Journal Home > Volume 1 , issue 2

To restore the natural nitrogen cycle (N-cycle), artificial N-cycle electrocatalysis with flexibility, sustainability, and compatibility can convert intermittent renewable energy (e.g., wind) to harmful or value-added chemicals with minimal carbon emissions. The background of such N-cycles, such as nitrogen fixation, ammonia oxidation, and nitrate reduction, is briefly introduced here. The discussion of emerging nanostructures in various conversion reactions is focused on the architecture/compositional design, electrochemical performances, reaction mechanisms, and instructive tests. Energy device advancements for achieving more functions as well as in situ/operando characterizations toward understanding key steps are also highlighted. Furthermore, some recently proposed reactions as well as less discussed C–N coupling reactions are also summarized. We classify inorganic nitrogen sources that convert to each other under an applied voltage into three types, namely, abundant nitrogen, toxic nitrate (nitrite), and nitrogen oxides, and useful compounds such as ammonia, hydrazine, and hydroxylamine, with the goal of providing more critical insights into strategies to facilitate the development of our circular nitrogen economy.


menu
Abstract
Full text
Outline
About this article

Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis

Show Author's information Jie Liang1Qian Liu2Abdulmohsen Ali Alshehri3Xuping Sun1,4( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

Abstract

To restore the natural nitrogen cycle (N-cycle), artificial N-cycle electrocatalysis with flexibility, sustainability, and compatibility can convert intermittent renewable energy (e.g., wind) to harmful or value-added chemicals with minimal carbon emissions. The background of such N-cycles, such as nitrogen fixation, ammonia oxidation, and nitrate reduction, is briefly introduced here. The discussion of emerging nanostructures in various conversion reactions is focused on the architecture/compositional design, electrochemical performances, reaction mechanisms, and instructive tests. Energy device advancements for achieving more functions as well as in situ/operando characterizations toward understanding key steps are also highlighted. Furthermore, some recently proposed reactions as well as less discussed C–N coupling reactions are also summarized. We classify inorganic nitrogen sources that convert to each other under an applied voltage into three types, namely, abundant nitrogen, toxic nitrate (nitrite), and nitrogen oxides, and useful compounds such as ammonia, hydrazine, and hydroxylamine, with the goal of providing more critical insights into strategies to facilitate the development of our circular nitrogen economy.

Keywords:

nitrogen cycle, heterogeneous, electrocatalyst, ammonia synthesis, metal−N2 battery
Received: 07 May 2022 Revised: 28 May 2022 Accepted: 29 May 2022 Published: 02 June 2022 Issue date: September 2022
References(475)
[1]

Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of Earth's nitrogen cycle. Science 2010, 330, 192–196.

[2]

Du, E. Z.; Terrer, C.; Pellegrini, A. F. A.; Ahlström, A.; van Lissa, C. J.; Zhao, X.; Xia, N.; Wu, X. H.; Jackson, R. B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226.

[3]

Johnson, B.; Goldblatt, C. The nitrogen budget of Earth. Earth-Sci. Rev. 2015, 148, 150–173.

[4]

Galloway, J. N.; Dentener, F. J.; Capone, D. G.; Boyer, E. W.; Howarth, R. W.; Seitzinger, S. P.; Asner, G. P.; Cleveland, C. C.; Green, P. A.; Holland, E. A. et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226.

[5]

Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

[6]

Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Climate Change 2016, 6, 836–843.

[7]

Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M. A.; Cape, J. N.; Reis, S.; Sheppard, L. J.; Jenkins, A.; Grizzetti, B.; Galloway, J. N. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. Roy. Soc. B 2013, 368, 20130164.

[8]

Erisman, J. W.; Galloway, J. N.; Seitzinger, S.; Bleeker, A.; Dise, N. B.; Petrescu, A. M. R.; Leach, A. M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. Roy. Soc. B 2013, 368, 20130116.

[9]

Frutos, O. D.; Quijano, G.; Aizpuru, A.; Muñoz, R. A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources. Biotechnol. Adv. 2018, 36, 1025–1037.

[10]

Lehnert, N.; Dong, H. T.; Harland, J. B.; Hunt, A. P.; White, C. J. Reversing nitrogen fixation. Nat. Rev. Chem. 2018, 2, 278–289.

[11]

Bosch, H.; Janssen, F. Formation and control of nitrogen oxides. Catal. Today 1988, 2, 369–379.

[12]

Socolow, R. H. Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proc. Natl. Acad. Sci. USA 1999, 96, 6001–6008.

[13]

Battye, W.; Aneja, V. P.; Schlesinger, W. H. Is nitrogen the next carbon? Earth's Future 2017, 5, 894–904.

[14]

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

[15]

Schlögl, R. Catalytic synthesis of ammonia—A "never-ending story"? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

[16]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[17]

Elishav, O.; Mosevitzky Lis, B.; Miller, E. M.; Arent, D. J.; Valera-Medina, A.; Grinberg Dana, A.; Shter, G. E.; Grader, G. S. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 2020, 120, 5352–5436.

[18]

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

[19]

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

[20]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[21]

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

[22]

Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195.

[23]

Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.

[24]

Mou, T.; Long, J.; Frauenheim, T.; Xiao, J. P. Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source. ChemPlusChem 2021, 86, 1211–1224.

[25]

Zheng, W. X.; Zhu, L. Y.; Yan, Z.; Lin, Z. C.; Lei, Z. C.; Zhang, Y. F.; Xu, H. L.; Dang, Z.; Wei, C. H.; Feng, C. H. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: From fundamentals to scale-up for treatment of industrial wastewater. Environ. Sci. Technol. 2021, 55, 13231–13243.

[26]

Liu, H. M.; Lang, X. Y.; Zhu, C.; Timoshenko, J.; Rüscher, M.; Bai, L. L.; Guijarro, N.; Yin, H. B.; Peng, Y.; Li, J. et al. Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202556.

[27]

Lim, J.; Liu, C. Y.; Park, J.; Liu, Y. H.; Senftle, T. P.; Lee, S. W.; Hatzell, M. C. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 2021, 11, 7568–7577.

[28]

Li, Z. R.; Liang, J.; Liu, Q.; Xie, L. S.; Zhang, L. C.; Ren, Y. C.; Yue, L. C.; Li, N.; Tang, B.; Alshehri, A. A. et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater. Today Phys. 2022, 23, 100619.

[29]

Huang, Y. M.; Long, J.; Wang, Y. T.; Meng, N. N.; Yu, Y. F.; Lu, S. Y.; Xiao, J. P.; Zhang, B. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2021, 13, 54967–54973.

[30]

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

[31]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[32]

Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.

[33]

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

[34]

Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

[35]

Liang, J.; Chen, H. Y.; Mou, T.; Zhang, L. C.; Lin, Y. T.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A. et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. J. Mater. Chem. A 2022, 10, 6454–6462.

[36]

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

[37]

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

[38]

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

[39]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[40]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[41]

Dai, C. C.; Sun, Y. M.; Chen, G.; Fisher, A. C.; Xu, Z. J. Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem., Int. Ed. 2020, 59, 9418–9422.

[42]

Kuang, M.; Wang, Y.; Fang, W.; Tan, H. T.; Chen, M. X.; Yao, J. D.; Liu, C. T.; Xu, J. W.; Zhou, K.; Yan, Q. Y. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 2020, 32, 2002189.

[43]

Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

[44]

Katsounaros, I.; Chen, T.; Gewirth, A. A.; Markovic, N. M.; Koper, M. T. M. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100). J. Phys. Chem. Lett. 2016, 7, 387–392.

[45]

Katsounaros, I.; Figueiredo, M. C.; Calle-Vallejo, F.; Li, H. J.; Gewirth, A. A.; Markovic, N. M.; Koper, M. T. M. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(100) in alkaline environment. J. Catal. 2018, 359, 82–91.

[46]

Bunce, N. J.; Bejan, D. Mechanism of electrochemical oxidation of ammonia. Electrochim. Acta 2011, 56, 8085–8093.

[47]

Herron, J. A.; Ferrin, P.; Mavrikakis, M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: A first-principles study. J. Phys. Chem. C 2015, 119, 14692–14701.

[48]

Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B 2018, 236, 546–568.

[49]

Wang, Y. T.; Yu, Y. F.; Jia, R. R.; Zhang, C.; Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl. Sci. Rev. 2019, 6, 730–738.

[50]

Han, S. H.; Wang, C. H.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets. Angew. Chem., Int. Ed. 2021, 60, 4474–4478.

[51]

Li, T. L.; Han, S. H.; Wang, C. H.; Huang, Y. M.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Ru-doped Pd nanoparticles for nitrogen electrooxidation to nitrate. ACS Catal. 2021, 11, 14032–14037.

[52]

Li, T. L.; Han, S. H.; Cheng, C. Q.; Wang, Y. T.; Du, X. W.; Yu, Y. F.; Zhang, B. Sulfate-enabled nitrate synthesis from nitrogen electrooxidation on a Rhodium electrocatalyst. Angew. Chem., Int. Ed., in press, http://doi.org/10.1002/anie.202204541.

[53]

Guo, Y.; Zhang, S. C.; Zhang, R.; Wang, D. H.; Zhu, D. M.; Wang, X. W.; Xiao, D. W.; Li, N.; Zhao, Y. W.; Huang, Z. D. et al. Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets. ACS Nano 2022, 16, 655–663.

[54]

Fang, W.; Du, C. F.; Kuang, M.; Chen, M. X.; Huang, W. J.; Ren, H.; Xu, J. W.; Feldhoff, A.; Yan, Q. Y. Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chem. Commun. 2020, 56, 5779–5782.

[55]

Wang, Y. T.; Li, T. L.; Yu, Y. F.; Zhang, B. Electrochemical synthesis of nitric acid from nitrogen oxidation. Angew. Chem., Int. Ed. 2022, 61, e202115409.

[56]

Nie, Z. F.; Zhang, L. L.; Ding, X.; Cong, M. Y.; Xu, F. F.; Ma, L. H.; Guo, M. X.; Li, M. Z.; Zhang, L. X. Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 2022, 34, 2108180.

[57]

Zhang, Y. T.; Du, F.; Wang, R. Y.; Ling, X. T.; Wang, X. Y.; Shen, Q.; Xiong, Y. J.; Li, T.; Zhou, Y.; Zou, Z. G. Electrocatalytic fixation of N2 into NO3-: Electron transfer between oxygen vacancies and loaded Au in Nb2O5-x nanobelts to promote ambient nitrogen oxidation. J. Mater. Chem. A 2021, 9, 17442–17450.

[58]

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

[59]

Abbasi, R.; Setzler, B. P.; Wang, J. H.; Zhao, Y.; Wang, T.; Gottesfeld, S.; Yan, Y. S. Low-temperature direct ammonia fuel cells: Recent developments and remaining challenges. Curr. Opin. Electrochem. 2020, 21, 335–344.

[60]

Zhao, Y.; Setzler, B. P.; Wang, J. H.; Nash, J.; Wang, T.; Xu, B. J.; Yan, Y. S. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 2019, 3, 2472–2484.

