Journal Home > Volume 1 , issue 1

With the increasing demand for fuel causing serious environmental pollution, it is urgent to develop new and environmentally friendly energy conversion devices. These energy conversion devices, however, require good, inexpensive materials for electrodes and so on. The multifunctional properties of porphyrins enable framework materials (e.g., metal-organic frameworks and covalent organic frameworks) to be applied in energy conversion devices due to their simple synthesis, high chemical stability, abundant metallic active sites, adjustable crystalline structure and high specific surface area. Herein, the types of porphyrin structural blocks are briefly reviewed. They can be used as organic ligands or directly assembled with framework materials to generate high-performance electro-/photo-catalysts. These types of catalysts applied in electro-/photo-catalytic water splitting, electro-/photo-catalytic carbon dioxide reduction, and electrocatalytic oxygen reduction are also summarized and introduced. At the end of the article, we present the challenges of porphyrin-based framework materials in the above application and corresponding solutions. We expect porphyrin-based framework materials to flourish energy conversion in the coming years.


menu
Abstract
Full text
Outline
About this article

Porphyrin-based framework materials for energy conversion

Show Author's information Jiawei Gu1Yi Peng1Ting Zhou1Jiao Ma1Huan Pang1( )Yusuke Yamauchi2( )
Country School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

With the increasing demand for fuel causing serious environmental pollution, it is urgent to develop new and environmentally friendly energy conversion devices. These energy conversion devices, however, require good, inexpensive materials for electrodes and so on. The multifunctional properties of porphyrins enable framework materials (e.g., metal-organic frameworks and covalent organic frameworks) to be applied in energy conversion devices due to their simple synthesis, high chemical stability, abundant metallic active sites, adjustable crystalline structure and high specific surface area. Herein, the types of porphyrin structural blocks are briefly reviewed. They can be used as organic ligands or directly assembled with framework materials to generate high-performance electro-/photo-catalysts. These types of catalysts applied in electro-/photo-catalytic water splitting, electro-/photo-catalytic carbon dioxide reduction, and electrocatalytic oxygen reduction are also summarized and introduced. At the end of the article, we present the challenges of porphyrin-based framework materials in the above application and corresponding solutions. We expect porphyrin-based framework materials to flourish energy conversion in the coming years.

Keywords:

porphyrins, metal-organic frameworks, covalent organic frameworks, energy conversion, electrocatalysis, photocatalysis
Received: 03 May 2022 Revised: 21 May 2022 Accepted: 23 May 2022 Published: 29 May 2022 Issue date: June 2022
References(259)
[1]

Peng, Y.; Bai, Y.; Liu, C. L.; Cao, S.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord. Chem. Rev. 2022, 466, 214602.

[2]

Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505, 195–198.

[3]

Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372–2379.

[4]

Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677.

[5]

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

[6]

Zhang, H. B.; Nai, J. W.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107.

[7]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[8]

Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

[9]

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

[10]

Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

[11]

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

[12]

Liang, Z. B.; Zhao, R.; Qiu, T. J.; Zou, R. Q.; Xu, Q. Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 2019, 1, 100001.

[13]

Majewski, M. B.; Peters, A. W.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K. Metal-organic frameworks as platform materials for solar fuels catalysis. ACS Energy Lett. 2018, 3, 598–611.

[14]

Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.

[15]

Yu, L.; Wu, H. B.; Lou, X. W. D. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.

[16]

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

[17]

Yang, W. L.; Zhang, X. D.; Xie, Y. Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 2016, 11, 793–816.

[18]

Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214.

[19]

Vogelsberg, C. S.; Garcia-Garibay, M. A. Crystalline molecular machines: Function, phase order, dimensionality, and composition. Chem. Soc. Rev. 2012, 41, 1892–1910.

[20]

Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

[21]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[22]

Wang, K.; Qi, D. D.; Li, Y. L.; Wang, T. Y.; Liu, H. B.; Jiang, J. Z. Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: From synthesis to material applications. Coord. Chem. Rev. 2019, 378, 188–206.

[23]

Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.

[24]

Yaghi, O. M.; Li, H. L. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. J. Am. Chem. Soc. 1995, 117, 10401–10402.

[25]

Li, H. L.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Establishing microporosity in open metal-organic frameworks: □ Gas sorption isotherms for Zn(BDC) (BDC = 1, 4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571–8572.

[26]

Wang, K. B.; Xun, Q.; Zhang, Q. C. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025.

[27]

El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

[28]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem., Int. Ed. 2008, 47, 3450–3453.

[29]

Yaghi, O. M.; Li, G. M.; Li, H. L. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706.

[30]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[31]

Kitagawa, S.; Kondo, M. Functional micropore chemistry of crystalline metal complex-assembled compounds. Bull. Chem. Soc. Jpn. 1998, 71, 1739–1753.

