Journal Home > Volume 1 , Issue 2

Porous membrane separation is a competitive hydrogen purification technology due to the advantages of environmental friendliness, energy-saving, simple operation, and low cost. Benefiting from the booming development of materials science and chemical science, great progress has been made in H2 separation with porous membranes. This review focuses on the latest advances in the design and fabrication of H2 separation inorganic microporous membranes, with emphasis on the synthetic strategies to achieve structural integrity, continuity and stability. This review starts with a brief introduction to the membrane separation mechanisms, followed by an elaboration on the synthetic challenges and corresponding solutions of various high-performance inorganic microporous membranes based on zeolites, silica, carbon, and metal-organic frameworks (MOFs). At last, by highlighting the prospects of ultrathin two-dimensional (2D) porous membranes, we wish to shed some light on the further development of new materials and membranes for highly efficient hydrogen separation.


menu
Abstract
Full text
Outline
About this article

Inorganic microporous membranes for hydrogen separation: Challenges and solutions

Show Author's information Ahui HaoXin WanXiaofang LiuRonghai YuJianglan Shui( )
School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Porous membrane separation is a competitive hydrogen purification technology due to the advantages of environmental friendliness, energy-saving, simple operation, and low cost. Benefiting from the booming development of materials science and chemical science, great progress has been made in H2 separation with porous membranes. This review focuses on the latest advances in the design and fabrication of H2 separation inorganic microporous membranes, with emphasis on the synthetic strategies to achieve structural integrity, continuity and stability. This review starts with a brief introduction to the membrane separation mechanisms, followed by an elaboration on the synthetic challenges and corresponding solutions of various high-performance inorganic microporous membranes based on zeolites, silica, carbon, and metal-organic frameworks (MOFs). At last, by highlighting the prospects of ultrathin two-dimensional (2D) porous membranes, we wish to shed some light on the further development of new materials and membranes for highly efficient hydrogen separation.

Keywords: microporous membrane, H2 separation, zeolite membrane, silica membrane, carbon membrane, metal-organic framework (MOF) membrane

References(107)

[1]

Shih, A. J.; Haile, S. M. Electrifying membranes to deliver hydrogen. Science 2022, 376, 348–349.

[2]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience, in press, DOI: 10.1016/j.esci.2022.04.002.

[3]

Han, Q.; Wang, B.; Gao, J.; Qu, L. T. Graphitic carbon nitride/nitrogen-rich carbon nanofibers: Highly efficient photocatalytic hydrogen evolution without cocatalysts. Angew. Chem. , Int. Ed. 2016, 55, 10849–10853.

[4]

Liu, S. Y.; Liu, J. Y.; Liu, X. F.; Shang, J. X.; Xu, L.; Yu, R. H.; Shui, J. L. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 2021, 16, 331–336.

[5]

Liu, Q. T.; Li, Y. C.; Zheng, L. R.; Shang, J. X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater. 2020, 10, 2000689.

[6]

Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

[7]

Liu, J. Y.; Wan, X.; Liu, S. Y.; Liu, X. F.; Zheng, L. R.; Yu, R. H.; Shui, J. L. Hydrogen passivation of M-N-C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv. Mater. 2021, 33, 2103600.

[8]

Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.

[9]

Wang, Y. N.; Wan, X.; Liu, J. Y.; Li, W. W.; Li, Y. C.; Guo, X.; Liu, X. F.; Shang, J. X.; Shui, J. L. Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 2022, 15, 3082–3089.

[10]

Kajama, M. N.; Nwogu, N. C.; Gobina, E. Preparation and characterization of inorganic membranes for hydrogen separation. Int. J. Hydrog. Energy 2016, 41, 8221–8227.

[11]

Clark, D.; Malerød-Fjeld, H.; Budd, M.; Yuste-Tirados, I.; Beeaff, D.; Aamodt, S.; Nguyen, K.; Ansaloni, L.; Peters, T.; Vestre, P. K. et al. Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 2022, 376, 390–393.

[12]

Li, W. B.; Su, P. C.; Li, Z. J.; Xu, Z. H.; Wang, F.; Ou, H. S.; Zhang, J. H.; Zhang, G. L.; Zeng, E. Ultrathin metal-organic framework membrane production by gel–vapour deposition. Nat. Commun. 2017, 8, 406.

