Journal Home > Volume 1 , issue 1

Solar energy is considered the most promising renewable energy source. Solar cells can harvest and convert solar energy into electrical energy, which needs to be stored as chemical energy, thereby realizing a balanced supply and demand for energy. As energy storage devices for this purpose, newly developed photo-enhanced rechargeable metal batteries, through the internal integration of photovoltaic technology and high-energy-density metal batteries in a single device, can simplify device configuration, lower costs, and reduce external energy loss. This review focuses on recent progress regarding the working principles, device architectures, and performances of various closed-type and open-type photo-enhanced rechargeable devices based on metal batteries, including Li/Zn-ion, Li-S, and Li/Zn-I2, and Li/Zn-O2/air, Li-CO2, and Na-O2 batteries. In addition to provide a fundamental understanding of photo-enhanced rechargeable devices, key challenges and possible strategies are also discussed. Finally, some perspectives are provided for further enhancing the overall performance of the proposed devices.


menu
Abstract
Full text
Outline
About this article

Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage

Show Author's information Hairong Xue1,§Hao Gong2,§Yusuke Yamauchi3,4Takayoshi Sasaki1Renzhi Ma1,4( )
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

§ Hairong Xue and Hao Gong contributed equally to this work.

Abstract

Solar energy is considered the most promising renewable energy source. Solar cells can harvest and convert solar energy into electrical energy, which needs to be stored as chemical energy, thereby realizing a balanced supply and demand for energy. As energy storage devices for this purpose, newly developed photo-enhanced rechargeable metal batteries, through the internal integration of photovoltaic technology and high-energy-density metal batteries in a single device, can simplify device configuration, lower costs, and reduce external energy loss. This review focuses on recent progress regarding the working principles, device architectures, and performances of various closed-type and open-type photo-enhanced rechargeable devices based on metal batteries, including Li/Zn-ion, Li-S, and Li/Zn-I2, and Li/Zn-O2/air, Li-CO2, and Na-O2 batteries. In addition to provide a fundamental understanding of photo-enhanced rechargeable devices, key challenges and possible strategies are also discussed. Finally, some perspectives are provided for further enhancing the overall performance of the proposed devices.

Keywords:

Solar energy, photo-electrochemistry, rechargeable batteries, metal batteries, energy conversion and storage, high energy density
Received: 07 April 2022 Revised: 06 May 2022 Accepted: 10 May 2022 Published: 26 May 2022 Issue date: June 2022
References(100)
[1]

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

[2]

Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

[3]

Hashemi, S. A.; Ramakrishna, S.; Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743.

[4]

Gurung, A.; Qiao, Q. Q. Solar charging batteries: Advances, challenges, and opportunities. Joule 2018, 2, 1217–1230.

[5]

Zeng, Q.; Lai, Y. Q.; Jiang, L. X.; Liu, F. Y.; Hao, X. J.; Wang, L. Z.; Green, M. A. Integrated photorechargeable energy storage system: Next-generation power source driving the future. Adv. Energy Mater. 2020, 10, 1903930.

[6]

Yuan, D.; Dou, Y. H.; Wu, Z. Z.; Tian, Y. H.; Ye, K. H.; Lin, Z.; Dou, S. X.; Zhang, S. Q. Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 2022, 122, 957–999.

[7]

Tan, W. C.; Saw, L. H.; Thiam, H. S.; Xuan, J.; Cai, Z. S.; Yew, M. C. Overview of porous media/metal foam application in fuel cells and solar power systems. Renew. Sustain. Energy Rev. 2018, 96, 181–197.

[8]

Zhang, X. F.; Song, W. L.; Tu, J. G.; Wang, J. X.; Wang, M. Y.; Jiao, S. Q. A review of integrated systems based on perovskite solar cells and energy storage units: Fundamental, progresses, challenges, and perspectives. Adv. Sci. 2021, 8, 2100552.

[9]

Yu, M. Z.; Ren, X. D.; Ma, L.; Wu, Y. Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 2014, 5, 5111.

[10]

Liu, Y.; Li, N.; Wu, S. C.; Liao, K. M.; Zhu, K.; Yi, J.; Zhou, H. S. Reducing the charging voltage of a Li-O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 2015, 8, 2664–2667.

[11]

Gong, H.; Xue, H. R.; Gao, B.; Li, Y.; Fan, X. L.; Zhang, S. T.; Wang, T.; He, J. P. Introduction of photo electrochemical water-oxidation mechanism into hybrid lithium-oxygen batteries. Energy Storage Mater. 2020, 31, 11–19.

[12]

Li, M. L.; Wang, X. X.; Li, F.; Zheng, L. J.; Xu, J. J.; Yu, J. H. A bifunctional photo-assisted Li-O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 2020, 32, 1907098.

[13]

Safshekan, S.; Herraiz-Cardona, I.; Cardenas-Morcoso, D.; Ojani, R.; Haro, M.; Gimenez, S. Solar energy storage by a heterostructured BiVO4-PbOx photocapacitive device. ACS Energy Lett. 2017, 2, 469–475.