[32]

Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.

[33]

Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

[34]

Xu, G. Y.; Nie, P.; Dou, H.; Ding, B.; Li, L. Y.; Zhang, X. G. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater. Today 2017, 20, 191–209.

[35]

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

[36]

Zhou, T. Y.; Xu, S. Q.; Wen, Q.; Pang, Z. F.; Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.

[37]

Zhang, G.; Tsujimoto, M.; Packwood, D.; Duong, N. T.; Nishiyama, Y.; Kadota, K.; Kitagawa, S.; Horike, S. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach. J. Am. Chem. Soc. 2018, 140, 2602–2609.

[38]

Pang, Z. F.; Zhou, T. Y.; Liang, R. R.; Qi, Q. Y.; Zhao, X. Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem. Sci. 2017, 8, 3866–3870.

[39]

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

[40]

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

[41]

Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

[42]

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

[43]

Kandambeth, S.; Dey, K.; Banerjee, R. Covalent organic frameworks: Chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807–1822.

[44]

Chen, X. Y.; Geng, K. Y.; Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Li, Z. P.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Chemical approaches to designer structures and built-in functions. Angew. Chem., Int. Ed. 2020, 59, 5050–5091.

[45]

Hou, C. C.; Xu, Q. Metal-organic frameworks for energy. Adv. Energy Mater. 2019, 9, 1801307.

[46]

Zhan, X. J.; Chen, Z.; Zhang, Q. C. Recent progress in two-dimensional COFs for energy-related applications. J. Mater. Chem. A 2017, 5, 14463–14479.

[47]

Zhang, H. H.; Gu, C.; Yao, M. S.; Kitagawa, S. Hybridization of emerging crystalline porous materials: Synthesis dimensionality and electrochemical energy storage application. Adv. Energy Mater. 2022, 12, 2100321.

[48]

Zhang, Y. G.; Riduan, S. N.; Wang, J. Q. Redox active metal- and covalent organic frameworks for energy storage: Balancing porosity and electrical conductivity. Chem. -Eur. J. 2017, 23, 16419–16431.

[49]

Hu, Y. M.; Wayment, L. J.; Haslam, C.; Yang, X. Y.; Lee, S. H.; Jin, Y. H.; Zhang, W. Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem 2021, 3, 100048.

[50]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

[51]

Yusran, Y.; Li, H.; Guan, X. Y.; Fang, Q. R.; Qiu, S. L. Covalent organic frameworks for catalysis. EnergyChem 2020, 2, 100035.

[52]

Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1703646.

[53]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[54]

Gordeeva, L. G.; Tu, Y. D.; Pan, Q. W.; Palash, M. L.; Saha, B. B.; Aristov, Y. I.; Wang, R. Z. Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science. Nano Energy 2021, 84, 105946.

[55]

Chen, X.; Addicoat, M.; Jin, E. Q.; Zhai, L. P.; Xu, H.; Huang, N.; Guo, Z. Q.; Liu, L. L.; Irle, S.; Jiang, D. L. Locking covalent organic frameworks with hydrogen bonds: General and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc. 2015, 137, 3241–3247.

[56]

Liang, Z. B.; Qu, C.; Xia, D. G.; Zou, R. Q.; Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem., Int. Ed. 2018, 57, 9604–9633.

[57]

Wang, Y. O.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746–760.

[58]

Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

[59]

Wang, A. J.; Li, C.; Zhang, J.; Chen, X. D.; Cheng, L. X.; Zhu, W. H. Graphene-oxide-supported covalent organic polymers based on zinc phthalocyanine for efficient optical limiting and hydrogen evolution. J. Colloid Interface Sci. 2019, 556, 159–171.

[60]

Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(Ⅱ). J. Am. Chem. Soc. 2016, 138, 3031–3037.

[61]

Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M. et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302.

[62]

Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.

[63]

Olorunyomi, J. F.; Geh, S. T.; Caruso, R. A.; Doherty, C. M. Metal-organic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387–2419.

[64]

Gu, J. W.; Xu, Y. X.; Li, Q.; Pang, H. Porous Ni/NiO nanohybrids for electrochemical catalytic glucose oxidation. Chin. Chem. Lett. 2021, 32, 2017–2020.

[65]

Cao, S.; Chen, T. T.; Zheng, S. S.; Bai, Y.; Pang, H. High-performance capacitive deionization and killing microorganism in surface-water by ZIF-9 derived carbon composites. Small Methods 2021, 5, 2101070.

[66]

Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H. Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers. J. Am. Chem. Soc. 2012, 134, 14338–14340.