[13]

Chuah, C. Y.; Lee, J.; Bae, T. H. Graphene-based membranes for H2 separation: Recent progress and future perspective. Membranes 2020, 10, 336.

[14]

Shu, L.; Peng, Y.; Yao, R.; Song, H. L.; Zhu, C. Y.; Yang, W. S. Flexible soft-solid metal-organic framework composite membranes for H2/CO2 separation. Angew. Chem. , Int. Ed. 2022, 134, e202117577.

[15]

Zhu, B.; Jiang, X.; He, S. S.; Yang, X. B.; Long, J.; Zhang, Y. Q.; Shao, L. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture. J. Mater. Chem. A 2020, 8, 24233–24252.

[16]

He, S. S.; Zhu, B.; Jiang, X.; Han, G.; Li, S. W.; Lau, C. H.; Wu, Y. D.; Zhang, Y. Q.; Shao, L. Symbiosis-inspired de novo synthesis of ultrahigh MOF growth mixed matrix membranes for sustainable carbon capture. Proc. Natl. Acad. Sci. USA 2022, 119, e2114964119.

[17]

He, S. S.; Zhu, B.; Li, S. W.; Zhang, Y. Q.; Jiang, X.; Lau, C. H.; Shao, L. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Sep. Purif. Technol. 2022, 284, 120277.

[18]

Zhang, K.; Way, J. D. Palladium-copper membranes for hydrogen separation. Sep. Purif. Technol. 2017, 186, 39–44.

[19]

Lim, D. W.; Ha, J. S.; Oruganti, Y.; Moon, H. R. Hydrogen separation and purification with MOF-based materials. Mater. Chem. Front. 2021, 5, 4022–4041.

[20]

Zhang, M. X.; Jing, X. C.; Zhao, S.; Shao, P. P.; Zhang, Y. Y.; Yuan, S.; Li, Y. S; Gu, C.; Wang, X. Q.; Ye, Y. C. et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angew. Chem. , Int. Ed. 2019, 58, 8768–8772.

[21]

Lai, H. W. H.; Benedetti, F. M.; Ahn, J. M.; Robinson, A. M.; Wang, Y. G.; Pinnau, I.; Smith, Z. P.; Xia, Y. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 2022, 375, 1390–1392.

[22]

Huang, G. J.; Ghalei, B.; Isfahani, A. P.; Karahan, H. E.; Terada, D.; Qin, D. T.; Li, C. E.; Tsujimoto, M.; Yamaguchi, D.; Sugimoto, K. et al. Overcoming humidity-induced swelling of graphene oxide-based hydrogen membranes using charge-compensating nanodiamonds. Nat. Energy 2021, 6, 1176–1187.

[23]

He, S. S.; Jiang, X.; Li, S. W.; Ran, F. T.; Long, J.; Shao, L. Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J. 2020, 66, e16543.

[24]

Shen, J.; Liu, G. Z.; Ji, Y. F.; Liu, Q.; Cheng, L.; Guan, K. C.; Zhang, M. C.; Liu, G. P.; Xiong, J.; Yang, J. et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 2018, 28, 1801511.

[25]

Li, P. Y.; Wang, Z.; Qiao, Z. H.; Liu, Y. N.; Cao, X. C.; Li, W.; Wang, J. X.; Wang, S. C. Recent developments in membranes for efficient hydrogen purification. J. Membr. Sci. 2015, 495, 130–168.

[26]

Dou, H. Z.; Xu, M.; Wang, B. Y.; Zhang, Z.; Wen, G. B.; Zheng, Y.; Luo, D.; Zhao, L.; Yu, A. P.; Zhang, L. H. et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 2021, 50, 986–1029.

[27]

Gascon, J.; Kapteijn, F.; Zornoza, B.; Sebastián, V.; Casado, C.; Coronas, J. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 2012, 24, 2829–2844.

[28]

Algieri, C.; Drioli, E. Zeolite membranes: Synthesis and applications. Sep. Purif. Technol. 2021, 278, 119295.

[29]

Geus, E. R.; den Exter, M. J.; Bekkum, H. V. Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports. J. Chem. Soc., Faraday Trans. 1992, 88, 3101–3109.

[30]

Chen, C. H.; Meng, L.; Tung, K. L.; Lin, Y. S. Effect of substrate curvature on microstructure and gas permeability of hollow fiber MFI zeolite membranes. AIChE J. 2018, 64, 3419–3428.