[61]

Zhang, H.; Zhou, Y. C.; Pei, K.; Pan, Y. X.; Xu, K.; Ding, Y.; Zhao, B. T.; Sasaki, K.; Choi, Y. M.; Chen, Y. et al. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy Environ. Sci. 2022, 15, 287–295.

[62]

Rees, N. V.; Compton, R. G. Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuel cells. Energy Environ. Sci. 2011, 4, 1255–1260.

[63]

Xi, X. S.; Fan, Y. Y.; Zhang, K.; Liu, Y. C.; Nie, F. H.; Guan, H.; Wu, J. M. Carbon-free sustainable energy technology: Electrocatalytic ammonia oxidation reaction. Chem. Eng. J. 2022, 435, 134818.

[64]

Siddharth, K.; Chan, Y.; Wang, L.; Shao, M. H. Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 2018, 9, 151–157.

[65]

Adrover, R.; Cocozzella, D.; Ridruejo, E.; García, A.; Rome, J.; Podestá, J. J. Breath-ammonia testing of healthy subjects and patients with cirrhosis. Dig. Dis. Sci. 2012, 57, 189–195.

[66]

Davies, S.; Spanel, P.; Smith, D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997, 52, 223–228.

[67]

Li, H. Y.; Lee, C. S.; Kim, D. H.; Lee, J. H. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 2018, 10, 27858–27867.

[68]

Vidal-Iglesias, F. J.; Solla-Gullón, J.; Rodrı́guez, P.; Herrero, E.; Montiel, V.; Feliu, J. M.; Aldaz, A. Shape-dependent electrocatalysis: Ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem. Commun. 2004, 6, 1080–1084.

[69]

Pillai, H. S.; Xin, H. L. New insights into electrochemical ammonia oxidation on Pt(100) from first principles. Ind. Eng. Chem. Res. 2019, 58, 10819–10828.

[70]

Li, S. Y.; Chen, H. Y.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Size- and density-controllable fabrication of the platinum nanoparticle/ITO electrode by pulse potential electrodeposition for ammonia oxidation. ACS Appl. Mater. Interfaces 2017, 9, 27765–27772.

[71]

Liu, J.; Liu, Z.; Wang, H. Z.; Liu, B.; Zhao, N. Q.; Zhong, C.; Hu, W. B. Designing nanoporous coral-like Pt nanowires architecture for methanol and ammonia oxidation reactions. Adv. Funct. Mater. 2022, 32, 2110702.

[72]

Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare Earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134–9141.

[73]

Lomocso, T. L.; Baranova, E. A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles. Electrochim. Acta 2011, 56, 8551–8558.

[74]

Wang, Y. H.; Yang, Z. H.; Yang, J.; Xu, J. X.; Xie, Y. P.; Chen, J. Y.; Yang, M. H.; Wang, J. X.; Guan, W. B.; Muroyama, H. et al. Towards continuous ammonia electro-oxidation reaction on Pt catalysts with weakened adsorption of atomic nitrogen. Int. J. Hydrogen Energy 2020, 45, 21816–21824.

[75]

Prabowo Rahardjo, S. S.; Shih, Y. -J. Electrocatalytic ammonia oxidation mediated by nickel and copper crystallites decorated with platinum nanoparticle (PtM/G, M = Cu, Ni). ACS Sustainable Chem. Eng. 2022, 10, 15, 5043–5054.

[76]

Elnabawy, A. O.; Herron, J. A.; Karraker, S.; Mavrikakis, M. Structure sensitivity of ammonia electro-oxidation on transition metal surfaces: A first-principles study. J. Catal. 2021, 397, 137–147.

[77]

Jiao, F.; Xu, B. J. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 2019, 31, 1805173.

[78]

Wang, J.; Heo, J.; Chen, C. Q.; Wilson, A. J.; Jain, P. K. Ammonia oxidation enhanced by photopotential generated by plasmonic excitation of a bimetallic electrocatalyst. Angew. Chem., Int. Ed. 2020, 59, 18430–18434.

[79]

Tang, Z. C.; Surin, I.; Rasmussen, A.; Krumeich, F.; Kondratenko, E. V.; Kondratenko, V. A.; Pérez-Ramírez, J. Ceria-supported gold nanoparticles as a superior catalyst for nitrous oxide production via ammonia oxidation. Angew. Chem., Int. Ed. 2022, 61, e202200772.

[80]

Parmon, V. N.; Panov, G. I.; Uriarte, A.; Noskov, A. S. Nitrous oxide in oxidation chemistry and catalysis: Application and production. Catal. Today 2005, 100, 115–131.

[81]

de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J. Electroanal. Chem. 2001, 506, 127–137.

[82]

Assumpção, M. H. M. T.; da Silva, S. G.; De Souza, R. F. B.; Buzzo, G. S.; Spinacé, E. V.; Santos, M. C.; Neto, A. O.; Silva, J. C. M. Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell. J. Power Sources 2014, 268, 129–136.

[83]

Kapałka, A.; Fierro, S.; Frontistis, Z.; Katsaounis, A.; Neodo, S.; Frey, O.; de Rooij, N.; Udert, K. M.; Comninellis, C. Electrochemical oxidation of ammonia (NH4+/NH3) on thermally and electrochemically prepared IrO2 electrodes. Electrochim. Acta 2011, 56, 1361–1365.

[84]

Allagui, A.; Oudah, M.; Tuaev, X.; Ntais, S.; Almomani, F.; Baranova, E. A. Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size. Int. J. Hydrogen Energy 2013, 38, 2455–2463.

[85]

Assumpção, M. H. M. T.; da Silva, S. G.; de Souza, R. F. B.; Buzzo, G. S.; Spinacé, E. V.; Neto, A. O.; Silva, J. C. M. Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int. J. Hydrogen Energy 2014, 39, 5148–5152.

[86]

Jiang, J. H. Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn. Electrochem. Commun. 2017, 75, 52–55.

[87]

Zhong, C.; Liu, J.; Ni, Z. Y.; Deng, Y. D.; Chen, B.; Hu, W. B. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Sci. China Mater. 2014, 57, 13–25.

[88]

Sacré, N.; Duca, M.; Garbarino, S.; Imbeault, R.; Wang, A.; Hadj Youssef, A.; Galipaud, J.; Hufnagel, G.; Ruediger, A.; Roué, L. et al. Tuning Pt–Ir interactions for NH3 electrocatalysis. ACS Catal. 2018, 8, 2508–2518.

[89]

Gootzen, J. F. E.; Wonders, A. H.; Visscher, W.; van Santen, R. A.; van Veen, J. A. R. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum. Electrochim. Acta 1998, 43, 1851–1861.

[90]

Vidal-Iglesias, F. J.; Solla-Gullón, J.; Feliu, J. M.; Baltruschat, H.; Aldaz, A. DEMS study of ammonia oxidation on platinum basal planes. J. Electroanal. Chem. 2006, 588, 331–338.

[91]

Vidal-Iglesias, F. J.; Solla-Gullón, J.; Pérez, J. M.; Aldaz, A. Evidence by SERS of azide anion participation in ammonia electrooxidation in alkaline medium on nanostructured Pt electrodes. Electrochem. Commun. 2006, 8, 102–106.

[92]

de Vooys, A. C. A.; Mrozek, M. F.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R.; Weaver, M. J. The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy. Electrochem. Commun. 2001, 3, 293–298.

[93]

Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy. ACS Catal. 2016, 6, 2026–2034.

[94]

Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Mohd Adli, N.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.

[95]

Lin, X.; Zhang, X. R.; Wang, Z.; Zhu, X. X.; Zhu, J. H.; Chen, P. S.; Lyu, T.; Li, C. Z.; Tian, Z. Q.; Shen, P. K. Hyperbranched concave octahedron of PtIrCu nanocrystals with high-index facets for efficiently electrochemical ammonia oxidation reaction. J. Colloid Interface Sci. 2021, 601, 1–11.

[96]

Li, Y.; Pillai, H. S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q. M.; Karakalos, S.; Chen, M. J.; Yang, J. et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460.

[97]

Siddiqui, O.; Dincer, I. Development and performance evaluation of a direct ammonia fuel cell stack. Chem. Eng. Sci. 2019, 200, 285–293.

[98]

Suzuki, S.; Muroyama, H.; Matsui, T.; Eguchi, K. Fundamental studies on direct ammonia fuel cell employing anion exchange membrane. J. Power Sources 2012, 208, 257–262.

[99]

Zhao, Y.; Wang, T.; Setzler, B. P.; Abbasi, R.; Wang, J. H.; Yan, Y. S. A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell. ACS Energy Lett. 2021, 6, 1996–2002.

[100]

Zhang, C. Y.; He, D.; Ma, J. X.; Waite, T. D. Active chlorine mediated ammonia oxidation revisited: Reaction mechanism, kinetic modelling and implications. Water Res. 2018, 145, 220–230.

[101]

Wang, R. Y.; Liu, H. J.; Zhang, K.; Zhang, G.; Lan, H. C.; Qu, J. H. Ni(Ⅱ)/Ni(Ⅲ) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem. Eng. J. 2021, 404, 126795.

[102]

Xu, W.; Du, D. W.; Lan, R.; Humphreys, J.; Miller, D. N.; Walker, M.; Wu, Z. C.; Irvine, J. T. S.; Tao, S. W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B 2018, 237, 1101–1109.

[103]

Song, J. J.; Yinhai, Y.; Jia, Y. N.; Wang, T. T.; Wei, J.; Wang, M. M.; Zhou, S. D.; Li, Z. J.; Hou, Y.; Lei, L. C. et al. Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. Sep. Purif. Technol. 2021, 276, 119350.

[104]

Jiang, X.; Ying, D. W.; Liu, X.; Liu, M. C.; Zhou, S.; Guo, C. Y.; Zhao, G. H.; Wang, Y. L.; Jia, J. P. Identification of the role of Cu site in Ni-Cu hydroxide for robust and high selective electrochemical ammonia oxidation to nitrite. Electrochim. Acta 2020, 345, 136157.

[105]

Shih, Y. J.; Huang, Y. H.; Huang, C. P. Electrocatalytic ammonia oxidation over a nickel foam electrode: Role of Ni(OH)2(s)-NiOOH(s) nanocatalysts. Electrochim. Acta 2018, 263, 261–271.

[106]

Shih, Y. J.; Hsu, C. H. Kinetics and highly selective N2 conversion of direct electrochemical ammonia oxidation in an undivided cell using NiCo oxide nanoparticle as the anode and metallic Cu/Ni foam as the cathode. Chem. Eng. J. 2021, 409, 128024.

[107]

He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

[108]

Little, D. J.; Edwards, D. O.; Smith, M. R.; Hamann, T. W. As precious as platinum: Iron nitride for electrocatalytic oxidation of liquid ammonia. ACS Appl. Mater. Interfaces 2017, 9, 16228–16235.

[109]

He, S.; Chen, Y. F.; Wang, M. D.; Liu, K.; Novello, P.; Li, X. Q.; Zhu, S. Y.; Liu, J. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy 2021, 80, 105528.