[67]

Rao, K. P.; Higuchi, M.; Sumida, K.; Furukawa, S.; Duan, J. G.; Kitagawa, S. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit. Angew. Chem., Int. Ed. 2014, 53, 8225–8230.

[68]

Wang, K. C.; Lv, X. L.; Feng, D. W.; Li, J.; Chen, S. M.; Sun, J. L.; Song, L.; Xie, Y. B.; Li, J. R.; Zhou, H. C. Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 2016, 138, 914–919.

[69]

Chen, X.; Jiang, H.; Hou, B.; Gong, W.; Liu, Y.; Cui, Y. Boosting chemical stability, catalytic activity, and enantioselectivity of metal-organic frameworks for batch and flow reactions. J. Am. Chem. Soc. 2017, 139, 13476–13482.

[70]

Zhang, J. Q.; Peng, Y. S.; Leng, W. G.; Gao, Y. N.; Xu, F. F.; Chai, J. L. Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis. Chin. J. Catal. 2016, 37, 468–475.

[71]

Mack, J. Expanded, contracted, and isomeric porphyrins: Theoretical aspects. Chem. Rev. 2017, 117, 3444–3478.

[72]

Tanaka, T.; Osuka, A. Chemistry of meso-aryl-substituted expanded porphyrins: Aromaticity and molecular twist. Chem. Rev. 2017, 117, 2584–2640.

[73]

Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379.

[74]

Weissenborn, M. J.; Koenigs, R. M. Iron-porphyrin catalyzed carbene transfer reactions—an evolution from biomimetic catalysis towards chemistry-inspired non-natural reactivities of enzymes. ChemCatChem 2020, 12, 2171–2179.

[75]

Park, J. M.; Hong, K. I.; Lee, H.; Jang, W. D. Bioinspired applications of porphyrin derivatives. Acc. Chem. Res. 2021, 54, 2249–2260.

[76]

Milani, J. L. S.; Meireles, A. M.; Bezerra, W. A.; Martins, D. C. S.; Cangussu, D.; das Chagas, R. P. Mn porphyrins: Catalytic coupling of epoxides with CO2 under mild conditions and mechanistic considerations. ChemCatChem 2019, 11, 4393–4402.

[77]

Martin, D. J.; Wise, C. F.; Pegis, M. L.; Mayer, J. M. Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O2 reduction. Acc. Chem. Res. 2020, 53, 1056–1065.

[78]

Angaridis, P. A.; Lazarides, T.; Coutsolelos, A. C. Functionalized porphyrin derivatives for solar energy conversion. Polyhedron 2014, 82, 19–32.

[79]

Gao, K.; Kan, Y. Y.; Chen, X. B.; Liu, F.; Kan, B.; Nian, L.; Wan, X. J.; Chen, Y. S.; Peng, X. B.; Russell, T. P. et al. Low-bandgap porphyrins for highly efficient organic solar cells: Materials, morphology, and applications. Adv. Mater. 2020, 32, e1906129.

[80]

Waghorn, P. A. Radiolabelled porphyrins in nuclear medicine. J. Labelled Comp. Radiopharm. 2014, 57, 304–309.

[81]

Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, e1707365.

[82]

Gao, W. Y.; Chrzanowski, M.; Ma, S. Q. Metal-metalloporphyrin frameworks: A resurging class of functional materials. Chem. Soc. Rev. 2014, 43, 5841–5866.

[83]

Chen, M. H.; Li, H. R.; Liu, C. X.; Liu, J. Y.; Feng, Y. Q.; Wee, A. G. H.; Zhang, B. Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coord. Chem. Rev. 2021, 435, 213778.

[84]

Han, Y.; Liu, Z. J.; Zheng, F. F.; Bai, Y. X.; Zhang, Z. Q.; Li, X. G.; Xiong, W. W.; Zhang, J. H.; Yuan, A. H. Two-dimensional flower-like cobalt-porphyrin MOF/rGO composite anodes for high-performance Li-ion batteries. J. Alloys Compd. 2021, 881, 160531.

[85]

Li, H. K.; Ye, H. L.; Zhao, X. X.; Sun, X. L.; Zhu, Q. Q.; Han, Z. Y.; Yuan, R. R.; He, H. M. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chin. Chem. Lett. 2021, 32, 2851–2855.

[86]

Cao, M. Y.; Yin, X. D.; Bo, X. J.; Guo, L. P. High-performance electrocatalyst based on metal-organic framework/macroporous carbon composite for efficient detection of luteolin. J. Electroanal. Chem. 2018, 824, 153–160.

[87]

Ling, P. H.; Hao, Q.; Lei, J. P.; Ju, H. X. Porphyrin functionalized porous carbon derived from metal-organic framework as a biomimetic catalyst for electrochemical biosensing. J. Mater. Chem. B 2015, 3, 1335–1341.