[31]

Zhou, T.; Shi, M. Y.; Chen, L. J.; Gong, C.; Zhang, P.; Xie, J. X.; Wang, X. R.; Gu, X. H. Fluorine-free synthesis of all-silica STT zeolite membranes for H2/CH4 separation. Chem. Eng. J. 2022, 433, 133567.

[32]

Wu, T. Y.; Shu, C. J.; Liu, S.; Xu, B. S.; Zhong, S. L; Zhou, R. F. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities. Energy Fuels 2020, 34, 11650–11659.

[33]

Arepalli, D.; Rehman, A. U.; Kim, M. Z.; Alam, S. F.; Cho, C. H. Optimal synthesis of nanosize seeds for secondary growth of high performance hydroxy-sodalite (H-SOD) zeolite membranes for small gas and water separations. Microporous Mesoporous Mater. 2022, 329, 111451.

[34]

Sen, M.; Dana, K.; Das, N. Development of LTA zeolite membrane from clay by sonication assisted method at room temperature for H2-CO2 and CO2-CH4 separation. Ultrason. Sonochem. 2018, 48, 299–310.

[35]

Du, P.; Song, J. Y.; Wang, X. R.; Zhang, Y. T.; Xie, J. X.; Liu, G.; Liu, Y. L.; Wang, Z. W.; Hong, Z.; Gu, X. H. Efficient scale-up synthesis and hydrogen separation of hollow fiber DD3R zeolite membranes. J. Membr. Sci. 2021, 636, 119546.

[36]

Huang, A. S.; Wang, N. Y.; Caro, J. Seeding-free synthesis of dense zeolite FAU membranes on 3-aminopropyltriethoxysilane-functionalized alumina supports. J. Membr. Sci. 2012, 389, 272–279.

[37]

Huang, A. S.; Liang, F. Y.; Steinbach, F.; Caro, J. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J. Membr. Sci. 2010, 350, 5–9.

[38]

Huang, A. S.; Liu, Q.; Wang, N. Y.; Tong, X.; Huang, B. X.; Wang, M.; Caro, J. Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports. J. Membr. Sci. 2013, 437, 57–64.

[39]

Zhu, F.; Landon, J.; Liu, K. L. FAU zeolite membranes for dewatering of amine-based post-combustion CO2 capture solutions. AIChE J. 2020, 66, e17042.

[40]

Zhou, C.; Yuan, C. F.; Zhu, Y. Q.; Caro, J.; Huang, A. S. Facile synthesis of zeolite FAU molecular sieve membranes on bio-adhesive polydopamine modified Al2O3 tubes. J. Membr. Sci. 2015, 494, 174–181.

[41]

Zhu, X. F.; Wang, H. B.; Lin, Y. S. Effect of the membrane quality on gas permeation and chemical vapor deposition modification of MFI-type zeolite membranes. Ind. Eng. Chem. Res. 2010, 49, 10026–10033.

[42]

Hong, Z.; Sun, F.; Chen, D. D.; Zhang, C.; Gu, X. H.; Xu, N. P. Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. Int. J. Hydrog. Energy 2013, 38, 8409–8414.

[43]

Dong, Q. B.; Jiang, J.; Li, S. G.; Yu, M. Molecular layer deposition (MLD) modified SSZ-13 membrane for greatly enhanced H2 separation. J. Membr. Sci. 2021, 622, 119040.

[44]

Gao, X. C; Da, C.; Chen, C.; Li, Z. H.; Gu, X. H.; Bhatia, S. K. The induced orientation effect of linear gases during transport in a NaA zeolite membrane modified by alkali lignin. J. Membr. Sci. 2021, 620, 118971.

[45]

Jiang, J.; Islam, S.; Dong, Q. B.; Zhou, F. L.; Li, S. G.; Yu, M. Deposition of an ultrathin palladium (Pd) coating on SAPO-34 membranes for enhanced H2/N2 separation. Int. J. Hydrog. Energy 2020, 45, 33648–33656.

[46]

Cardoso, S. P.; Azenha, I. S.; Lin, Z.; Portugal, I.; Rodrigues, A. E.; Silva, C. M. Inorganic membranes for hydrogen separation. Sep. Purif. Technol. 2018, 47, 229–266.