[110]

Hou, J.; Cheng, Y. Y.; Pan, H.; Kang, P. CuSn double-metal hydroxides for direct electrochemical ammonia oxidation to dinitrogen. ChemElectroChem 2022, 9, e202101301.

[111]

Zhang, M. F.; Li, H.; Duan, X. Y.; Zou, P. M.; Jeerh, G.; Sun, B. Y.; Chen, S. G.; Humphreys, J.; Walker, M.; Xie, K. et al. An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis. Adv. Sci. 2021, 8, 2101299.

[112]

Kim, H.; Yang, W.; Lee, W. H.; Han, M. H.; Moon, J.; Jeon, C.; Kim, D.; Ji, S. G.; Chae, K. H.; Lee, K. S. et al. Operando stability of platinum electrocatalysts in ammonia oxidation reactions. ACS Catal. 2020, 10, 11674–11684.

[113]

Hoar, T. P.; Jacob, W. R. Breakdown of passivity of stainless steel by halide ions. Nature 1967, 216, 1299–1301.

[114]

El-Awady, A. A.; Abd-El-Nabey, B. A.; Aziz, S. G. Thermodynamic and kinetic factors in chloride ion pitting and nitrogen donor ligand inhibition of aluminium metal corrosion in aggressive acid media. J. Chem. Soc. Faraday Trans. 1993, 89, 795–802.

[115]

Finkelstein, D. A.; Bertin, E.; Garbarino, S.; Guay, D. Mechanistic similarity in catalytic N2 production from NH3 and NO2- at Pt(100) thin films: Toward a universal catalytic pathway for simple N-containing species, and its application to in situ removal of NH3 poisons. J. Phys. Chem. C 2015, 119, 9860–9878.

[116]

Evans, G. E.; Kordesch, K. V. Hydrazine-air fuel cells. Science 1967, 158, 1148–1152.

[117]

Serov, A.; Kwak, C. Direct hydrazine fuel cells: A review. Appl. Catal. B 2010, 98, 1–9.

[118]

Ma, Y. Y.; Li, H.; Wang, R. F.; Wang, H.; Lv, W. Z.; Ji, S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. J. Power Sources 2015, 289, 22–25.

[119]

Sanabria-Chinchilla, J.; Asazawa, K.; Sakamoto, T.; Yamada, K.; Tanaka, H.; Strasser, P. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J. Am. Chem. Soc. 2011, 133, 5425–5431.

[120]

Feng, G.; An, L.; Li, B.; Zuo, Y. X.; Song, J.; Ning, F. H.; Jiang, N.; Cheng, X. P.; Zhang, Y. F.; Xia, D. G. Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nat. Commun. 2019, 10, 4514.

[121]

Zhou, L.; Shao, M. F.; Zhang, C.; Zhao, J. W.; He, S.; Rao, D. M.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Adv. Mater. 2017, 29, 1604080.

[122]

Li, J.; Tang, W. J.; Huang, J. W.; Jin, J.; Ma, J. T. Polyethyleneimine decorated graphene oxide-supported Ni1-xFex bimetallic nanoparticles as efficient and robust electrocatalysts for hydrazine fuel cells. Catal. Sci. Technol. 2013, 3, 3155–3162.

[123]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

[124]

Wang, J. M.; Ma, X.; Liu, T. T.; Liu, D. N.; Hao, S.; Du, G.; Kong, R. M.; Asiri, A. M.; Sun, X. P. NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Mater. Today Energy 2017, 3, 9–14.

[125]

Wang, Y. C.; Wan, L. Y.; Cui, P. X.; Tong, L.; Ke, Y. Q.; Sheng, T.; Zhang, M.; Sun, S. H.; Liang, H. W.; Wang, Y. S. et al. Porous carbon membrane-supported atomically dispersed pyrrole-type FeN4 as active sites for electrochemical hydrazine oxidation reaction. Small 2020, 16, 2002203.

[126]

Huang, J. F.; Zhao, S. N.; Chen, W.; Zhou, Y.; Yang, X. L.; Zhu, Y. H.; Li, C. Z. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation. Nanoscale 2016, 8, 5810–5814.

[127]

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

[128]

Sun, M.; Lu, Z. Y.; Luo, L.; Chang, Z.; Sun, X. M. A 3D porous Ni-Cu alloy film for high-performance hydrazine electrooxidation. Nanoscale 2016, 8, 1479–1484.

[129]

Chandrasekaran, S.; Khandelwal, M.; Dayong, F.; Sui, L.; Chung, J. S.; Misra, R. D. K.; Yin, P.; Kim, E. J.; Kim, W.; Vanchiappan, A. et al. Developments and perspectives on robust nano- and microstructured binder-free electrodes for bifunctional water electrolysis and beyond. Adv. Energy Mater. 2022, 2200409.

[130]

Ojha, K.; Farber, E. M.; Burshtein, T. Y.; Eisenberg, D. A multi-doped electrocatalyst for efficient hydrazine oxidation. Angew. Chem., Int. Ed. 2018, 57, 17168–17172.

[131]

Wang, T. Z.; Wang, Q.; Wang, Y. C.; Da, Y. L.; Zhou, W.; Shao, Y.; Li, D. B.; Zhan, S. H.; Yuan, J. Y.; Wang, H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells. Angew. Chem., Int. Ed. 2019, 58, 13466–13471.

[132]

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

[133]

Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.

[134]

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

[135]

Lin, X.; Wen, H.; Zhang, D. X.; Cao, G. X.; Wang, P. Highly dispersed nickel nitride nanoparticles on nickel nanosheets as an active catalyst for hydrazine electrooxidation. J. Mater. Chem. A 2020, 8, 632–638.

[136]

Yan, Y.; Zhang, J. Y.; Shi, X. R.; Zhu, Y. T.; Xia, C. F.; Zaman, S.; Hu, X.; Wang, X. Y.; Xia, B. Y. A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells. ACS Nano 2021, 15, 10286–10295.

[137]

Van Tamelen, E. E.; Seeley, D. A. Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. J. Am. Chem. Soc. 1969, 91, 5194–5194.

[138]

Sclafani, A.; Augugliaro, V.; Schiavello, M. Dinitrogen electrochemical reduction to ammonia over iron cathode in aqueous medium. J. Electrochem. Soc. 1983, 130, 734–736.

[139]

Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

[140]

Zhao, R. B.; Xie, H. T.; Chang, L.; Zhang, X. X.; Zhu, X. J.; Tong, X.; Wang, T.; Luo, Y. L.; Wei, P. P.; Wang, Z. M. et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem 2019, 1, 100011.

[141]

Wan, Y. C.; Xu, J. C.; Lv, R. T. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90.

[142]

Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.

[143]

Rehman, F.; Delowar Hossain, M.; Tyagi, A.; Lu, D.; Yuan, B.; Luo, Z. Engineering electrocatalyst for low-temperature N2 reduction to ammonia. Mater. Today 2021, 44, 136–167.

[144]

Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

[145]

Yang, B.; Ding, W. L.; Zhang, H. H.; Zhang, S. J. Recent progress in electrochemical synthesis of ammonia from nitrogen: Strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687.

[146]

Bat-Erdene, M.; Bati, A. S. R.; Qin, J. D.; Zhao, H. J.; Zhong, Y. L.; Shapter, J. G.; Batmunkh, M. Elemental 2D materials: Solution-processed synthesis and applications in electrochemical ammonia production. Adv. Funct. Mater. 2022, 32, 2107280.

[147]

Pang, Y. P.; Su, C.; Jia, G. H.; Xu, L. Q.; Shao, Z. P. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem. Soc. Rev. 2021, 50, 12744–12787.

[148]

Majumder, M.; Saini, H.; Dědek, I.; Schneemann, A.; Chodankar, N. R.; Ramarao, V.; Santosh, M. S.; Nanjundan, A. K.; Kment, Š.; Dubal, D. et al. Rational design of graphene derivatives for electrochemical reduction of nitrogen to ammonia. ACS Nano 2021, 15, 17275–17298.

[149]

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

[150]

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

[151]

Li, L. Q.; Tang, C.; Jin, H. Y.; Davey, K.; Qiao, S. Z. Main-group elements boost electrochemical nitrogen fixation. Chem 2021, 7, 3232–3255.

[152]

Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594.

[153]

Hao, Y.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

[154]

Liu, S. S.; Qian, T.; Wang, M. F.; Ji, H. Q.; Shen, X. W.; Wang, C.; Yan, C. L. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 2021, 4, 322–331.

[155]

Fan, G. L.; Xu, W. C.; Li, J. H.; Chen, J. L.; Yu, M.; Ni, Y. X.; Zhu, S. L.; Su, X. C.; Cheng, F. Y. Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites. Adv. Mater. 2021, 33, 2101126.

[156]

Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

[157]

Yao, D. Z.; Tang, C.; Li, L. Q.; Xia, B. Q.; Vasileff, A.; Jin, H. Y.; Zhang, Y. Z.; Qiao, S. Z. In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction. Adv. Energy Mater. 2020, 10, 2001289.

[158]

Xu, T.; Liang, J.; Li, S. X.; Xu, Z. Q.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Asiri, A. M. et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci. 2021, 1, 2000069.

[159]

Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251–28255.

[160]

Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Sun, X. P.; Li, T. S. TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303–17306.

[161]

Jia, K.; Wang, Y.; Pan, Q.; Zhong, B. H.; Luo, Y. L.; Cui, G. W.; Guo, X. D.; Sun, X. P. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions. Nanoscale Adv. 2019, 1, 961–964.

[162]

Li, B. Y.; Zhu, X. J.; Wang, J. W.; Xing, R. M.; Liu, Q.; Shi, X. F.; Luo, Y. L.; Liu, S. H.; Niu, X. B.; Sun, X. P. Ti3+ self-doped TiO2-x nanowires for efficient electrocatalytic N2 reduction to NH3. Chem. Commun. 2020, 56, 1074–1077.

[163]

Yang, L.; Wu, T. W.; Zhang, R.; Zhou, H.; Xia, L.; Shi, X. F.; Zheng, H. G.; Zhang, Y. N.; Sun, X. P. Insights into defective TiO2 in electrocatalytic N2 reduction: Combining theoretical and experimental studies. Nanoscale 2019, 11, 1555–1562.

[164]

Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

[165]

Wu, T. W.; Zhu, X. J.; Xing, Z.; Mou, S. Y.; Li, C. B.; Qiao, Y. X.; Liu, Q.; Luo, Y. L.; Shi, X. L.; Zhang, Y. L. et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449–18453.

[166]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[167]

Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.

[168]

Lin, G. X.; Ju, Q. J.; Guo, X. W.; Zhao, W.; Adimi, S.; Ye, J. Y.; Bi, Q. Y.; Wang, J. C.; Yang, M. H.; Huang, F. Q. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv. Mater. 2021, 33, 2007509.

[169]

Liu, R. Q.; Guo, T.; Fei, H.; Wu, Z. Z.; Wang, D. Z.; Liu, F. Y. Highly efficient electrocatalytic N2 reduction to ammonia over metallic 1T phase of MoS2 enabled by active sites separation mechanism. Adv. Sci. 2022, 9, 2103583.

