Journal Home > Volume 1 , Issue 1

Lithium–sulfur (Li–S) batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur (E/S) ratios. Highly solvating electrolytes (HSEs) and sparingly solvating electrolytes (SSEs), with opposite nature towards the dissolution of polysulfides, have recently emerged as two effective solutions to decrease the E/S ratio and increase the overall practical energy density of Li–S batteries. HSEs featuring with high polysulfide solvation ability have the potential to reduce the E/S ratio by dissolving more polysulfides with less electrolyte, while SSEs alter the sulfur reaction pathway from a dissolution–precipitation mechanism to a quasi-solid mechanism, thereby independent on the use of electrolyte amount. Both HSEs and SSEs show respective effectiveness in lean-electrolyte Li–S batteries, but encounter different challenges to bring Li–S batteries into practical application. This review aims to present a comparative discussion on their unique features and basic electrochemical reaction mechanisms in practical lean-electrolyte Li–S batteries. Emphasis is focused on the current technical challenges and possible solutions for their future development.


menu
Abstract
Full text
Outline
About this article

Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes?

Show Author's information Hualin Ye1Yanguang Li1,2( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China

Abstract

Lithium–sulfur (Li–S) batteries hold great promise to be the next-generation candidate for high-energy-density secondary batteries but in the prerequisite of using low electrolyte-to-sulfur (E/S) ratios. Highly solvating electrolytes (HSEs) and sparingly solvating electrolytes (SSEs), with opposite nature towards the dissolution of polysulfides, have recently emerged as two effective solutions to decrease the E/S ratio and increase the overall practical energy density of Li–S batteries. HSEs featuring with high polysulfide solvation ability have the potential to reduce the E/S ratio by dissolving more polysulfides with less electrolyte, while SSEs alter the sulfur reaction pathway from a dissolution–precipitation mechanism to a quasi-solid mechanism, thereby independent on the use of electrolyte amount. Both HSEs and SSEs show respective effectiveness in lean-electrolyte Li–S batteries, but encounter different challenges to bring Li–S batteries into practical application. This review aims to present a comparative discussion on their unique features and basic electrochemical reaction mechanisms in practical lean-electrolyte Li–S batteries. Emphasis is focused on the current technical challenges and possible solutions for their future development.

Keywords:

lithium−sulfur batteries, lean electrolyte, highly solvating electrolytes, sparingly solvating electrolytes
Received: 28 April 2022 Revised: 29 May 2022 Accepted: 30 May 2022 Published: 03 June 2022 Issue date: June 2022
References(85)
[1]

Yu, X. W.; Manthiram, A. Sustainable battery materials for next-generation electrical energy storage. Adv. Energy Sustain. Res. 2021, 2, 2000102.

[2]

Liang, Y. R.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W. C.; Huang, J. Q.; Yu, D. S.; Liu, Y. L.; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.

[3]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[4]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[5]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[6]

Ye, H. L.; Li, Y. G. Review on multivalent rechargeable metal-organic batteries. Energy Fuels 2021, 35, 7624–7636.

[7]

Jin, C. B.; Liu, T. F, ; Sheng, O. W.; Li, M.; Liu, T. C.; Yuan, Y. F.; Nai, J. W.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 2021, 6, 378–387.

[8]

Li, Y. G.; Lu, J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2017, 2, 1370–1377.

[9]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium–sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[10]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[11]

Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

[12]

Ye, H. L.; Li, Y. G. Room-temperature metal–sulfur batteries: What can we learn from lithium–sulfur? InfoMat 2022, 4, e12291.

[13]

Yang, Y. X.; Zhong, Y. R.; Shi, Q. W.; Wang, Z. H.; Sun, K. N.; Wang, H. L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew. Chem., Int. Ed. 2018, 57, 15549–15552.

[14]

Yan, Y. Y.; Cheng, C.; Zhang, L.; Li, Y. G.; Lu, J. Deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 2019, 9, 1900148.

[15]

Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li–S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

[16]

Yang, X. F.; Li, X.; Adair, K.; Zhang, H. M.; Sun, X. L. Structural design of lithium–sulfur batteries: From fundamental research to practical application. Electrochem. Energy Rev. 2018, 1, 239–293.

[17]

Ye, H. L.; Lee, J. Y. Solid additives for improving the performance of sulfur cathodes in lithium–sulfur batteries—Adsorbents, mediators, and catalysts. Small Methods 2020, 4, 1900864.

[18]

Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.

[19]

Wu, F. X.; Lee, J. T.; Nitta, N.; Kim, H.; Borodin, O.; Yushin, G. Lithium iodide as a promising electrolyte additive for lithium–sulfur batteries: Mechanisms of performance enhancement. Adv. Mater. 2015, 27, 101–108.

[20]

Cheng, L.; Curtiss, L. A.; Zavadil, K. R.; Gewirth, A. A.; Shao, Y. Y.; Gallagher, K. G. Sparingly solvating electrolytes for high energy density lithium–sulfur batteries. ACS Energy Lett. 2016, 1, 503–509.