[88]

Park, J.; Lee, H.; Bae, Y. E.; Park, K. C.; Ji, H.; Jeong, N. C.; Lee, M. H.; Kwon, O. J.; Lee, C. Y. Dual-functional electrocatalyst derived from iron-porphyrin-encapsulated metal-organic frameworks. ACS Appl. Mater. Interfaces 2017, 9, 28758–28765.

[89]

Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 2016, 28, 8379–8387.

[90]

Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.

[91]

Wu, Z. S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Müllen, K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers. Adv. Mater. 2014, 26, 1450–1455.

[92]

Chakraborty, J.; Nath, I.; Verpoort, F. Snapshots of encapsulated porphyrins and heme enzymes in metal-organic materials: A prevailing paradigm of heme mimicry. Coord. Chem. Rev. 2016, 326, 135–163.

[93]

Cai, H.; Huang, Y. L.; Li, D. Biological metal-organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207–221.

[94]

Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Stable metal-organic frameworks: Design, synthesis, and applications (Adv. Mater. 37/2018). Adv. Mater. 2018, 30, 1870277.

[95]

Feng, L.; Wang, Y.; Yuan, S.; Wang, K. Y.; Li, J. L.; Day, G. S.; Qiu, D.; Cheng, L.; Chen, W. M.; Madrahimov, S. T. et al. Porphyrinic metal-organic frameworks installed with brønsted acid sites for efficient tandem semisynthesis of artemisinin. ACS Catal. 2019, 9, 5111–5118.

[96]

Hu, Q.; Liu, X. F.; Zhu, B.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 2018, 50, 212–219.

[97]

Liu, F. Q.; Liu, J. W.; Gao, Z.; Wang, L.; Fu, X. Z.; Yang, L. X.; Tao, Y.; Yin, W. H.; Luo, F. Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. Appl. Catal. B Environ. 2019, 258, 117973.

[98]

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

[99]

Li, Y. J.; Zhou, L.; Guo, S. J. Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem 2021, 3, 100053.

[100]

Lin, L. W.; Piao, S.; Choi, Y.; Lyu, L.; Hong, H.; Kim, D.; Lee, J.; Zhang, W.; Piao, Y. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges. EnergyChem 2022, 4, 100072.

[101]

Xu, Q. C.; Liu, Y.; Jiang, H.; Hu, Y. J.; Liu, H. L.; Li, C. Z. Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.

[102]

Zhang, J. H.; Zhang, H. X.; Liu, M. M.; Xu, Q. C.; Jiang, H.; Li, C. Z. Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chem. Eng. Sci. 2020, 227, 115915.

[103]

Yang, H. Y.; Chen, Z. L.; Hao, W. J.; Xu, H. B.; Guo, Y. H.; Wu, R. B. Catalyzing overall water splitting at an ultralow cell voltage of 1.42□V via coupled Co-doped NiO nanosheets with carbon. Appl. Catal. B Environ. 2019, 252, 214–221.

[104]

Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B Environ. 2019, 247, 107–114.

[105]

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

[106]

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

[107]

Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N, P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.

[108]

Xiao, J.; Zhang, Z. Y.; Zhang, Y.; Lv, Q. Y.; Jing, F.; Chi, K.; Wang, S. Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy 2018, 51, 223–230.

[109]

McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

[110]

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

[111]

Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Carroll, D. L. et al. Colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc-air battery. Adv. Mater. 2018, 30, 1705796.

[112]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[113]

Lin, J. H.; Wang, P. C.; Wang, H. H.; Li, C.; Si, X. Q.; Qi, J. L.; Cao, J.; Zhong, Z. X.; Fei, W. D.; Feng, J. C. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

[114]

Huang, Y. Y.; Zhao, X.; Tang, F. M.; Zheng, X. S.; Cheng, W. R.; Che, W.; Hu, F. C.; Jiang, Y.; Liu, Q. H.; Wei, S. Q. Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 3202–3210.

[115]

Zhang, Y.; Shao, Q.; Long, S.; Huang, X. Q. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 2018, 45, 448–455.

[116]

Zhang, L.; Liu, B. R.; Zhang, N.; Ma, M. M. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Res. 2018, 11, 323–333.

[117]

Bui, H. T.; Shrestha, N. K.; Khadtare, S.; Bathula, C. D.; Giebeler, L.; Noh, Y. Y.; Han, S. H. Anodically grown binder-free nickel hexacyanoferrate film: Toward efficient water reduction and hexacyanoferrate film based full device for overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 18015–18021.

[118]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[119]

Min Park, J.; Lee, J. H.; Jang, W. D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157.