[170]

Liu, Y. Y.; Han, M. M.; Xiong, Q. Z.; Zhang, S. B.; Zhao, C. J.; Gong, W. B.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Dramatically enhanced ambient ammonia electrosynthesis performance by in-operando created Li–S interactions on MoS2 electrocatalyst. Adv. Energy Mater. 2019, 9, 1803935.

[171]

Li, R. Z.; Liang, J.; Li, T. S.; Yue, L. C.; Liu, Q.; Luo, Y. L.; Hamdy, M. S.; Sun, Y. B.; Sun, X. P. Recent advances in MoS2-based materials for electrocatalysis. Chem. Commun. 2022, 58, 2259–2278.

[172]

Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

[173]

Chen, D. C.; Luo, M.; Ning, S. C.; Lan, J.; Peng, W.; Lu, Y. R.; Chan, T. S.; Tan, Y. W. Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small 2022, 18, 2104043.

[174]

Li, J.; Chen, S.; Quan, F. J.; Zhan, G. M.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885–901.

[175]

Michalsky, R.; Zhang, Y. J.; Medford, A. J.; Peterson, A. A. Departures from the adsorption energy scaling relations for metal carbide catalysts. J. Phys. Chem. C 2014, 118, 13026–13034.

[176]

Peng, M.; Qiao, Y. J.; Luo, M.; Wang, M. J.; Chu, S. F.; Zhao, Y.; Liu, P.; Liu, J.; Tan, Y. W. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 40062–40068.

[177]

Yu, G. S.; Guo, H. R.; Kong, W. H.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction. J. Mater. Chem. A 2019, 7, 19657–19661.

[178]

Feng, J.; Zhu, X. J.; Chen, Q. Y.; Xiong, W.; Chen, X.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Jiang, Z. J.; Li, W. Ultrasmall V8C7 nanoparticles embedded in conductive carbon for efficient electrocatalytic N2 reduction toward ambient NH3 production. J. Mater. Chem. A 2019, 7, 26227–26230.

[179]

Zhang, C.; Wang, D.; Wan, Y. C.; Lv, R. T.; Li, S. M.; Li, B.; Zou, X. L.; Yang, S. B. Vanadium carbide with periodic anionic vacancies for effective electrocatalytic nitrogen reduction. Mater. Today 2020, 40, 18–25.

[180]

Yu, G. S.; Guo, H. R.; Liu, S. H.; Chen, L.; Alshehri, A. A.; Alzahrani, K. A.; Hao, F.; Li, T. S. Cr3C2 nanoparticle-embedded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 35764–35769.

[181]

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

[182]

Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2019, 5, 116–121.

[183]

Qu, X. M.; Shen, L. F.; Mao, Y. J.; Lin, J. X.; Li, Y. Y.; Li, G.; Zhang, Y. Y.; Jiang, Y. X.; Sun, S. G. Facile preparation of carbon shells-coated O-doped molybdenum carbide nanoparticles as high selective electrocatalysts for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 31869–31877.

[184]

Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.

[185]

Qin, B. H.; Li, Y. H.; Zhang, Q.; Yang, G. X.; Liang, H.; Peng, F. Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory. Nano Energy 2020, 68, 104374.

[186]

Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

[187]

Kuang, M.; Huang, W. J.; Hegde, C.; Fang, W.; Tan, X. Y.; Liu, C. T.; Ma, J. M.; Yan, Q. Y. Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Mater. Horiz. 2020, 7, 32–53.

[188]

Abghoui, Y.; Skúlason, E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ⅲ-Ⅶ transition metal mononitrides. Catal. Today 2017, 286, 78–84.

[189]

Abghoui, Y.; Garden, A. L.; Hlynsson, V. F.; Björgvinsdóttir, S.; Ólafsdóttir, H.; Skúlason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918.

[190]

Zhang, R.; Zhang, Y.; Ren, X.; Cui, G. W.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545–9549.

[191]

Zhang, L.; Ji, X. Q.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions. ACS Sustainable Chem. Eng. 2018, 6, 9550–9554.

[192]

Yang, X. H.; Ling, F. L.; Su, J. F.; Zi, X. R.; Zhang, H.; Zhang, H. J.; Li, J.; Zhou, M.; Wang, Y. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Appl. Catal. B 2020, 264, 118477.

[193]

Ren, X.; Cui, G. W.; Chen, L.; Xie, F. Y.; Wei, Q.; Tian, Z. Q.; Sun, X. P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem. Commun. 2018, 54, 8474–8477.

[194]

Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

[195]

Fang, Y.; Xue, Y. R.; Li, Y. J.; Yu, H. D.; Hui, L.; Liu, Y. X.; Xing, C. Y.; Zhang, C.; Zhang, D. Y.; Wang, Z. Q. et al. Graphdiyne interface engineering: Highly active and selective ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 13021–13027.

[196]

Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.

[197]

Yao, Y.; Feng, Q.; Zhu, S. Q.; Li, J. D.; Yao, Y. Z.; Wang, Y. J.; Wang, Q.; Gu, M.; Wang, H. J.; Li, H. et al. Chromium oxynitride electrocatalysts for electrochemical synthesis of ammonia under ambient conditions. Small Methods 2019, 3, 1800324.

[198]

Jin, H. Y.; Song, T.; Paik, U.; Qiao, S. Z. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc. Mater. Res. 2021, 2, 559–573.

[199]

Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

[200]

Sweeny, N. P.; Rohrer, C. S.; Brown, O. W. Dinickel phosphide as a heterogeneous catalyst for the vapor phase reduction of nitrobenzene with hydrogen to aniline and water. J. Am. Chem. Soc. 1958, 80, 799–800.

[201]

Xie, H. T.; Geng, Q.; Zhu, X. J.; Luo, Y. L.; Chang, L.; Niu, X. B.; Shi, X. F.; Asiri, A. M.; Gao, S. Y.; Wang, Z. M. et al. PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 24760–24764.

[202]

Zhao, R. B.; Liu, C. W.; Zhang, X. X.; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo, Y. B.; Gao, S. Y.; Luo, Y. L.; Wang, Z. M. et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 77–81.

[203]

Su, J. F.; Zhao, H. Y.; Fu, W. W.; Tian, W.; Yang, X. H.; Zhang, H. J.; Ling, F. L.; Wang, Y. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: New efficient electrocatalysts for ambient nitrogen fixation. Appl. Catal. B 2020, 265, 118589.

[204]

Guo, W. H.; Liang, Z. B.; Zhao, J. L.; Zhu, B. J.; Cai, K. T.; Zou, R. Q.; Xu, Q. Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature. Small Methods 2018, 2, 1800204.

[205]

Meng, Q. G.; Hou, Y. P.; Yang, F. Q.; Cao, C. L.; Zou, Z.; Luo, J. H.; Zhou, W. Z.; Tong, Z. K.; Chen, S. X.; Zhou, S. D. et al. Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis. Appl. Catal. B 2022, 303, 120874.

[206]

Teng, J.; Qin, X.; Guo, W. Y.; Song, X. L.; Xiao, S. N.; Min, Y. L.; Xu, Q. J.; Fan, J. C. Boron nitride quantum dots coupled with CoP nanosheet arrays grown on carbon cloth for efficient nitrogen reduction reaction. Chem. Eng. J. 2022, 440, 135853.

[207]

Guo, C. Y.; Liu, X. J.; Gao, L. F.; Kuang, X.; Ren, X.; Ma, X. J.; Zhao, M. Z.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl. Catal. B 2020, 263, 118296.

[208]

Deng, Y.; Xiao, Z. Y.; Wang, Z. C.; Lai, J. P.; Liu, X. B.; Zhang, D.; Han, Y.; Li, S. X.; Sun, W.; Wang, L. The rational adjusting of proton-feeding by Pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics. Appl. Catal. B 2021, 291, 120047.

[209]

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

[210]

Liu Q.; Lin Y.; Gu S.; Cheng Z.; Sun S.; Zhang L.; Luo Y.; Alshehri A. A.; Hamdy M. S.; Kong Q. et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Res. 2022, DOI: 10.1007/s12274-022-4568-z.

[211]

Jin, M.; Zhang, X.; Han, M. M.; Wang, H. J.; Wang, G. Z.; Zhang, H. M. Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. J. Mater. Chem. A 2020, 8, 5936–5942.

[212]

Yu, J. Y.; Chang, B.; Yu, W. Q.; Li, X.; Wang, D. F.; Xu, Z. N.; Zhang, X. L.; Liu, H.; Zhou, W. J. Chromium phosphide nanoparticles embedded in porous nitrogen-/phosphorus-doped carbon as efficient electrocatalysts for a nitrogen reduction reaction. Carbon Energy 2022, 4, 237–245.

[213]

Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

[214]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

[215]

Khalil, I. E.; Xue, C.; Liu, W. J.; Li, X. H.; Shen, Y.; Li, S.; Zhang, W. N.; Huo, F. W. The role of defects in metal-organic frameworks for nitrogen reduction reaction: When defects switch to features. Adv. Funct. Mater. 2021, 31, 2010052.

[216]

Yang, Y. Y.; Zhang, L. F.; Hu, Z. P.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R. G.; Qiu, K. W.; Mao, J.; Ling, T. et al. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 4525–4531.

[217]

Qin, Q.; Zhao, Y.; Schmallegger, M.; Heil, T.; Schmidt, J.; Walczak, R.; Gescheidt-Demner, G.; Jiao, H. J.; Oschatz, M. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew. Chem., Int. Ed. 2019, 58, 13101–13106.

[218]

Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

[219]

Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.

[220]

Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han, X. M.; Tsung, C. K.; Ling, X. Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 2018, 4, eaar3208.

[221]

Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

[222]

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3·mgcat. -1·h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, e1803498.

[223]

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

[224]

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

[225]

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

[226]

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

[227]

Zang, W. J.; Yang, T.; Zou, H. Y.; Xi, S. B.; Zhang, H.; Liu, X. M.; Kou, Z. K.; Du, Y. H.; Feng, Y. P.; Shen, L. et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 2019, 9, 10166–10173.

[228]

Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.

[229]

Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare Earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

[230]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[231]

Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

[232]

Li, H. B.; Liu, Y. X.; Chen, K.; Margraf, J. T.; Li, Y. Y.; Reuter, K. Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS2. ACS Catal. 2021, 11, 7906–7914.

[233]

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

[234]

Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

[235]

Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

[236]

Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919–924.

[237]

Liu, H. H.; Cao, X. R.; Ding, L. X.; Wang, H. H. Sn-doped black phosphorene for enhancing the selectivity of nitrogen electroreduction to ammonia. Adv. Funct. Mater. 2022, 32, 2111161.

[238]

Li, L. Q.; Tang, C.; Cui, X. Y.; Zheng, Y.; Wang, X. S.; Xu, H. L.; Zhang, S.; Shao, T.; Davey, K.; Qiao, S. Z. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem., Int. Ed. 2021, 60, 14131–14137.