[47]

Gavalas, G. R.; Megiris, C. E.; Nam, S. W. Deposition of H2-permselective SiO2 films. Chem. Eng. Sci. 1989, 44, 1829–1835.

[48]

Kitao, S.; Kameda, H.; Asaeda, M. Gas separation by thin porous silica membrane of ultra fine pores at high temperature. Membrane 1990, 15, 222–227.

[49]

Wei, Q.; Wang, F.; Nie, Z. R.; Song, C. L.; Wang, Y. L.; Li, Q. Y. Highly hydrothermally stable microporous silica membranes for hydrogen separation. J. Phys. Chem. B 2008, 112, 9354–9359.

[50]

Wei, Q.; Ding, Y. L.; Nie, Z. R.; Liu, X. G.; Li, Q. Y. Wettability, pore structure and performance of perfluorodecyl-modified silica membranes. J. Membr. Sci. 2014, 466, 114–122.

[51]

Giessler, S.; Jordan, L.; da Costa, J. C. D.; Lu, G. Q. Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction. Sep. Purif. Technol. 2003, 32, 255–264.

[52]

de Vos, R. M.; Maier, W. F.; Verweij, H. Hydrophobic silica membranes for gas separation. J. Membr. Sci. 1999, 158, 277–288.

[53]

Kanezashi, M.; Sano, M.; Yoshioka, T.; Tsuru, T. Extremely thin Pd-silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability. Chem. Commun. 2010, 46, 6171–6173.

[54]

Igi, R.; Yoshioka, T.; Ikuhara, Y. H.; Iwamoto, Y.; Tsuru, T. Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc. 2008, 91, 2975–2981.

[55]

ten Hove, M.; Nijmeijer, A.; Winnubst, L. Facile synthesis of zirconia doped hybrid organic inorganic silica membranes. Sep. Purif. Technol. 2015, 147, 372–378.

[56]

Boffa, V.; Blank, D. H. A.; ten Elshof, J. E. Hydrothermal stability of microporous silica and niobia-silica membranes. J. Membr. Sci. 2008, 319, 256–263.

[57]

Kanezashi, M.; Asaeda, M. Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J. Membr. Sci. 2006, 271, 86–93.

[58]

Liu, J. Q.; Goss, J.; Calverley, T.; Meyers, G.; Thorseth, M. A.; Todd, C. S.; Kang, J.; Denise, A.; Clements, H.; Klann, J. et al. Self-standing permselective CMS membrane from melt extruded PVDC. J. Membr. Sci. 2020, 615, 118554.

[59]

Itta, A. K.; Tseng, H. H.; Wey, M. Y. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J. Membr. Sci. 2011, 372, 387–395.

[60]

Itta, A. K.; Tseng, H. H. Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors. Int. J. Hydrog. Energy 2011, 36, 8645–8657.

[61]

Xu, R. S.; He, L.; Li, L.; Hou, M. J.; Wang, Y. Z.; Zhang, B. S.; Liang, C. H.; Wang, T. H. Ultraselective carbon molecular sieve membrane for hydrogen purification. J. Energy Chem. 2020, 50, 16–24.

[62]

Kumakiri, I.; Tamura, K.; Sasaki, Y.; Tanaka, K.; Kita, H. Influence of iron additive on the hydrogen separation properties of carbon molecular sieve membranes. Ind. Eng. Chem. Res. 2018, 57, 5370–5377.

[63]

Wey, M. Y.; Tseng, H. H.; Chiang, C. K. Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support. J. Membr. Sci. 2014, 453, 603–613.

[64]

Wey, M. Y.; Wang, C. T.; Lin, Y. T.; Lin, M. D.; Uchytil, P.; Setnickova, K.; Tseng, H. H. Interfacial interaction between CMS layer and substrate: Critical factors affecting membrane microstructure and H2 and CO2 separation performance from CH4. J. Membr. Sci. 2019, 580, 49–61.

[65]

Li, J. Y.; Tseng, H. H.; Wey, M. Y. Tuning thermal expansion behavior and surface roughness of tubular Al2O3 substrates for fabricating high-performance carbon molecular sieving membranes for H2 separation. Int. J. Hydrog. Energy 2019, 44, 24746–24758.

[66]

Lei, L. F.; Pan, F. J.; Lindbråthen, A.; Zhang, X. P.; Hillestad, M.; Nie, Y.; Bai, L.; He, X. Z.; Guiver, M. D. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 2021, 12, 268.