[120]

Cao, S.; Li, B.; Zhu, R. M.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 2019, 355, 602–623.

[121]

Peng, R. L.; Li, J. L.; Wang, X. N.; Zhao, Y. M.; Li, B.; Xia, B. Y.; Zhou, H. C. Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 4661–4668.

[122]

Sohrabi, S.; Dehghanpour, S.; Ghalkhani, M. A cobalt porphyrin-based metal organic framework/multi-walled carbon nanotube composite electrocatalyst for oxygen reduction and evolution reactions. J. Mater. Sci. 2018, 53, 3624–3639.

[123]

Liu, C.; Huang, X. D.; Liu, J. Z.; Wang, J.; Chen, Z. B.; Luo, R.; Wang, C. H.; Li, J. S.; Wang, L. J.; Wan, J. J. et al. A General approach to direct growth of oriented metal-organic framework nanosheets on reduced graphene oxides. Adv. Sci. 2020, 7, 1901480.

[124]

Rong, J.; Zhu, G. L.; Ryan Osterloh, W.; Fang, Y. Y.; Ou, Z. P.; Qiu, F. X.; Kadish, K. M. In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction. Chem. Eng. J. 2021, 412, 127556.

[125]

Girek, B.; Sliwa, W. Noncovalent assemblies of cationic porphyrins with cage macrocycles. J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 35–48.

[126]

Khaligh, A.; Sheidaei, Y.; Tuncel, D. Covalent organic framework constructed by clicking azido porphyrin with perpropargyloxy-cucurbit[6]uril for electrocatalytic hydrogen generation from water splitting. ACS Appl. Energy Mater. 2021, 4, 3535–3543.

[127]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[128]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[129]

Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.

[130]

Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon's problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

[131]

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

[132]

Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.

[133]

Li, X. F.; Zhu, Q. L. MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2020, 2, 100033.

[134]

Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.

[135]

Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Inside back cover: Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2 (Angew. Chem. Int. Ed. 6/2022). Angew. Chem., Int. Ed. 2022, 61, e202200441.

[136]

Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

[137]

Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

[138]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[139]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[140]

Ross, M. B.; Dinh, C. T.; Li, Y. F.; Kim, D.; De Luna, P.; Sargent, E. H.; Yang, P. D. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359–9363.

[141]

Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

[142]

Li, L. G.; Huang, Y.; Li, Y. G. Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2020, 2, 100024.

[143]

Han, B.; Ding, X.; Yu, B. Q.; Wu, H.; Zhou, W.; Liu, W. P.; Wei, C. Y.; Chen, B. T.; Qi, D. D. et al. Two-dimensional covalent organic frameworks with cobalt(Ⅱ)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2021, 143, 7104–7113.

[144]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[145]

Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

[146]

Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 2017, 358, 1187–1192.

[147]

Wang, H.; Jia, J.; Song, P. F.; Wang, Q.; Li, D. B.; Min, S. X.; Qian, C. X.; Wang, L.; Li, Y. F.; Ma, C. et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: A step towards the electrochemical CO2 refinery. Angew. Chem., Int. Ed. 2017, 56, 7847–7852.

[148]

Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.

[149]

Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

[150]

Dai, L.; Qin, Q.; Wang, P.; Zhao, X. J.; Hu, C. Y.; Liu, P. X.; Qin, R. X.; Chen, M.; Ou, D. H.; Xu, C. F. et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 2017, 3, e1701069.

[151]

Niu, K. Y.; Xu, Y.; Wang, H. C.; Ye, R.; Xin, H. L.; Lin, F.; Tian, C. X.; Lum, Y.; Bustillo, K. C.; Doeff, M. M. et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci. Adv. 2017, 3, e1700921.

[152]

Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y. S.; Jiao, F.; Xu, B. J. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 2017, 139, 3774–3783.

[153]

Zhou, X. L.; Shan, J. Q.; Chen, L.; Xia, B. Y.; Ling, T.; Duan, J. J.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane. J. Am. Chem. Soc. 2022, 144, 2079–2084.

[154]
Hu, M. K.; Wang, N.; Ma, D. D.; Zhu, Q. L. Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Res., in press, https://doi.org/10.1007/s12274-022-4444-x.
[155]

Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789–5792.

[156]

Liu, Y. M.; Zhang, Y. J.; Cheng, K.; Quan, X.; Fan, X. F.; Su, Y.; Chen, S.; Zhao, H. M.; Zhang, Y. B.; Yu, H. T. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-Co-doped nanodiamond. Angew. Chem., Int. Ed. 2017, 56, 15607–15611.

[157]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[158]

Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. T. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119.

[159]

Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

[160]

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

[161]

Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

[162]

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

[163]

Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

[164]

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

[165]

Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem., Int. Ed. 2016, 55, 15282–15286.