[239]

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

[240]

Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P. et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.

[241]

Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.

[242]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[243]

Zhao, J. X.; Yang, J. J.; Ji, L.; Wang, H. B.; Chen, H.; Niu, Z. G.; Liu, Q.; Li, T. S.; Cui, G. L.; Sun, X. P. Defect-rich fluorographene nanosheets for artificial N2 fixation under ambient conditions. Chem. Commun. 2019, 55, 4266–4269.

[244]

Wang, X. W.; Qiu, S. Y.; Feng, J. M.; Tong, Y. Y.; Zhou, F. L.; Li, Q. Y.; Song, L.; Chen, S. M.; Wu, K. H.; Su, P. P. et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 2020, 32, 2004382.

[245]

Wu, X. F.; Xia, L.; Wang, Y.; Lu, W. B.; Liu, Q.; Shi, X. F.; Sun, X. P. Mn3O4 nanocube: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small 2018, 14, 1803111.

[246]

Zhang, R.; Han, J. R.; Zheng, B. Z.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions. Inorg. Chem. Front. 2019, 6, 391–395.

[247]

Zhang, X. X.; Wu, T. W.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wei, P. P.; Luo, Y. L.; Zhang, Y. N.; Sun, X. P. Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catal. 2019, 9, 4609–4615.

[248]

Wan, Y. C.; Wang, Z. J.; Li, J.; Lv, R. T. Mo2C-MoO2 heterostructure quantum dots for enhanced electrocatalytic nitrogen reduction to ammonia. ACS Nano 2022, 16, 643–654.

[249]

Wang, Y.; Jia, K.; Pan, Q.; Xu, Y. D.; Liu, Q.; Cui, G. W.; Guo, X. D.; Sun, X. P. Boron-doped TiO2 for efficient electrocatalytic N2 Fixation to NH3 at ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 117–122.

[250]

Zhang, R.; Guo, H. R.; Yang, L.; Wang, Y.; Niu, Z. G.; Huang, H.; Chen, H. Y.; Xia, L.; Li, T. S.; Shi, X. F. et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem 2019, 6, 1014–1018.

[251]

Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597–9601.

[252]

Xu, B.; Xia, L.; Zhou, F. L.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Zhou, Q.; Liu, Q.; Cui, G. W.; Xiong, X. L. et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2019, 7, 2889–2893.

[253]

Xu, B.; Liu, Z. C.; Qiu, W. B.; Liu, Q.; Sun, X. P.; Cui, G. W.; Wu, Y. P.; Xiong, X. L. La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition. Electrochim. Acta 2019, 298, 106–111.

[254]

Wei, P. P.; Xie, H. T.; Zhu, X. J.; Zhao, R. B.; Ji, L.; Tong, X.; Luo, Y. S.; Cui, G. W.; Wang, Z. M.; Sun, X. P. CoS2 nanoparticles-embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N2-to-NH3 fixation under ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 29–33.

[255]

Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 Reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.

[256]

Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

[257]

Li, S. X.; Wu, Y. M.; Liu, Q.; Li, B. H.; Li, T. S.; Zhao, H. T.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Li, L. et al. CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions. Inorg. Chem. Front. 2021, 8, 3105–3110.

[258]

Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1Sx on Mesoporous TiO2 for Boosting Ambient Electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed., in press, http://doi.org/10.1002/anie.202203022.

[259]

Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251.

[260]

Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.

[261]

Chen, H. J.; Wu, T. W.; Li, X.; Lu, S. Y.; Zhang, F.; Wang, Y.; Zhao, H. T.; Liu, Q.; Luo, Y. L.; Asiri, A. M. et al. Modulating oxygen vacancies of TiO2 nanospheres by mn-doping to boost electrocatalytic N2 reduction. ACS Sustainable Chem. Eng. 2021, 9, 1512–1517.

[262]

Huang, H.; Xia, L.; Cao, R. R.; Niu, Z. G.; Chen, H. Y.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. A biomass-derived carbon-based electrocatalyst for efficient N2 fixation to NH3 under ambient conditions. Chem. -Eur. J. 2019, 25, 1914–1917.

[263]

Zhao, J. X.; Zhang, L.; Xie, X. Y.; Li, X. H.; Ma, Y. J.; Liu, Q.; Fang, W. H.; Shi, X. F.; Cui, G. L.; Sun, X. P. Ti3C2Tx (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 2018, 6, 24031–24035.

[264]

Xing, Z.; Kong, W. H.; Wu, T. W.; Xie, H. T.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Sun, X. P. Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3. ACS Sustainable Chem. Eng. 2019, 7, 12692–12696.

[265]

Biswas, A.; Nandi, S.; Kamboj, N.; Pan, J.; Bhowmik, A.; Dey, R. S. Alteration of electronic band structure via a metal-semiconductor interfacial effect enables high Faradaic efficiency for electrochemical nitrogen fixation. ACS Nano 2021, 15, 20364–20376.

[266]

Chu, K. B.; Liu, F. Z.; Zhu, J. W.; Fu, H.; Zhu, H. Y.; Zhu, Y. L.; Zhang, Y.; Lai, F. L.; Liu, T. X. A general strategy to boost electrocatalytic nitrogen reduction on perovskite oxides via the oxygen vacancies derived from a-site deficiency. Adv. Energy Mater. 2021, 11, 2003799.

[267]

Li, J.; Zhu, X. J.; Wang, T.; Luo, Y. L.; Sun, X. P. An Fe2O3 nanoparticle-reduced graphene oxide composite for ambient electrocatalytic N2 reduction to NH3. Inorg. Chem. Front. 2019, 6, 2682–2685.

[268]

Wu, D.; Wang, H. B.; Huang, H.; Zhang, R.; Ji, L.; Chen, H. Y.; Luo, Y. L.; You, J. M.; Tang, D. P.; Zhang, Z. H. et al. Ambient electrochemical N2 reduction to NH3 under alkaline conditions enabled by a layered K2Ti4O9 nanobelt. Chem. Commun. 2019, 55, 7546–7549.

[269]

Li, L.; Chen, H. J.; Li, L.; Li, B. H.; Wu, Q. Q.; Cui, C. H.; Deng, B.; Luo, Y. L.; Liu, Q.; Li, T. S. et al. La-doped TiO2 nanorods toward boosted electrocatalytic N2-to-NH3 conversion at ambient conditions. Chin. J. Catal. 2021, 42, 1755–1762.

[270]

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

[271]

Han, M.; Guo, M. H.; Yun, Y. P.; Xu, Y. J.; Sheng, H. T.; Chen, Y. X.; Du, Y. X.; Ni, K.; Zhu, Y. W.; Zhu, M. Z. Effect of heteroatom and charge reconstruction in atomically precise metal nanoclusters on electrochemical synthesis of ammonia. Adv. Funct. Mater., in press, http://doi.org/10.1002/adfm.202202820.

[272]

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

[273]

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

[274]

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

[275]

Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A 2019, 7, 21674–21677.

[276]

Li, P. P.; Wang, J. W.; Chen, H. Y.; Sun, X. P.; You, J. M.; Liu, S. H.; Zhang, Y. Y.; Liu, M. L.; Niu, X. B.; Luo, Y. L. Synergistic electrocatalytic N2 reduction using a PTCA nanorod-rGO hybrid. J. Mater. Chem. A 2019, 7, 12446–12450.

[277]

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

[278]

Xu, T.; Ma, D. W.; Li, C. B.; Liu, Q.; Lu, S. Y.; Asiri, A. M.; Yang, C.; Sun, X. P. Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles. Chem. Commun. 2020, 56, 3673–3676.

[279]

Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.

[280]

Chen, H. J.; Liang, J.; Li, L.; Zheng, B. Z.; Feng, Z. S.; Xu, Z. Q.; Luo, Y. L.; Liu, Q.; Shi, X. D.; Liu, Y. et al. Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 41715–41722.

[281]

Zhu, X. J.; Wu, T. W.; Ji, L.; Li, C. B.; Wang, T.; Wen, S. H.; Gao, S. Y.; Shi, X. F.; Luo, Y. L.; Peng, Q. L. et al. Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity. J. Mater. Chem. A 2019, 7, 16117–16121.

[282]

Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

[283]

Chen, H. Y.; Zhu, X. J.; Huang, H.; Wang, H. B.; Wang, T.; Zhao, R. B.; Zheng, H. G.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. Sulfur dots-graphene nanohybrid: A metal-free electrocatalyst for efficient N2-to-NH3 fixation under ambient conditions. Chem. Commun. 2019, 55, 3152–3155.

[284]

Han, J. R.; Ji, X. Q.; Ren, X.; Cui, G. W.; Li, L.; Xie, F. Y.; Wang, H.; Li, B. H.; Sun, X. P. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. J. Mater. Chem. A 2018, 6, 12974–12977.

[285]

Wang, T.; Liu, Q.; Li, T. S.; Lu, S. Y.; Chen, G.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Ma, D. W.; Sun, X. P. A magnetron sputtered Mo3Si thin film: An efficient electrocatalyst for N2 reduction under ambient conditions. J. Mater. Chem. A 2021, 9, 884–888.

[286]

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

[287]

Li, Y.; Li, J. W.; Huang, J. H.; Chen, J. X.; Kong, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Chai, G. L.; Wen, Z. H. et al. Boosting electroreduction kinetics of nitrogen to ammonia via tuning electron distribution of single-atomic iron sites. Angew. Chem., Int. Ed. 2021, 60, 9078–9085.

[288]

Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y. et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257–2260.

[289]

Yuan, M. L.; Li, Q. G.; Zhang, J. X.; Wu, J. W.; Zhao, T. K.; Liu, Z. J.; Zhou, L.; He, H. Y.; Li, B.; Zhang, G. J. Engineering surface atomic architecture of NiTe nanocrystals toward efficient electrochemical N2 fixation. Adv. Funct. Mater. 2020, 30, 2004208.

[290]

Kong, W. H.; Gong, F.; Zhou, Q.; Yu, G. S.; Ji, L.; Sun, X. P.; Asiri, A. M.; Wang, T.; Luo, Y. L.; Xu, Y. H. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 18823–18827.

[291]

Wang, Y.; Cui, X. Q.; Zhao, J. X.; Jia, G. R.; Gu, L.; Zhang, Q. H.; Meng, L. K.; Shi, Z.; Zheng, L. R.; Wang, C. Y. et al. Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 2019, 9, 336–344.

[292]

Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun. 2019, 55, 3987–3990.

[293]

Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264–270.

[294]

Li, P. P.; Liu, Z. C.; Wu, T. W.; Zhang, Y.; Wang, L. Y.; Wang, L.; Ji, L.; Zhang, Y. Y.; Luo, Y. L.; Wang, T. et al. Ambient electrocatalytic N2 reduction to NH3 by metal fluorides. J. Mater. Chem. A 2019, 7, 17761–17765.

[295]

Zhang, D.; Zhao, H.; Wu, X. K.; Deng, Y.; Wang, Z. C.; Han, Y.; Li, H. D.; Shi, Y.; Chen, X. L.; Li, S. X. et al. Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 2021, 31, 2006939.