[67]

Qiu, W. L.; Vaughn, J.; Liu, G. P.; Xu, L. R.; Brayden, M.; Martinez, M.; Fitzgibbons, T.; Wenz, G.; Koros, W. J. Hyperaging tuning of a carbon molecular-sieve hollow fiber membrane with extraordinary gas-separation performance and stability. Angew. Chem. , Int. Ed. 2019, 58, 11700–11703.

[68]

Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

[69]

Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.

[70]

Sun, P. Z.; Wang, K. L.; Zhu, H. W. Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications. Adv. Mater. 2016, 28, 2287–2310.

[71]

Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 2013, 342, 91–95.

[72]

Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

[73]

Shen, J.; Liu, G. P.; Huang, K.; Chu, Z. Y.; Jin, W. Q.; Xu, N. P. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016, 10, 3398–3409.

[74]

Wang, X. R.; Chi, C. L.; Tao, J. F.; Peng, Y. W.; Ying, S. M.; Qian, Y. H.; Dong, J. Q.; Hu, Z. G.; Gu, Y. D.; Zhao, D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chem. Commun. 2016, 52, 8087–8090.

[75]

Wang, H.; Zhao, S.; Liu, Y.; Yao, R. X.; Wang, X. Q.; Cao, Y. H.; Ma, D.; Zou, M. C.; Cao, A. Y.; Feng, X. et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 2019, 10, 4204.

[76]

Liu, Y. Y.; Ng, Z. F.; Khan, E. A.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 2009, 118, 296–301.

[77]

Guo, H. L.; Zhu, G. S.; Hewitt, I. J.; Qiu, S. L. "Twin copper source" growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 2009, 131, 1646–1647.

[78]

Bux, H.; Liang, F. Y.; Li, Y. S.; Cravillon, J.; Wiebcke, M.; Caro, J. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001.

[79]

Liu, Q.; Wang, N. Y.; Caro, J.; Huang, A. S. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 2013, 135, 17679–17682.

[80]

Brown, A. J.; Johnson, J. R.; Lydon, M. E.; Koros, W. J.; Jones, C. W.; Nair, S. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angew. Chem. , Int. Ed. 2012, 51, 10615–10618.

[81]

Wu, X. C.; Wei, W.; Jiang, J. W.; Caro, J.; Huang, A. S. High-flux high-selectivity metal-organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angew. Chem. , Int. Ed. 2018, 57, 15354–15358.

[82]

Guo, H.; Liu, J. Q.; Li, Y. H.; Caro, J.; Huang, A. S. Post-synthetic modification of highly stable UiO-66-NH2 membranes on porous ceramic tubes with enhanced H2 separation. Microporous Mesoporous Mater. 2021, 313, 110823.

[83]

Liu, X. L.; Demir, N. K.; Wu, Z. T.; Li, K. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002.

[84]

Knebel, A.; Sundermann, L.; Mohmeyer, A.; Strauß, I.; Friebe, S.; Behrens, P.; Caro, J. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater. 2017, 29, 3111–3117.

[85]

Huang, A. S.; Chen, Y. F.; Wang, N. Y.; Hu, Z. Q.; Jiang, J. W.; Caro, J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem. Commun. 2012, 48, 10981–10983.

[86]

Ma, L.; Svec, F.; Tan, T. W.; Lv, Y. Q. In-situ growth of highly permeable zeolite imidazolate framework membranes on porous polymer substrate using metal chelated polyaniline as interface layer. J. Membr. Sci. 2019, 576, 1–8.

[87]

Xie, Z.; Yang, J. H.; Wang, J. Q.; Bai, J.; Yin, H. M.; Yuan, B.; Lu, J. M.; Zhang, Y.; Zhou, L.; Duan, C. Y. Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube. Chem. Commun. 2012, 48, 5977–5979.

[88]

Zhang, X. F.; Liu, Y. G.; Li, S. H.; Kong, L. Y.; Liu, H. O.; Li, Y. S.; Han, W.; Yeung, K. L.; Zhu, W. D.; Yang, W. S. et al. New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation. Chem. Mater. 2014, 26, 1975–1981.

[89]

Nian, P.; Cao, Y.; Li, Y. J.; Zhang, X.; Wang, Y. L.; Liu, H. O.; Zhang, X. F. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H2 separation. CrystEngComm 2018, 20, 2440–2448.