[166]

Lu, Y.; Zhang, J.; Wei, W. B.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl. Mater. Interfaces 2020, 12, 37986–37992.

[167]

Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

[168]

Mohamed, E. A.; Zahran, Z. N.; Naruta, Y. Efficient electrocatalytic CO2 reduction with a molecular cofacial iron porphyrin dimer. Chem. Commun 2015, 51, 16900–16903.

[169]

Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

[170]

Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

[171]

Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302–6309.

[172]

Dong, B. X.; Qian, S. L.; Bu, F. Y.; Wu, Y. C.; Feng, L. G.; Teng, Y. L.; Liu, W. L.; Li, Z. W. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Appl. Energy Mater. 2018, 1, 4662–4669.

[173]

Zhang, X. D.; Hou, S. Z.; Wu, J. X.; Gu, Z. Y. Two-dimensional metal-organic framework nanosheets with cobalt-porphyrins for high-performance CO2 electroreduction. Chem. -Eur. J. 2020, 26, 1604–1611.

[174]

Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. Metalation of a mesoporous three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 15134–15137.

[175]

Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 2016, 8, 310–316.

[176]

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

[177]

Doonan, C. J.; Tranchemontagne, D. J.; Glover, T. G.; Hunt, J. R.; Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2010, 2, 235–238.

[178]

Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

[179]

Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

[180]

Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116–1122.

[181]

Chen, T. H.; Popov, I.; Zenasni, O.; Daugulis, O.; Miljanić, O. Š. Superhydrophobic perfluorinated metal-organic frameworks. Chem. Commun 2013, 49, 6846–6848.

[182]

Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc. 2013, 135, 16801–16804.

[183]

An, S. H.; Lu, C. B.; Xu, Q.; Lian, C.; Peng, C. J.; Hu, J.; Zhuang, X. D.; Liu, H. L. Constructing catalytic crown ether-based covalent organic frameworks for electroreduction of CO2. ACS Energy Lett. 2021, 6, 3496–3502.

[184]

Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362.

[185]

Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

[186]

Lu, X. F.; Xia, B. Y.; Zang, S. Q.; Lou, X. W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 4634–4650.

[187]

Hu, L. Y.; Li, W. R.; Wang, L.; Wang, B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem 2021, 3, 100056.

[188]

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

[189]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[190]

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

[191]

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

[192]

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

[193]

Hou, J. B.; Yang, M.; Ke, C. C.; Wei, G. H.; Priest, C.; Qiao, Z.; Wu, G.; Zhang, J. L. Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2020, 2, 100023.

[194]
Lei, H. T.; Zhang, Q. X.; Liang, Z. Z.; Guo, H. B.; Wang, Y. B.; Lv, H. Y.; Li, X. L.; Zhang, W.; Apfel, U. P.; Cao, R. Metal-corrole-based porous organic polymers for electrocatalytic oxygen reduction and evolution reactions. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202201104.
[195]

Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Zhao, X.; Bu, F.; Feng, P. Y. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 2015, 137, 2235–2238.

[196]

Usov, P. M.; Huffman, B.; Epley, C. C.; Kessinger, M. C.; Zhu, J.; Maza, W. A.; Morris, A. J. Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 33539–33543.

[197]

He, T.; Ni, B.; Ou, Y. C.; Lin, H. F.; Zhang, S. M.; Li, C. Z.; Zhuang, J.; Hu, W. P.; Wang, X. Nanosheet-assembled hierarchical carbon nanoframeworks bearing a multiactive center for oxygen reduction reaction. Small Methods 2018, 2, 1800068.

[198]

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

[199]

Zhao, T. H.; Han, J. L.; Jin, X.; Liu, Y.; Liu, M. H.; Duan, P. F. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem., Int. Ed. 2019, 58, 4978–4982.

[200]

Feng, L.; Wang, K. Y.; Lv, X. L.; Powell, J. A.; Yan, T. H.; Willman, J.; Zhou, H. C. Imprinted apportionment of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 14524–14529.

[201]

Liberman, I.; Shimoni, R.; Ifraemov, R.; Rozenberg, I.; Singh, C.; Hod, I. Active-site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: Accelerating electrocatalysis and charge-transport kinetics. J. Am. Chem. Soc. 2020, 142, 1933–1940.

[202]

Yu, D. B.; Shao, Q.; Song, Q. J.; Cui, J. W.; Zhang, Y. L.; Wu, B.; Ge, L.; Wang, Y.; Zhang, Y.; Qin, Y. Q. et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nat. Commun. 2020, 11, 927.

[203]

Liang, Z. Z.; Guo, H. B.; Zhou, G. J.; Guo, K.; Wang, B.; Lei, H. T.; Zhang, W.; Zheng, H. Q.; Apfel, U. P.; Cao, R. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 8472–8476.