[21]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[22]

Dörfler, S.; Strubel, P.; Jaumann, T.; Troschke, E.; Hippauf, F.; Kensy, C.; Schökel, A.; Althues, H.; Giebeler, L.; Oswald, S. et al. On the mechanistic role of nitrogen-doped carbon cathodes in lithium–sulfur batteries with low electrolyte weight portion. Nano Energy 2018, 54, 116–128.

[23]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium–sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[24]

Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li–S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

[25]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 2020, 20, 1252–1261.

[26]

Ye, H. L.; Sun, J. G.; Zhao, Y.; Lee, J. Y. An integrated approach to improve the performance of lean-electrolyte lithium–sulfur batteries. J. Energy Chem. 2022, 67, 585–592.

[27]

Yang, C.; Li, P.; Yu, J.; Zhao, L. D.; Kong, L. Approaching energydense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations. Energy 2020, 201, 117718.

[28]

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

[29]

Xie, J.; Peng, H. J.; Song, Y. W.; Li, B. Q.; Xiao, Y.; Zhao, M.; Yuan, H.; Huang, J. Q.; Zhang, Q. Spatial and kinetic regulation of sulfur electrochemistry on semi-immobilized redox mediators in working batteries. Angew. Chem., Int. Ed. 2020, 59, 17670–17675.

[30]

Jin, C. B.; Sheng, O. W.; Zhang, W. K.; Luo, J. M.; Yuan, H. D.; Yang, T.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C. et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Mater. 2018, 15, 218–225.

[31]

Fan, F. Y.; Pan, M. S.; Lau, K. C.; Assary, R. S.; Woodford, W. H.; Curtiss, L. A.; Carter, W. C.; Chiang, Y. M. Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium–sulfur batteries. J. Electrochem. Soc. 2016, 163, A3111–A3116.

[32]

Huang, J. D.; Li, F.; Wu, M. F.; Wang, H. P.; Qi, S. H.; Jiang, G. X.; Li, X.; Ma, J. M. Electrolyte chemistry for lithium metal batteries. Sci. China Chem. 2022, 65, 840–857.

[33]

Ye, H. L.; Sun, J. G.; Lim, X. F.; Zhao, Y.; Lee, J. Y. Mediator-assisted catalysis of polysulfide conversion for high-loading lithium–sulfur batteries operating under the lean electrolyte condition. Energy Storage Mater. 2021, 38, 338–343.

[34]

Kong, L.; Yin, L. H.; Xu, F.; Bian, J. C.; Yuan, H. M.; Lu, Z. G.; Zhao, Y. S. Electrolyte solvation chemistry for lithium–sulfur batteries with electrolyte-lean conditions. J. Energy Chem. 2021, 55, 80–91.

[35]

Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium–sulfur batteries. Joule 2021, 5, 2323–2364.

[36]

Zou, Q. L.; Lu, Y. C. Liquid electrolyte design for metal–sulfur batteries: Mechanistic understanding and perspective. EcoMat 2021, 3, e12115.

[37]

Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 2015, 5, 1500118.

[38]

Chung, S. H.; Chang, C. H.; Manthiram, A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.

[39]

Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142–158.

[40]

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

[41]

He, J.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium–sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

[42]

Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li–S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

[43]

Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q. H. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.

[44]

Gofer, Y.; Ely, Y. E.; Aurbach, D. Surface chemistry of lithium in 1, 3-dioxolane. Electrochim. Acta 1992, 37, 1897–1899.

[45]

Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium–sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134.

[46]

Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium–sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

[47]

Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium–sulfur battery under lean electrolyte condition. Adv. Func. Mater. 2018, 28, 1707234.

[48]

Fu, Y. Z.; Su, Y. S.; Manthiram, A. Li2S-carbon sandwiched electrodes with superior performance for lithium–sulfur batteries. Adv. Energy Mater. 2014, 4, 1300655.

[49]

Zhang, B. H.; Wu, J. F.; Gu, J. K.; Li, S.; Yan, T. Y.; Gao, X. P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium–sulfur batteries. ACS Energy Lett. 2021, 6, 537–546.

[50]

Ye, H. L.; Li, M.; Liu, T. C.; Li, Y. G.; Lu, J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 2020, 5, 2234–2245.

[51]

Ye, H. L.; Sun, J. G.; Zhang, S. L.; Lin, H. B.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li–S batteries. ACS Nano 2019, 13, 14208–14216.

[52]

Fan, F. Y.; Chiang, Y. M. Electrodeposition kinetics in Li-S batteries: Effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 2017, 164, A917–A922.

[53]

Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1803096.

[54]

Gupta, A.; Bhargav, A.; Manthiram, A. Evoking high donor numberassisted and organosulfur-mediated conversion in lithium–sulfur batteries. ACS Energy Lett. 2021, 6, 224–231.

[55]

Lee, C. W.; Pang, Q.; Ha, S.; Cheng, L.; Han, S. D.; Zavadil, K. R.; Gallagher, K. G.; Nazar, L. F.; Balasubramanian, M. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci. 2017, 3, 605–613.