[90]

Drobek, M.; Bechelany, M.; Vallicari, C.; Abou Chaaya, A.; Charmette, C.; Salvador-Levehang, C.; Miele, P.; Julbe, A. An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. J. Membr. Sci. 2015, 475, 39–46.

[91]

Zhou, S.; Wei, Y. Y.; Zhuang, L. B.; Ding, L. X.; Wang, H. H. Introduction of metal precursors by electrodeposition for the in situ growth of metal-organic framework membranes on porous metal substrates. J. Mater. Chem. A 2017, 5, 1948–1951.

[92]

Ma, X. X.; Li, Y. H.; Huang, A. S. Synthesis of nano-sheets seeds for secondary growth of highly hydrogen permselective ZIF-95 membranes. J. Membr. Sci. 2020, 597, 117629.

[93]

Zhong, Z. X.; Yao, J. F.; Chen, R. Z.; Low, Z.; He, M.; Liu, J. Z.; Wang, H. T. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. J. Mater. Chem. A 2015, 3, 15715–15722.

[94]

Ranjan, R.; Tsapatsis, M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chem. Mater. 2009, 21, 4920–4924.

[95]

Shamsaei, E.; Lin, X. C.; Low, Z. X.; Abbasi, Z.; Hu, Y. X.; Liu, J. Z.; Wang, H. T. Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl. Mater. Interfaces 2016, 8, 6236–6244.

[96]

Huang, K.; Li, Q. Q.; Liu, G. P.; Shen, J.; Guan, K. C.; Jin, W. Q. A ZIF-71 hollow fiber membrane fabricated by contra-diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16157–16160.

[97]

Yao, J. F.; Dong, D. H.; Li, D.; He, L.; Xu, G. S.; Wang, H. T. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 2011, 47, 2559–2561.

[98]

Stassen, I.; Styles, M.; Grenci, G.; Van Gorp, H.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; De Vos, D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310.

[99]

Nian, P.; Liu, H. O.; Zhang, X. F. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. J. Membr. Sci. 2019, 573, 200–209.

[100]

Hou, Q. Q.; Wu, Y.; Zhou, S.; Wei, Y. Y.; Caro, J.; Wang, H. H. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. , Int. Ed. 2019, 58, 327–331.

[101]

Zhou, S.; Wei, Y. Y.; Li, L. B.; Duan, Y. F.; Hou, Q. Q.; Zhang, L. L.; Ding, L. X.; Xue, J.; Wang, H. H.; Caro, J. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393.

[102]

Kim, J. O.; Koo, W. T.; Kim, H.; Park, C.; Lee, T.; Hutomo, C. A.; Choi, S. Q.; Kim, D. S.; Kim, I. D.; Park, S. Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat. Commun. 2021, 12, 4294.

[103]

Liu, L. L.; Song, Y. F.; Ji, T. T.; Sun, Y. W.; He, D. M.; Hu, H. Q.; Liu, Y. Beyond solution-based protocols: MOF membrane synthesis in supercritical environments for an elegant sustainability performance balance. ACS Mater. Lett. 2020, 2, 1142–1147.

[104]

Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

[105]

Ma, Y. N.; Zhang, W.; Li, H. Y.; Zhang, C. C.; Pan, H. M.; Zhang, Y. F.; Feng, X. S.; Tang, K. W.; Meng, J. Q. A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Sep. Purif. Technol. 2021, 261, 118283.

[106]

Cheng, L.; Yang, H. N.; Chen, X. Y.; Liu, G. Z.; Guo, Y. N.; Liu, G. P.; Jin, W. Q. MIL-101(Cr) microporous nanocrystals intercalating graphene oxide membrane for efficient hydrogen purification. Chem. Asian J. 2021, 16, 3162–3169.

[107]

Cheng, L.; Guan, K. C.; Liu, G. P.; Jin, W. Q. Cysteamine-crosslinked graphene oxide membrane with enhanced hydrogen separation property. J. Membr. Sci. 2020, 595, 117568.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 April 2022
Revised: 27 May 2022
Accepted: 01 June 2022
Published: 05 June 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFB4000601), the National Natural Science Foundation of China (Nos. 21975010, U21A20328, and 51731002), and the Natural Science Foundation of Beijing Municipality (No. Z200012).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return