[204]

Zhang, C. C.; Yang, H.; Zhong, D.; Xu, Y.; Wang, Y. Z.; Yuan, Q.; Liang, Z. Z.; Wang, B.; Zhang, W.; Zheng, H. Q. et al. A yolk–shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 9536–9544.

[205]

Yue, J. Y.; Wang, Y. T.; Wu, X.; Yang, P.; Ma, Y.; Liu, X. H.; Tang, B. Two-dimensional porphyrin covalent organic frameworks with tunable catalytic active sites for the oxygen reduction reaction. Chem. Commun. 2021, 57, 12619–12622.

[206]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[207]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

[208]

Nguyen, H. L. Metal-organic frameworks for photocatalytic water splitting. Sol. RRL 2021, 5, 2100198.

[209]

Cao, S.; Piao, L. Y.; Chen, X. B. Emerging photocatalysts for hydrogen evolution. Trends Chem. 2020, 2, 57–70.

[210]

Lin, S.; Huang, H. W.; Ma, T. Y.; Zhang, Y. H. Photocatalytic oxygen evolution from water splitting. Adv. Sci. 2021, 8, 2002458.

[211]

Chang, K.; Li, M.; Wang, T.; Ouyang, S. X.; Li, P.; Liu, L. Q.; Ye, J. H. Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS (n ≥ 1) under visible light. Adv. Energy Mater. 2015, 5, 1402279.

[212]

Shi, L.; Li, P.; Zhou, W.; Wang, T.; Chang, K.; Zhang, H. B.; Kako, T.; Liu, G. G.; Ye, J. H. n-type boron phosphide as a highly stable, metal-free, visible-light-active photocatalyst for hydrogen evolution. Nano Energy 2016, 28, 158–163.

[213]

Zou, J. P.; Wang, L. C.; Luo, J. M.; Nie, Y. C.; Xing, Q. J.; Luo, X. B.; Du, H. M.; Luo, S. L.; Suib, S. L. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst. Appl. Catal. B Environ. 2016, 193, 103–109.

[214]

Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Angew. Chem., Int. Ed. 2016, 55, 1792–1796.

[215]

Sui, J. F.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

[216]

Ma, X.; Liu, H.; Yang, W. J.; Mao, G. Y.; Zheng, L. R.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220–12229.

[217]

Joseph, M.; Haridas, S. Recent progresses in porphyrin assisted hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 11954– 11975.

[218]

Hu, H. H.; Wang, Z. Y.; Cao, L. Y.; Zeng, L. Z.; Zhang, C. K.; Lin, W. B.; Wang, C. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.

[219]

Wang, L.; Fan, H. Y.; Bai, F. Porphyrin-based photocatalysts for hydrogen production. MRS Bull. 2020, 45, 49–56.

[220]

Wang, A. J.; Shen, X. L.; Ren, J. S.; Wang, Q.; Zhao, W.; Zhu, W. H.; Shang, D. H. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4. Dyes Pigm. 2021, 192, 109468.

[221]

Gordillo, M. A.; Benavides, P. A.; Panda, D. K.; Saha, S. The advent of electrically conducting double-helical metal-organic frameworks featuring butterfly-shaped electron-rich π-extended tetrathiafulvalene ligands. ACS Appl. Mater. Interfaces 2020, 12, 12955–12961.

[222]

Low, J.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

[223]

Zhou, J. H.; Li, D. D.; Zhao, W. N.; Jing, B. H.; Ao, Z. M.; An, T. C. First-principles evaluation of volatile organic compounds degradation in Z-scheme photocatalytic systems: MXene and graphitic-CN heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 23843–23852.

[224]

Son, H. J.; Jin, S. Y.; Patwardhan, S.; Wezenberg, S. J.; Jeong, N. C.; So, M.; Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 862–869.

[225]

Sasan, K.; Lin, Q. P.; Mao, C. Y.; Feng, P. Y. Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation. Chem. Commun 2014, 50, 10390.

[226]

Li, S.; Mei, H. M.; Yao, S. L.; Chen, Z. Y.; Lu, Y. L.; Zhang, L.; Su, C. Y. Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks: Synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chem. Sci. 2019, 10, 10577–10585.

[227]

Kreft, S.; Wei, D.; Junge, H.; Beller, M. Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem 2020, 2, 100044.

[228]

Dao, X. Y.; Sun, W. Y. Single- and mixed-metal-organic framework photocatalysts for carbon dioxide reduction. Inorg. Chem. Front. 2021, 8, 3178–3204.