[56]

Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium–sulfur batteries. Adv. Mater. 2020, 32, 2005022.

[57]

Ye, H. L.; Sun, J. G.; Zhang, S. L.; Zhang, T. R.; Zhao, Y.; Song, C. Y.; Yao, Q. F.; Lee, J. Y. Enhanced polysulfide conversion catalysis in lithium–sulfur batteries with surface cleaning electrolyte additives. Chem. Eng. J. 2021, 410, 128284.

[58]

Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.

[59]

Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: Revisiting lithium–sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy Mater. 2015, 5, 1401801.

[60]

Li, Z. J.; Zhou, Y. C.; Wang, Y.; Lu, Y. C. Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 2019, 9, 1802207.

[61]

Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. The radical pathway based on a lithiummetal-compatible high-dielectric electrolyte for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16732–16736.

[62]

Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.

[63]

Lian, J.; Guo, W.; Fu, Y. Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li–S batteries. J. Am. Chem. Soc. 2021, 143, 11063–11071.

[64]

Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li–S batteries. Adv. Funct. Mater. 2019, 29, 1806724.

[65]

Pang, Q.; Liang, X.; Shyamsunder, A.; Nazar, L. F. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 2017, 1, 871–886.

[66]

Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 2018, 30, 1804684.

[67]

Chu, H.; Jung, J.; Noh, H.; Yuk, S.; Lee, J.; Lee, J. H.; Baek, J.; Roh, Y.; Kwon, H.; Choi, D. et al. Unraveling the dual functionality of high-donor-number anion in lean-electrolyte lithium–sulfur batteries. Adv. Energy Mater. 2020, 10, 2000493.

[68]

Du, G. Y.; Liu, C. Y.; Li, E. Y. A DFT investigation on the origins of solvent-dependent polysulfide reduction mechanism in rechargeable Li–S batteries. Catalysts 2020, 10, 911.

[69]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[70]

He, J. R.; Bhargav, A.; Manthiram, A. High-performance anode-free Li–S batteries with an integrated Li2S-electrocatalyst cathode. ACS Energy Lett. 2022, 7, 583–590.

[71]

Xiang, J. L.; Zhao, Y. W.; Wang, L.; Zha, C. Y. The presolvation strategy of Li2S cathodes for lithium–sulfur batteries: A review. J. Mater. Chem. A 2022, 10, 10326–10341.

[72]

Yuan, H. D.; Zhang, W. K.; Wang, J. G.; Zhou, G. M.; Zhuang, Z. Z.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y. et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium–sulfur batteries. Energy Storage Mater. 2018, 10, 1–9.

[73]

Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

[74]

Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium–sulfur batteries. SusMat 2022, 2, 34–64.

[75]

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 2018, 3, 783–791.

[76]

Huang, F. F.; Gao, L. J.; Zou, Y. P.; Ma, G. Q.; Zhang, J. J.; Xu, S. Q.; Li, Z. X.; Liang, X. Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 2019, 7, 12498–12506.

[77]

Weller, C.; Pampel, J.; Dörfler, S.; Althues, H.; Kaskel, S. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium–sulfur batteries. Energy Technol. 2019, 7, 1900625.

[78]

Cheng, Q.; Xu, W. H.; Qin, S. Y.; Das, S.; Jin, T. W.; Li, A. J.; Li, A. C.; Qie, B. Y.; Yao, P. C.; Zhai, H. W. et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium–sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 5557–5561.

[79]

Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 2019, 9, 1803774.

[80]

Shin, W.; Zhu, L. D.; Jiang, H.; Stickle, W. F.; Fang, C.; Liu, C.; Lu, J.; Ji, X. L. Fluorinated co-solvent promises Li–S batteries under lean-electrolyte conditions. Mater. Today 2020, 40, 63–71.

[81]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[82]

Cuisinier, M.; Cabelguen, P. E.; Adams, B. D.; Garsuch, A.; Balasubramanian, M.; Nazar, L. F. Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries. Energy Environ. Sci. 2014, 7, 2697–2705.

[83]

See, K. A.; Wu, H. L.; Lau, K. C.; Shin, M.; Cheng, L.; Balasubramanian, M.; Gallagher, K. G.; Curtiss, L. A.; Gewirth, A. A. Effect of hydrofluoroether cosolvent addition on Li solvation in acetonitrile-based solvate electrolytes and its influence on S reduction in a Li–S battery. ACS Appl. Mater. Interfaces 2016, 8, 34360–34371.

[84]

Pan, H. L.; Han, K. S.; Vijayakumar, M.; Xiao, J.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2017, 9, 4290–4295.

[85]

Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Inhibiting polysulfide shuttle in lithium–sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem., Int. Ed. 2017, 56, 6192–6197.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 April 2022
Revised: 29 May 2022
Accepted: 30 May 2022
Published: 03 June 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. U2002213 and 51972219), the Science and Technology Development Fund Macau SAR (No. 0077/2021/A2), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the 111 Project, and the Joint International Research Laboratory of Carbon-based Functional Materials and Devices.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return