride for artificial photosynthesis. Appl. Surf. Sci. 2018, 462, 693–712.

[54]

Sun, Z. X.; Wang, H. Q.; Wu, Z. B.; Wang, L. Z. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 2018, 300, 160–172.

[55]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[56]

Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B 2017, 217, 388–406.

[57]

Gillan, E. G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 2000, 12, 3906–3912.

[58]

Teixeira, I. F.; Barbosa, E. C. M.; Tsang, S. C. E.; Camargo, P. H. C. Carbon nitrides and metal nanoparticles: From controlled synthesis to design principles for improved photocatalysis. Chem. Soc. Rev. 2018, 47, 7783–7817.

[59]

Han, Q.; Cheng, Z. H.; Wang, B.; Zhang, H. M.; Qu, L. T. Significant enhancement of visible-light-driven hydrogen evolution by structure regulation of carbon nitrides. ACS Nano 2018, 12, 5221–5227.

[60]

Wang, J.; Heil, T.; Zhu, B. C.; Tung, C. W.; Yu, J. G.; Chen, H. M.; Antonietti, M.; Cao, S. W. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 2020, 14, 8584–8593.

[61]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[62]

Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

[63]

Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. T.; Yang, Y. Y.; Lai, Y. K.; Lin, Z. Q. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.

[64]

Luo, J. M.; Zhang, S. Q.; Sun, M.; Yang, L. X.; Luo, S. L.; Crittenden, J. C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano 2019, 13, 9811–9840.

[65]

Wang, D. H.; Cao, R. F.; Hao, S. G.; Liang, C.; Chen, G. Y.; Chen, P. F.; Li, Y.; Zou, X. L. Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.10.003.

[66]

Wang, M.; Zou, Q. Q.; Dong, X. Q.; Xu, N. N.; Shao, R.; Ding, J. F.; Zhang, Y. D.; Qiao, J. L. Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO2 conversion. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.12.003.

[67]

Li, J. J.; Zhang, Z. C.; Hu, W. P. Exclusive CO2-to-formate conversion over single-atom alloyed Cu-based catalysts. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2021.11.004.

[68]

Kaur, R.; Pal, B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis. Appl. Catal. A 2015, 491, 28–36.

[69]

Pawar, R. C.; Choi, D. H.; Lee, J. S.; Lee, C. S. Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 2015, 151, 167–180.

[70]

Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 2111–2119.

[71]

Gonçalves, R. V.; Wojcieszak, R.; Wender, H.; Dias, C. S. B.; Vono, L. L. R.; Eberhardt, D.; Teixeira, S. R.; Rossi, L. M. Easy access to metallic copper nanoparticles with high activity and stability for CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 7987–7994.

[72]

Albaladejo, M. J.; Alonso, F.; González-Soria, M. J. Synthetic and mechanistic studies on the solvent-dependent copper-catalyzed formation of indolizines and chalcones. ACS Catal. 2015, 5, 3446–3456.

[73]

Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal. Sci. Technol. 2015, 5, 2467–2477.

[74]

Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 2015, 9, 3125–3133.

[75]

Bhanushali, S.; Ghosh, P.; Ganesh, A.; Cheng, W. L. 1D copper nanostructures: Progress, challenges and opportunities. Small 2015, 11, 1232–1252.

[76]

Yang, P.; Zuo, S. W.; Zhang, F. T.; Yu, B.; Guo, S. E.; Yu, X. X.; Zhao, Y. F.; Zhang, J.; Liu, Z. M. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2. Ind. Eng. Chem. Res. 2020, 59, 7327–7335.

[77]

Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; Xiong, Y. J.; Xu, Y. J. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824–4833.

[78]

Jiang, Z. Y.; Sun, W.; Miao, W. K.; Yuan, Z. M.; Yang, G. H.; Kong, F. G.; Yan, T. J.; Chen, J. C.; Huang, B. B.; An, C. H. et al. Living atomically dispersed Cu ultrathin TiO2 nanosheet CO2 reduction photocatalyst. Adv. Sci. 2019, 6, 1900289.

[79]

Li, J. Y.; Yan, P.; Li, K. L.; You, J. J.; Wang, H.; Cui, W.; Cen, W. L.; Chu, Y. H.; Dong, F. Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: A combined kinetics and thermodynamics investigation. J. Mater. Chem. A 2019, 7, 17014– 17021.