[296]

Lai, F. L.; Chen, N.; Ye, X. B.; He, G. J.; Zong, W.; Holt, K. B.; Pan, B. C.; Parkin, I. P.; Liu, T. X.; Chen, R. J. Refining energy levels in ReS2 nanosheets by low-valent transition-metal doping for dual-boosted electrochemical ammonia/hydrogen production. Adv. Funct. Mater. 2020, 30, 1907376.

[297]

Wang, X. M.; Feng, Z. M.; Xiao, B. X.; Zhao, J. X.; Ma, H. Y.; Tian, Y.; Pang, H. J.; Tan, L. C. Polyoxometalate-based metal-organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Green Chem. 2020, 22, 6157–6169.

[298]

Hui, L.; Xue, Y. R.; Yu, H. D.; Liu, Y. X.; Fang, Y.; Xing, C. Y.; Huang, B. L.; Li, Y. L. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683.

[299]

Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 Electroreduction enabled by Se-vacancy-rich WSe2-x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

[300]

Xu, G. R.; Batmunkh, M.; Donne, S.; Jin, H. N.; Jiang, J. X.; Chen, Y.; Ma, T. I. Ruthenium(Ⅲ) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. J. Mater. Chem. A 2019, 7, 25433–25440.

[301]

Yang, C. Y.; Huang, B. L.; Bai, S. X.; Feng, Y. G.; Shao, Q.; Huang, X. Q. A Generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 2020, 32, 2001267.

[302]

Brown, D. E.; Edmonds, T.; Joyner, R. W.; McCarroll, J. J.; Tennison, S. R. The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis. Catal. Lett. 2014, 144, 545–552.

[303]

Han, G. F.; Li, F.; Chen, Z. W.; Coppex, C.; Kim, S. J.; Noh, H. J.; Fu, Z. P.; Lu, Y. L.; Singh, C. V.; Siahrostami, S. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2021, 16, 325–330.

[304]

Gao, W. B.; Guo, J. P.; Wang, P. K.; Wang, Q. R.; Chang, F.; Pei, Q. J.; Zhang, W. J.; Liu, L.; Chen, P. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 2018, 3, 1067–1075.

[305]

Burgess, B. K.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3012.

[306]

Burgess, B. K.; Wherland, S.; Newton, W. E.; Stiefel, E. I. Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 1981, 20, 5140–5146.

[307]

Wherland, S.; Burgess, B. K.; Stiefel, E. I.; Newton, W. E. Nitrogenase reactivity: Effects of component ratio on electron flow and distribution during nitrogen fixation. Biochemistry 1981, 20, 5132–5140.

[308]

Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.

[309]

Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2011, 3, 120–125.

[310]

Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193.

[311]

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936.

[312]

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

[313]

Wu, A. J.; Yang, J.; Xu, B.; Wu, X. Y.; Wang, Y. H.; Lv, X. J.; Ma, Y. C.; Xu, A. N.; Zheng, J. G.; Tan, Q. H. et al. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B 2021, 299, 120667.

[314]

Sun, J.; Alam, D.; Daiyan, R.; Masood, H.; Zhang, T. Q.; Zhou, R. W.; Cullen, P. J.; Lovell, E. C.; Jalili, A.; Amal, R. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ. Sci. 2021, 14, 865–872.

[315]

Ren, Y. W.; Yu, C.; Wang, L. S.; Tan, X. Y.; Wang, Z.; Wei, Q. B.; Zhang, Y. F.; Qiu, J. S. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system. J. Am. Chem. Soc., in press, http://doi.org/10.1021/jacs.2c00089.

[316]

Westhead, O.; Jervis, R.; Stephens, I. E. L. Is lithium the key for nitrogen electroreduction? Science 2021, 372, 1149–1150.

[317]

Lazouski, N.; Chung, M.; Williams, K.; Gala, M. L.; Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 2020, 3, 463–469.

[318]

Tsuneto, A.; Kudo, A.; Sakata, T. Efficient electrochemical reduction of N2 to NH3 catalyzed by lithium. Chem. Lett. 1993, 22, 851–854.

[319]

Tsuneto, A.; Kudo, A.; Sakata, T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J. Electroanal. Chem. 1994, 367, 183–188.

[320]

Cai, X. Y.; Fu, C. H.; Iriawan, H.; Yang, F.; Wu, A. M.; Luo, L. X.; Shen, S. Y.; Wei, G. H.; Shao-Horn, Y.; Zhang, J. L. Lithium-mediated electrochemical nitrogen reduction: Mechanistic insights to enhance performance. iScience 2021, 24, 103105.

[321]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[322]

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

[323]

Wang, X. G.; Zhang, Q. M.; Zhang, X.; Wang, C. Y.; Xie, Z. J.; Zhou, Z. Promoting nitrogen electroreduction on Mo2C nanoparticles highly dispersed on N-doped carbon nanosheets toward rechargeable Li-N2 batteries. Small Methods 2019, 3, 1800334.

[324]

Zhang, Z.; Wu, S. S.; Yang, C.; Zheng, L. Y.; Xu, D. L.; Zha, R. H.; Tang, L.; Cao, K. Z.; Wang, X. G.; Zhou, Z. Li-N2 batteries: A reversible energy storage system? Angew. Chem., Int. Ed. 2019, 58, 17782–17787.

[325]

Yang, Y. J.; Zhang, N. B.; Zou, Z. L.; Yi, X. H.; Liu, J. Q. Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery. Chem. Eng. J. 2022, 435, 135148.

[326]

Ge, B. C.; Wang, Y. Y.; Sun, Y.; Li, Y. P.; Huang, J. Y.; Peng, Q. M. A proof-of-concept of Na-N2 rechargeable battery. Energy Stor. Mater. 2019, 23, 733–740.

[327]

Guo, Y.; Yang, Q.; Wang, D. H.; Li, H. F.; Huang, Z. D.; Li, X. L.; Zhao, Y. W.; Dong, B. B.; Zhi, C. Y. A rechargeable Al-N2 battery for energy storage and highly efficient N2 fixation. Energy Environ. Sci. 2020, 13, 2888–2895.

[328]

Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

[329]

Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

[330]

Ren, J. T.; Chen, L. L.; Liu, Y. P.; Yuan, Z. Y. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn-N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380.

[331]

Lv, X. W.; Liu, Y. P.; Wang, Y. S.; Liu, X. L.; Yuan, Z. Y. Encapsulating vanadium nitride nanodots into N, S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Appl. Catal. B 2021, 280, 119434.

[332]

Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B 2020, 270, 118892.

[333]

Du, C.; Gao, Y. J.; Wang, J. G.; Chen, W. Achieving 59% faradaic efficiency of the N2 electroreduction reaction in an aqueous Zn-N2 battery by facilely regulating the surface mass transport on metallic copper. Chem. Commun. 2019, 55, 12801–12804.

[334]

Dutta, D.; Landolt, D. Electrochemical behavior of nitric oxide in 4 M H2SO4 on platinum. J. Electrochem. Soc. 1972, 119, 1320–1325.

[335]

Janssen, L. J. J.; Pieterse, M. M. J.; Barendrecht, E. Reduction of nitric oxide at a platinum cathode in an acidic solution. Electrochim. Acta 1977, 22, 27–30.

[336]

Paseka, I.; Voňková, J. Reduction of no on smooth, porous platinum and platinum-carbon electrodes in acidic solutions. Electrochim. Acta 1980, 25, 1251–1253.

[337]

Colucci, J. A.; Foral, M. J.; Langer, S. H. The electro reduction of nitric oxide on bulk platinum in acid solutions. Electrochim. Acta 1985, 30, 521–528.

[338]

Gootzen, J. F. E.; van Hardeveld, R. M.; Visscher, W.; van Santen, R. A.; van Veen, J. A. R. The study of NO adsorbate layers on platinized platinum in the liquid phase with cyclic voltammetry, DEMS and FTIRS. Recl. Trav. Chim. Pays-Bas 1996, 115, 480–485.

[339]

de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode. Electrochim. Acta 2001, 46, 923–930.

[340]

Beltramo, G. L.; Koper, M. T. M. Nitric oxide reduction and oxidation on stepped Pt[n(111)×(111)] electrodes. Langmuir 2003, 19, 8907–8915.

[341]

Rosca, V.; Koper, M. T. M. Rate laws for reductive stripping of NO adlayers at single-crystal platinum electrodes as deduced from transient experiments. Surf. Sci. 2005, 584, 258–268.

[342]

Cuesta, A.; Escudero, M. Electrochemical and FTIRS characterisation of NO adlayers on cyanide-modified Pt(111) electrodes: The mechanism of nitric oxide electroreduction on Pt. Phys. Chem. Chem. Phys. 2008, 10, 3628–3634.

[343]

de Vooys, A. C. A.; Koper, M. T. M.; van Santen, R. A.; van Veen, J. A. R. Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes. J. Catal. 2001, 202, 387–394.

[344]

Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.

[345]

Krzywda, P. M.; Paradelo Rodríguez, A.; Benes, N. E.; Mei, B. T.; Mul, G. Effect of electrolyte and electrode configuration on Cu-catalyzed nitric oxide reduction to ammonia. ChemElectroChem 2022, 9, e202101273.

[346]

Liu, P. Y.; Liang, J.; Wang, J. Q.; Zhang, L. C.; Li, J.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L.; Li, N. et al. High-performance NH3 production via NO electroreduction over a NiO nanosheet array. Chem. Commun. 2021, 57, 13562–13565.

[347]

Liu, H.; Xiang, K. S.; Yang, B. T.; Xie, X. F.; Wang, D. L.; Zhang, C.; Liu, Z. L.; Yang, S.; Liu, C.; Zou, J. P. et al. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid. Environ. Sci. Pollut. Res. 2017, 24, 14249–14258.

[348]

Kim, D. H.; Ringe, S.; Kim, H.; Kim, S.; Kim, B.; Bae, G.; Oh, H. S.; Jaouen, F.; Kim, W.; Kim, H. et al. Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nat. Commun. 2021, 12, 1856.

[349]

Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical nitric oxide reduction on metal surfaces. Angew. Chem., Int. Ed. 2021, 60, 21966–21972.

[350]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[351]

Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y. R.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266.

[352]

Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

[353]

Kim, D.; Shin, D.; Heo, J.; Lim, H.; Lim, J. A.; Jeong, H. M.; Kim, B. S.; Heo, I.; Oh, I.; Lee, B. et al. Unveiling Electrode–electrolyte design-based no reduction for nh3 synthesis. ACS Energy Lett. 2020, 5, 3647–3656.

[354]

Cheon, S.; Kim, W. J.; Kim, D. Y.; Kwon, Y.; Han, J. I. Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode. ACS Energy Lett. 2022, 7, 958–965.

[355]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[356]

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

[357]

Zhao, J.; Xue, S.; Barber, J.; Zhou, Y. W.; Meng, J.; Ke, X. B. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 2020, 8, 4700–4734.

[358]

Frear, D. S.; Burrell, R. C. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal. Chem. 1955, 27, 1664–1665.