[229]

Lv, H. W.; Sa, R. J.; Li, P. Y.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Metalloporphyrin-based covalent organic frameworks composed of the electron donor-acceptor dyads for visible-light-driven selective CO2 reduction. Sci. China Chem. 2020, 63, 1289–1294.

[230]

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

[231]

Zhang, T. X.; Jin, Y. H.; Shi, Y. S.; Li, M. C.; Li, J. N.; Duan, C. Y. Modulating photoelectronic performance of metal-organic frameworks for premium photocatalysis. Coord. Chem. Rev. 2019, 380, 201–229.

[232]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[233]

Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[234]

Hu, M. K.; Zhou, S. H.; Ma, D. D.; Zhu, Q. L. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction. Appl. Catal. B Environ. 2022, 310, 121324.

[235]

Khalil, M.; Gunlazuardi, J.; Ivandini, T. A.; Umar, A. Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renew. Sustain. Energy Rev. 2019, 113, 109246.

[236]

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

[237]

Fang, Z. B.; Liu, T. T.; Liu, J. X.; Jin, S. Y.; Wu, X. P.; Gong, X. Q.; Wang, K. C.; Yin, Q.; Liu, T. F.; Cao, R. et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 12515–12523.

[238]

Kong, X. J.; He, T.; Zhou, J.; Zhao, C.; Li, T. C.; Wu, X. Q.; Wang, K. C.; Li, J. R. In situ porphyrin substitution in a Zr(Ⅳ)-MOF for stability enhancement and photocatalytic CO2 reduction. Small 2021, 17, 2005357.

[239]

Ramyashree, M. S.; Shanmuga Priya, S.; Freudenberg, N. C.; Sudhakar, K.; Tahir, M. Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. J. CO2 Util. 2021, 43, 101374.

[240]

Wang, L.; Jin, P. X.; Huang, J. W.; She, H. D.; Wang, Q. Z. Integration of copper(Ⅱ)-porphyrin zirconium metal-organic framework and titanium dioxide to construct Z-scheme system for highly improved photocatalytic CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 15660–15670.

[241]

Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X. Q.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

[242]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[243]

Chen, L. Y.; Wang, Y. X.; Yu, F. Y.; Shen, X. S.; Duan, C. Y. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 2019, 7, 11355–11361.

[244]

Choi, S.; Jung, W. J.; Park, K.; Kim, S. Y.; Baeg, J. O.; Kim, C. H.; Son, H. J.; Pac, C.; Kang, S. O. Rapid exciton migration and amplified funneling effects of multi-porphyrin arrays in a Re(Ⅰ)/porphyrinic mof hybrid for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 2710–2722.

[245]

Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord. Chem. Rev. 2016, 307, 267–291.

[246]

Wu, T.; Liu, X. J.; Liu, Y.; Cheng, M.; Liu, Z. F.; Zeng, G. M.; Shao, B. B.; Liang, Q. H.; Zhang, W.; He, Q. Y. et al. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord. Chem. Rev. 2020, 403, 213097.

[247]

Zheng, C.; Qiu, X. Y.; Han, J. Y.; Wu, Y. F.; Liu, S. Q. Zero-dimensional-g-CNQD-coordinated two-dimensional porphyrin MOF hybrids for boosting photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 42243–42249.

[248]

Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.

[249]

She, H. D.; Zhou, H.; Li, L. S.; Wang, L.; Huang, J. W.; Wang, Q. Z. Nickel-doped excess oxygen defect titanium dioxide for efficient selective photocatalytic oxidation of benzyl alcohol. ACS Sustainable Chem. Eng. 2018, 6, 11939–11948.

[250]

Kim, C.; Cho, K. M.; Al-Saggaf, A.; Gereige, I.; Jung, H. T. Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light. ACS Catal. 2018, 8, 4170–4177.

[251]

Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(Ⅱ) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

[252]

Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem., Int. Ed. 2019, 58, 12392–12397.

[253]

Wang, B.; Yang, F. L.; Dong, Y. P.; Cao, Y. Z.; Wang, J. Y.; Yang, B. J.; Wei, Y.; Wan, W. R.; Chen, J. Z.; Jing, H. W. Cu@porphyrin-COFs nanorods for efficiently photoelectrocatalytic reduction of CO2. Chem. Eng. J. 2020, 396, 125255.

[254]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[255]

Xia, B. Q.; Zhang, Y. Z.; Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 2021, 7, 39–54.

[256]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[257]

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

[258]

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

[259]

Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 May 2022
Revised: 21 May 2022
Accepted: 23 May 2022
Published: 29 May 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. U1904215), Natural Science Foundation of Jiangsu Province (No. BK20200044), Program for Young Changjiang Scholars of the Ministry of Education, China (No. Q2018270). This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australia's researchers. We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return