[80]

Chen, Y. L.; Bai, X. A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts 2020, 10, 142.

[81]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[82]

Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.

[83]

Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustain. Energy Fuels 2019, 3, 2907–2925.

[84]

Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446.

[85]

Liu, R. L.; Chen, Z. X.; Yao, Y.; Li, Y.; Cheema, W. A.; Wang, D. W.; Zhu, S. M. Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: A mini review. RSC Adv. 2020, 10, 29408–29418.

[86]

Pachaiappan, R.; Rajendran, S.; Kumar, P. S.; Vo, D. V. N.; Hoang, T. K. A. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem. Eng. Res. Des. 2022, 177, 304–320.

[87]

Xie, S. J.; Zhang, Q. H.; Liu, G. D.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35–59.

[88]

Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 2020, 340, 209–224.

[89]

Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

[90]

Seo, Y. S.; Oh, S. G. Controlling the recombination of electron-hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties. Korean J. Chem. Eng. 2019, 36, 2118–2124.

[91]

Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A. Ionic liquids in the electrochemical valorisation of CO2. Energy Environ. Sci. 2015, 8, 2574–2599.

[92]

Horn, R.; Schlögl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 2015, 145, 23–39.

[93]

Zhang, J. G.; Guo, Y. T.; Shang, B.; Fan, T. T.; Lian, X. Y.; Huang, P. P.; Dong, Y. Y.; Chen, Z.; Yi, X. D. Unveiling the synergistic effect between graphitic carbon nitride and Cu2O toward CO2 electroreduction to C2H4. ChemSusChem 2021, 14, 929–937.

[94]

Mousavi, M.; Habibi-Yangjeh, A.; Abitorabi, M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci. 2016, 480, 218–231.

[95]

Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.

[96]

Ong, W. J.; Putri, L. K.; Tan, L. L.; Chai, S. P.; Yong, S. T. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal. B. 2016, 180, 530–543.

[97]

Ye, S.; Wang, R.; Wu, M. Z.; Yuan, Y. P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 15–27.

[98]

Highfield, J. Advances and recent trends in heterogeneous photo (electro)-catalysis for solar fuels and chemicals. Molecules 2015, 20, 6739–6793.

[99]

He, Y. M.; Wang, Y.; Zhang, L. H.; Teng, B. T.; Fan, M. H. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B. 2015, 168169, 1–8.

[100]

Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445–1514.

[101]

Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.

[102]

Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

[103]

Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

[104]

Asokan, C.; DeRita, L.; Christopher, P. Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin. J. Catal. 2017, 38, 1473–1480.

[105]

Huang, P. P.; Huang, J. H.; Pantovich, S. A.; Carl, A. D.; Fenton, T. G.; Caputo, C. A.; Grimm, R. L.; Frenkel, A. I.; Li, G. H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047.

[106]

Wang, Z. L.; Li, C. L.; Yamauchi, Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide. Nano Today 2016, 11, 373–391.

[107]

Li, F. W.; MacFarlane, D. R.; Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 2018, 10, 6235–6260.

[108]
Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.
[109]

Yoshio, H.; Katsuhei, K.; Shin, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695–1698.

[110]

Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833–1839.

[111]

Gattrell, M.; Gupta, N.; Co, A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 2006, 594, 1–19.

[112]

Lum, Y.; Yue, B. B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 2017, 121, 14191–14203.

[113]

Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

[114]

Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194–12201.

[115]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. R. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[116]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

[117]

Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

[118]

Wang, G. C.; Zhang, T.; Yu, W. W.; Si, R.; Liu, Y. F.; Zhao, Z. K. Modulating location of single copper atoms in polymeric carbon nitride for enhanced photoredox catalysis. ACS Catal. 2020, 10, 5715–5722.

[119]

Oberhuber, W.; Edwards, G. E. Temperature dependence of the linkage of quantum yield of photosystem Ⅱ to CO2 fixation in C4 and C3 plants. Plant Physiol. 1993, 101, 507–512.

[120]

Pietrini, F.; Massacci, A. Leaf anthocyanin content changes in Zea mays L. grown at low temperature: Significance for the relationship between the quantum yield of PS Ⅱ and the apparent quantum yield of CO2 assimilation. Photosynth. Res. 1998, 58, 213–219.