[359]

Anderson, J. H. The copper-catalysed oxidation of hydroxylamine. Analyst 1964, 89, 357–362.

[360]

Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y. P.; Wang, G. C.; Li, W.; Ozin, G. A. Pollution to solution: A universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catal. 2022, 2, 622–638.

[361]

Li, Z.; Ma, Z.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Physics 2022, 22, 100586.

[362]

Lv, X. W.; Liu, X. L.; Suo, Y. J.; Liu, Y. P.; Yuan, Z. Y. Identifying the dominant role of pyridinic-N-Mo bonding in synergistic electrocatalysis for ambient nitrogen reduction. ACS Nano 2021, 15, 12109–12118.

[363]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[364]

Tursun, M.; Wu, C. NO electroreduction by transition metal dichalcogenides with chalcogen vacancies. ChemElectroChem 2021, 8, 3113–3122.

[365]

Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

[366]

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

[367]

Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

[368]

Ouyang, L.; Zhou, Q.; Liang, J.; Zhang, L. C.; Yue, L. C.; Li, Z. R.; Li, J.; Luo, Y. S.; Liu, Q.; Li, N. et al. High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. J. Colloid Interface Sci. 2022, 616, 261–267.

[369]

Zhou, Q.; Gong, F.; Xie, Y. L.; Xia, D. W.; Hu, Z. G.; Wang, S. J.; Liu, L. S.; Xiao, R. A general strategy for designing metal-free catalysts for highly-efficient nitric oxide reduction to ammonia. Fuel 2022, 310, 122442.

[370]

Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.

[371]

Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

[372]

Xiong, Y. H.; Li, Y. T.; Wan, S. P.; Yu, Y.; Zhang, S. L.; Zhong, Q. Ferrous-based electrolyte for simultaneous NO absorption and electroreduction to NH3 using Au/rGO electrode. J. Hazard. Mater. 2022, 430, 128451.

[373]

Li, Y. B.; Cheng, C. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022, 7, 1187–1194.

[374]

Kwon, Y. I.; Kim, S. K.; Kim, Y. B.; Son, S. J.; Nam, G. D.; Park, H. J.; Cho, W. C.; Yoon, H. C.; Joo, J. H. Nitric oxide utilization for ammonia production using solid electrolysis cell at atmospheric pressure. ACS Energy Lett. 2021, 6, 4165–4172.

[375]

Kuypers, M. M. M.; Marchant, H. K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276.

[376]

Bae, S. E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. J. Am. Chem. Soc. 2007, 129, 10171–10180.

[377]

Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

[378]

Wang, R.; Wang, Z.; Xiang, X. J.; Zhang, R.; Shi, X. F.; Sun, X. P. MnO2 nanoarrays: An efficient catalyst electrode for nitrite electroreduction toward sensing and NH3 synthesis applications. Chem. Commun. 2018, 54, 10340–10342.

[379]

Kani, N. C.; Gauthier, J. A.; Prajapati, A.; Edgington, J.; Bordawekar, I.; Shields, W.; Shields, M.; Seitz, L. C.; Singh, A. R.; Singh, M. R. Solar-driven electrochemical synthesis of ammonia using nitrate with 11% solar-to-fuel efficiency at ambient conditions. Energy Environ. Sci. 2021, 14, 6349–6359.

[380]

van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290–294.

[381]

Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate-a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.

[382]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[383]

Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.

[384]

Reyter, D.; Chamoulaud, G.; Bélanger, D.; Roué, L. Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. J. Electroanal. Chem. 2006, 596, 13–24.

[385]

Shih, Y. J.; Wu, Z. L.; Huang, Y. H.; Huang, C. P. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chem. Eng. J. 2020, 383, 123157.

[386]

Fu, X. B.; Zhao, X. G.; Hu, X. B.; He, K.; Yu, Y. N.; Li, T.; Tu, Q.; Qian, X.; Yue, Q.; Wasielewski, M. R. et al. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Applied Mater. Today 2020, 19, 100620.

[387]

Hu, T.; Wang, C. H.; Wang, M. T.; Li, C. M.; Guo, C. X. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 2021, 11, 14417–14427.

[388]

Zhu, T. H.; Chen, Q. S.; Liao, P.; Duan, W. J.; Liang, S.; Yan, Z.; Feng, C. H. Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 2020, 16, 2004526.

[389]

Jiang, G. M.; Peng, M.; Hu, L.; Ouyang, J. Y.; Lv, X. S.; Yang, Z. H.; Liang, X. Y.; Liu, Y.; Liu, H. Electron-deficient Cuδ+ stabilized by interfacial Cu-O-Al bonding for accelerating electrocatalytic nitrate conversion. Chem. Eng. J. 2022, 435, 134853.

[390]

Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim. Acta 2013, 89, 488–496.

[391]

Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.

[392]

Ma, X. J.; Li, M.; Feng, C. P.; He, Z. Electrochemical nitrate removal with simultaneous magnesium recovery from a mimicked RO brine assisted by in situ chloride ions. J. Hazard. Mater. 2020, 388, 122085.

[393]

Li, M.; Feng, C. P.; Zhang, Z. Y.; Shen, Z. L.; Sugiura, N. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochem. Commun. 2009, 11, 1853–1856.

[394]

Mácová, Z.; Bouzek, K.; Šerák, J. Electrocatalytic activity of copper alloys for NO3 reduction in a weakly alkaline solution. J. Appl. Electrochem. 2007, 37, 557–566.

[395]

Cerrón-Calle, G. A.; Fajardo, A. S.; Sánchez-Sánchez, C. M.; Garcia-Segura, S. Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Appl. Catal. B 2022, 302, 120844.

[396]

Comisso, N.; Cattarin, S.; Fiameni, S.; Gerbasi, R.; Mattarozzi, L.; Musiani, M.; Vázquez-Gómez, L.; Verlato, E. Electrodeposition of Cu-Rh alloys and their use as cathodes for nitrate reduction. Electrochem. Commun. 2012, 25, 91–93.

[397]

Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu(111) single-atom alloys. Appl. Catal. B 2022, 310, 121346.

[398]

Anastasopoulos, A.; Hannah, L.; Hayden, B. E. High throughput optimisation of PdCu alloy electrocatalysts for the reduction of nitrate ions. J. Catal. 2013, 305, 27–35.

[399]

Shih, Y. J.; Wu, Z. L.; Lin, C. Y.; Huang, Y. H.; Huang, C. P. Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity. Appl. Catal. B 2020, 273, 119053.

[400]

Lei, X. H.; Liu, F.; Li, M.; Ma, X. J.; Wang, X. H.; Zhang, H. J. Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater. Chemosphere 2018, 212, 237–244.

[401]

Zhao, Q. S.; Tang, Z. H.; Chen, B.; Zhu, C. H.; Tang, H. B.; Meng, G. W. Efficient electrocatalytic reduction of nitrate to nitrogen gas by cubic Cu2O Film with predominated (111) orientation. Chem. Commun. 2022, 58, 3613–3616.

[402]

Feng, T.; Wang, J.; Wang, Y.; Yu, C. F.; Zhou, X.; Xu, B. C.; László, K.; Li, F. T.; Zhang, W. X. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state. Chem. Eng. J. 2022, 433, 133495.

[403]

Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z. Z.; Leverett, J.; Khan, M. H. A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M. et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598.

[404]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[405]

Chen, Q. Y.; An, X. G.; Liu, Q.; Wu, X. Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@Cu2O catalyst. Chem. Commun. 2022, 58, 517–520.

[406]

Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

[407]

Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol., in press, http://doi.org/10.1038/s41565-022-01121-4

[408]

Chen, J.; Zhou, Q.; Yue, L. C.; Zhao, D. L.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Hamdy, M. S. et al. Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia. Chem. Commun. 2022, 58, 3787–3790.

[409]

Chen, Q. Y.; Liang, J.; Liu, Q.; Dong, K.; Yue, L. C.; Wei, P. P.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B. et al. Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chem. Commun. 2022, 58, 4259–4262.

[410]

Wang, J. Q.; Liang, J.; Liu, P. Y.; Yan, Z.; Cui, L. X.; Yue, L. C.; Zhang, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L. et al. Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. J. Mater. Chem. A 2022, 10, 2842–2848.

[411]

Wei, P. P.; Liang, J.; Liu, Q.; Xie, L. S.; Tong, X.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N.; Tang, B. et al. Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. J. Colloid Interface Sci. 2022, 615, 636–642.

[412]

Chen, Q. R.; Liang, J.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Li, T. S.; Guo, H. R.; Sun, X. P. CoO nanoparticle decorated N-doped carbon nanotubes: A high-efficiency catalyst for nitrate reduction to ammonia. Chem. Commun. 2022, 58, 5901–5904.

[413]

Li, Z. R.; Wen, G. L.; Liang, J.; Li, T. S.; Luo, Y. L.; Kong, Q. Q.; Shi, X. F.; Asiri, A. M.; Liu, Q.; Sun, X. P. High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt-phosphorus alloy film. Chem. Commun. 2021, 57, 9720–9723.

[414]

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small, 2022, 18, 2106961.

[415]

Deng, Z. Q.; Liang, J.; Liu, Q.; Ma, C. Q.; Xie, L. S.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chem. Eng. J. 2022, 435, 135104.

[416]

Fu, W. Y.; Du, X. D.; Su, P.; Zhang, Q. Z.; Zhou, M. H. Synergistic effect of Co(Ⅲ) and Co(Ⅱ) in a 3D structured Co3O4/carbon felt electrode for enhanced electrochemical nitrate reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 28348–28358.

[417]

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

[418]

Ye, S. H.; Chen, Z. D.; Zhang, G. K.; Chen, W. D.; Peng, C.; Yang, X. Y.; Zheng, L. R.; Li, Y. L.; Ren, X. Z.; Cao, H. Q. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770.

[419]

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.

[420]

Li, J.; Zhao, D. L.; Zhang, L. C.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Hamdy, M. S.; Li, Q. et al. A FeCo2O4 nanowire array enabled electrochemical nitrate conversion to ammonia. Chem. Commun. 2022, 58, 4480–4483.

[421]

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

[422]

Jonoush, Z. A.; Rezaee, A.; Ghaffarinejad, A. Electrocatalytic nitrate reduction using Fe0/Fe3O4 nanoparticles immobilized on nickel foam: Selectivity and energy consumption studies. J. Cleaner Prod. 2020, 242, 118569.

[423]

Liu, Q.; Liu, Q.; Xie, L. S.; Ji, Y. Y.; Li, T. S.; Zhang, B.; Li, N.; Tang, B.; Liu, Y.; Gao, S. Y. et al. High-performance electrochemical nitrate reduction to ammonia under ambient conditions using a FeOOH nanorod catalyst. ACS Appl. Mater. Interfaces 2022, 14, 17312–17318.

[424]

Liu, Q.; Liu, Q.; Xie, L. S.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N.; Tang, B.; Yu, L. M.; Sun, X. P. A 3D FeOOH nanotube array: An efficient catalyst for ammonia electrosynthesis by nitrite reduction. Chem. Commun. 2022, 58, 5160–5163.