[121]

Wang, Y. L.; Tian, Y.; Yan, L. K.; Su, Z. M. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 2018, 122, 7712–7719.

[122]

Sun, Z. M.; Fang, W.; Zhao, L.; Wang, H. L. 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Appl. Surf. Sci. 2020, 504, 144347.

[123]

Sun, Z. M.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W. X.; Tian, P.; Huang, Z. H. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environ. Int. 2019, 130, 104898.

[124]

Shi, G. D.; Yang, L.; Liu, Z. W.; Chen, X.; Zhou, J. Q.; Yu, Y. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Appl. Surf. Sci. 2018, 427, 1165–1173.

[125]

Tahir, B.; Tahir, M.; Amin, N. A. S. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy. Appl. Surf. Sci. 2017, 419, 875–885.

[126]

Zhao, X.; Fan, Y. Y.; Zhang, W. S.; Zhang, X. J.; Han, D. X.; Niu, L.; Ivaska, A. Nanoengineering construction of Cu2O nanowire arrays encapsulated with g-C3N4 as 3D spatial reticulation all-solid-state direct Z-scheme photocatalysts for photocatalytic reduction of carbon dioxide. ACS Catal. 2020, 10, 6367–6376.

[127]

Cometto, C.; Ugolotti, A.; Grazietti, E.; Moretto, A.; Bottaro, G.; Armelao, L.; Di Valentin, C.; Calvillo, L.; Granozzi, G. Copper single-atoms embedded in 2D graphitic carbon nitride for the CO2 reduction. npj 2D Mater. Appl. 2021, 5, 63.

[128]

Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; De Luna, P.; Dinh, C. T.; Hu, Y. F. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.

[129]

Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[130]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[131]

Parkinson, G. S.; Novotny, Z.; Argentero, G.; Schmid, M.; Pavelec, J.; Kosak, R.; Blaha, P.; Diebold, U. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 2013, 12, 724–728.

[132]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[133]

White, J. L.; Baruch, M. F.; Pander Ⅲ, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

[134]

Zhang, N.; Long, R.; Gao, C.; Xiong, Y. J. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 2018, 61, 771–805.

[135]

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nano-architectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

[136]

Ma, Y. W.; Fang, Y. X.; Fu, X. Z.; Wang, X. C. Photoelectrochemical conversion of CO2 into HCOOH using a polymeric carbon nitride photoanode and Cu cathode. Sustain. Energy Fuels 2020, 4, 5812–5817.

[137]

Jiang, X. X.; De Hu, X.; Tarek, M.; Saravanan, P.; Alqadhi, R.; Chin, S. Y.; Khan, M. R. Tailoring the properties of g-C3N4 with CuO for enhanced photoelectrocatalytic CO2 reduction to methanol. J. CO2 Util. 2020, 40, 101222.

[138]

Wang, S. B.; Wang, X. C. Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction. Angew. Chem., Int. Ed. 2016, 55, 2308–2320.

[139]

Kim, J. H.; Magesh, G.; Kang, H. J.; Banu, M.; Kim, J. H.; Lee, J.; Lee, J. S. Carbonate-coordinated cobalt co-catalyzed BiVO4/WO3 composite photoanode tailored for CO2 reduction to fuels. Nano Energy 2015, 15, 153–163.

[140]

Feng, Y. W.; Xu, M. J.; Liu, H.; Li, W.; Li, H. X.; Bian, Z. F. Charge separation and interfacial selectivity induced by synergistic effect of ferroelectricity and piezoelectricity on PbTiO3 monocrystalline nanoplates. Nano Energy 2020, 73, 104768.

[141]

Feng, C. C.; Zhou, Q.; Zheng, B.; Cheng, X.; Zhang, Y. J.; Bi, Y. P. Ultrathin NiCo2O4 nanosheets with dual-metal active sites for enhanced solar water splitting of a BiVO4 photoanode. J. Mater. Chem. A 2019, 7, 22274–22278.

[142]

Wu, J. J.; Sharifi, T.; Gao, Y.; Zhang, T. Y.; Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 2019, 31, 1804257.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 April 2022
Revised: 30 May 2022
Accepted: 07 June 2022
Published: 31 August 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the "Scientific and Technical Innovation Action Plan" Basic Research Field of Shanghai Science and Technology Committee (No. 19JC1410500), the National Natural Science Foundation of China (No. 91645110), and the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2021036).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return