[425]

Teng, W.; Bai, N.; Liu, Y.; Liu, Y. P.; Fan, J. W.; Zhang, W. X. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol. 2018, 52, 230–236.

[426]

Su, L.; Han, D. D.; Zhu, G. J.; Xu, H.; Luo, W.; Wang, L. J.; Jiang, W.; Dong, A. G.; Yang, J. P. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Lett. 2019, 19, 5423–5430.

[427]

Lan, Y.; Chen, J. L.; Zhang, H.; Zhang, W. X.; Yang, J. Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. J. Mater. Chem. A 2020, 8, 15853–15863.

[428]

Zazo, J. A.; García-Muñoz, P.; Pliego, G.; Silveira, J. E.; Jaffe, P.; Casas, J. A. Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst. Appl. Catal. B 2020, 273, 118930.

[429]

Sun, J.; Gao, W. Q.; Fei, H. H.; Zhao, G. H. Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure. Appl. Catal. B 2022, 301, 120829.

[430]

Fang, Z. W.; Jin, Z. Y.; Tang, S. S.; Li, P. P.; Wu, P.; Yu, G. H. Porous two-dimensional iron-cyano nanosheets for high-rate electrochemical nitrate reduction. ACS Nano 2022, 16, 1072–1081.

[431]

Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

[432]

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

[433]

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

[434]

Li, J.; Zhang, Y.; Liu, C.; Zheng, L. R.; Petit, E.; Qi, K.; Zhang, Y.; Wu, H. L.; Wang, W. S.; Tiberj, A. et al. 3.4% solar-to-ammonia efficiency from nitrate using fe single atomic catalyst supported on MoS2 nanosheets. Adv. Funct. Mater. 2022, 32, 2108316.

[435]

He, W. H.; Zhang, J.; Dieckhöfer, S.; Varhade, S.; Brix, A. C.; Lielpetere, A.; Seisel, S.; Junqueira, J. R. C.; Schuhmann, W. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.

[436]

Liu, H. Z.; Park, J.; Chen, Y. F.; Qiu, Y.; Cheng, Y.; Srivastava, K.; Gu, S.; Shanks, B. H.; Roling, L. T.; Li, W. Z. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia. ACS Catal. 2021, 11, 8431–8442.

[437]

Li, J.; Zhan, G. M.; Yang, J. H.; Quan, F. J.; Mao, C. L.; Liu, Y.; Wang, B.; Lei, F. C.; Li, L. J.; Chan, A. W. M. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046.

[438]

Ge, Z. X.; Wang, T. J.; Ding, Y.; Yin, S. B.; Li, F. M.; Chen, P.; Chen, Y. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Adv. Energy Mater. 2022, 12, 2103916.

[439]

Deng, X. H.; Yang, Y. P.; Wang, L.; Fu, X. Z.; Luo, J. L. Metallic Co nanoarray catalyzes selective NH3 production from electrochemical nitrate reduction at current densities exceeding 2 A·cm-2. Adv. Sci. 2021, 8, 2004523.

[440]

Wang, J.; Cai, C.; Wang, Y. A.; Yang, X. M.; Wu, D. J.; Zhu, Y. M.; Li, M. H.; Gu, M.; Shao, M. H. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoOx nanosheets. ACS Catal. 2021, 11, 15135–15140.

[441]

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting Selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

[442]

Zhang, N.; Shang, J.; Deng, X.; Cai, L. J.; Long, R.; Xiong, Y. J.; Chai, Y. Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction. ACS Nano 2022, 16, 4795–4804.

[443]

Chen, M.; Bi, J. T.; Huang, X.; Wang, T.; Wang, Z.; Hao, H. X. Bi2O3 nanosheets arrays in-situ decorated on carbon cloth for efficient electrochemical reduction of nitrate. Chemosphere 2021, 278, 130386.

[444]

Cai, J. H.; Qin, S. B.; Akram, M. A.; Hou, X. D.; Jin, P.; Wang, F.; Zhu, B. T.; Li, X. H.; Feng, L. In-situ reconstruction enhanced dual-site catalysis towards nitrate electroreduction to ammonia. J. Mater. Chem. A, 2022, 10, 12669–12678.

[445]

Yu, Y.; Wang, C. H.; Yu, Y. F.; Wang, Y. T.; Zhang, B. Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Sci. China Chem. 2020, 63, 1469–1476.

[446]

Zhang, S.; Li, M.; Li, J. C.; Song, Q. N.; Liu, X. High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proc. Natl. Acad. Sci. USA 2022, 119, e2115504119.

[447]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[448]

Xie, L. S.; Hu, L.; Liu, Q.; Sun, S. J.; Zhang, L. C.; Zhao, D. L.; Liu, Q.; Chen, J.; Li, J.; Ouyang, L. et al. High-performance electrochemical nitrate reduction to ammonia at ambient condition using NiFe2O4 nanosheet array. Inorg. Chem. Front., in press, http://doi.org/10.1039/D2QI00827K

[449]

Maia, L. B.; Moura, J. J. G. How biology handles nitrite. Chem. Rev. 2014, 114, 5273–5357.

[450]

Wang, C. H.; Zhou, W.; Sun, Z. J.; Wang, Y. T.; Zhang, B.; Yu, Y. F. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. J. Mater. Chem. A 2021, 9, 239–243.

[451]

Zhao, D. L.; Liang, J.; Li, J.; Zhang, L. C.; Dong, K.; Yue, L. C.; Luo, Y. S.; Ren, Y. C.; Liu, Q.; Hamdy, M. S. et al. A TiO2-x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commum. 2022, 58, 3669–3672.

[452]

Braley, S. E.; Xie, J. Z.; Losovyj, Y.; Smith, J. M. Graphite conjugation of a macrocyclic cobalt complex enhances nitrite electroreduction to ammonia. J. Am. Chem. Soc. 2021, 143, 7203–7208.

[453]

Ouyang, L.; Yue, L. C.; Liu, Q.; Liu, Q.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Ali Alshehri, A.; Hamdy, M. S.; Kong, Q. Q. et al. Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. J. Colloid Interface Sci., in press, http://doi.org/10.1016/j.jcis.2022.05.119

[454]

Feng, Y. G.; Yang, H.; Zhang, Y.; Huang, X. Q.; Li, L. G.; Cheng, T.; Shao, Q. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 2020, 20, 8282–8289.

[455]

Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience, in press, https://doi.org/10.1016/j.esci.2022.04.008

[456]

Liu, Q.; Wen, G. L.; Zhao, D. L.; Xie, L. S.; Sun, S. J.; Zhang, L. C.; Luo, Y. S.; Ali Alshehri, A.; Hamdy, M. S.; Kong, Q. Q. et al. Nitrite reduction over Ag nanoarray electrocatalyst for ammonia synthesis. J. Colloid Interface Sci. 2022, 623, 513–519.

[457]

Zhang, X.; Wang, Y. T.; Wang, Y. B.; Guo, Y. M.; Xie, X. Y.; Yu, Y. F.; Zhang, B. Recent advances in electrocatalytic nitrite reduction. Chem. Commun. 2022, 58, 2777–2787.

[458]

Jin, S.; Hao, Z. M.; Zhang, K.; Yan, Z. H.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization. Angew. Chem., Int. Ed. 2021, 60, 20627–20648.

[459]

Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.; Jiao, F. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11, 846–851.

[460]

Li, J. N.; Zhang, Y. X.; Kuruvinashetti, K.; Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 2022, 6, 303–319.

[461]

Chen, C.; He, N. H.; Wang, S. Y. Electrocatalytic C–N coupling for urea synthesis. Small Sci. 2021, 1, 2100070.

[462]

Chen, C.; Zhu, X. R.; Wen, X. J.; Zhou, Y. Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q. L.; Du, S. Q.; Liu, T. T. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717–724.

[463]

Lv, C. D.; Zhong, L. X.; Liu, H. J.; Fang, Z. W.; Yan, C. S.; Chen, M. X.; Kong, Y.; Lee, C.; Liu, D. B.; Li, S. Z. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 2021, 4, 868–876.

[464]

Lei, F. C.; Xu, W. L.; Yu, J.; Li, K.; Xie, J. F.; Hao, P.; Cui, G. W.; Tang, B. Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chem. Eng. J. 2021, 426, 131317.

[465]

Marchesini, F. A.; Aghemo, V.; Moreno, I.; Navascués, N.; Irusta, S.; Gutierrez, L. Pd and Pd, In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media. J. Environ. Chem. Eng. 2020, 8, 103651.

[466]

Guo, S. J.; Heck, K.; Kasiraju, S.; Qian, H. F.; Zhao, Z.; Grabow, L. C.; Miller, J. T.; Wong, M. S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal. 2018, 8, 503–515.

[467]

Wu, Y. S.; Jiang, Z.; Lin, Z. C.; Liang, Y. Y.; Wang, H. L. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 2021, 4, 725–730.

[468]

Liu, M. J.; Guo, J. Y.; Hoffman, A. S.; Stenlid, J. H.; Tang, M. T.; Corson, E. R.; Stone, K. H.; Abild-Pedersen, F.; Bare, S. R.; Tarpeh, W. A. Catalytic performance and near-surface X-ray characterization of titanium hydride electrodes for the electrochemical nitrate reduction reaction. J. Am. Chem. Soc. 2022, 144, 5739–5744.

[469]

Li, J. S.; Gao, J. G.; Feng, T. Z.; Zhang, H. H.; Liu, D. P.; Zhang, C. M.; Huang, S. Y.; Wang, C. H.; Du, F.; Li, C. M. et al. Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. J. Power Sources 2021, 511, 230463.

[470]

Arikawa, Y.; Otsubo, Y.; Fujino, H.; Horiuchi, S.; Sakuda, E.; Umakoshi, K. Nitrite reduction cycle on a dinuclear ruthenium complex producing ammonia. J. Am. Chem. Soc. 2018, 140, 842–847.

[471]

Zhang, L.; Fan, G. L.; Xu, W. C.; Yu, M.; Wang, L.; Yan, Z. H.; Cheng, F. Y. Isolated diatomic Zn-Fe in N-doped carbon for electrocatalytic nitrogen reduction to ammonia. Chem. Commun. 2020, 56, 11957–11960.

[472]

Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

[473]

Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, 2001866.

[474]

Kolen, M.; Ripepi, D.; Smith, W. A.; Burdyny, T.; Mulder, F. M. Overcoming nitrogen reduction to ammonia detection challenges: The case for leapfrogging to gas diffusion electrode platforms. ACS Catal. 2022, 12, 5726–5735.

[475]

Wang, D. D.; He, N. H.; Xiao, L.; Dong, F.; Chen, W.; Zhou, Y. Y.; Chen, C.; Wang, S. Y. Coupling electrocatalytic nitric oxide oxidation over carbon cloth with hydrogen evolution reaction for nitrate synthesis. Angew. Chem., Int. Ed. 2021, 60, 24605–24611.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 May 2022
Revised: 28 May 2022
Accepted: 29 May 2022
Published: 02 June 2022
Issue date: September 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return