[14]

Zhu, D. D.; Zhao, Q. C.; Fan, G. L.; Zhao, S.; Wang, L. B.; Li, F. J.; Chen, J. Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem., Int. Ed. 2019, 58, 12460–12464.

[15]

Zhang, X. F.; Song, W. L.; Wang, M. Y.; Tu, J. G.; Jiao, H. D.; Jiao, S. Q. Photo-electrochemical enhanced mechanism enables a fast-charging and high-energy aqueous Al/MnO2 battery. Energy Storage Mater. 2022, 45, 586–594.

[16]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[17]

Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

[18]

Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276–294.

[19]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[20]

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

[21]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[22]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[23]

Paolella, A.; Faure, C.; Bertoni, G.; Marras, S.; Guerfi, A.; Darwiche, A.; Hovington, P.; Commarieu, B.; Wang, Z. R.; Prato, M. et al. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat. Commun. 2017, 8, 14643.

[24]

Kumar, A.; Thakur, P.; Sharma, R.; Puthirath, A. B.; Ajayan, P. M.; Narayanan, T. N. Photo rechargeable Li-ion batteries using nanorod heterostructure electrodes. Small 2021, 17, 2105029.

[25]

Lv, J. Q.; Tan, Y. X.; Xie, J. F.; Yang, R.; Yu, M. X.; Sun, S. S.; Li, M. D.; Yuan, D. Q.; Wang, Y. B. Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem., Int. Ed. 2018, 57, 12716–12720.

[26]

Li, Q.; Li, N.; Ishida, M.; Zhou, H. S. Saving electric energy by integrating a photoelectrode into a Li-ion battery. J. Mater. Chem. A 2015, 3, 20903–20907.

[27]

Kim, B. M.; Lee, M. H.; Dilimon, V. S.; Kim, J. S.; Nam, J. S.; Cho, Y. G.; Noh, H. K.; Roh, D. H.; Kwon, T. H.; Song, H. K. Indoor-light-energy-harvesting dye-sensitized photo-rechargeable battery. Energy Environ. Sci. 2020, 13, 1473–1480.

[28]

Tewari, N.; Shivarudraiah, S. B.; Halpert, J. E. Photorechargeable lead-free perovskite lithium-ion batteries using hexagonal Cs3Bi2I9 nanosheets. Nano Lett. 2021, 21, 5578–5585.

[29]

Ahmad, S.; George, C.; Beesley, D. J.; Baumberg, J. J.; De Volder, M. Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 2018, 18, 1856–1862.

[30]

Boruah, B. D.; Wen, B.; De Volder, M. Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 2021, 21, 3527–3532.

[31]

Wang, J.; Wang, Y.; Zhu, C. F.; Liu, B. Photoinduced rechargeable lithium-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 4071–4078.

[32]

Xu, C.; Zhang, X.; Duan, L. F.; Zhang, X. Y.; Li, X. S.; Lü, W. A photo-assisted rechargeable battery: Synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale 2020, 12, 530–537.

[33]

Zhao, Y.; Wang, L. N.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

[34]

Yu, M. Z.; McCulloch, W. D.; Beauchamp, D. R.; Huang, Z. J.; Ren, X. D.; Wu, Y. Y. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 2015, 137, 8332–8335.

[35]

Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

[36]

Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.

[37]

Sun, C.; Shi, X. L.; Zhang, Y. B.; Liang, J. J.; Qu, J.; Lai, C. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 2020, 14, 1176–1184.

[38]

Nikiforidis, G.; Tajima, K.; Byon, H. R. High energy efficiency and stability for photoassisted aqueous lithium-iodine redox batteries. ACS Energy Lett. 2016, 1, 806–813.

[39]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[40]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[41]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[42]

Li, N.; Wang, Y. R.; Tang, D. M.; Zhou, H. S. Integrating a photocatalyst into a hybrid lithium-sulfur battery for direct storage of solar energy. Angew. Chem., Int. Ed. 2015, 54, 9271–9274.

[43]

Chen, P.; Li, G. R.; Li, T. T.; Gao, X. P. Solar-driven rechargeable lithium-sulfur battery. Adv. Sci. 2019, 6, 1900620.

[44]

Li, J. F.; Ren, C. W.; Zhang, L. B.; Jiang, W. H.; Liu, H. M.; Su, J.; Li, M. Hybridized S cathode with N719 dye for a photo-assisted charging Li-S battery. J. Energy Chem. 2022, 65, 205–209.

[45]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[46]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[47]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[48]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[49]

Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418.

[50]

Boruah, B. D.; Wen, B.; De Volder, M. Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 2021, 15, 16616–16624.

[51]

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

[52]

Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

[53]

Boruah, B. D.; Mathieson, A.; Wen, B.; Feldmann, S.; Dose, W. M.; De Volder, M. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 2020, 13, 2414–2421.

[54]

Boruah, B. D.; Mathieson, A.; Park, S. K.; Zhang, X.; Wen, B.; Tan, L. F.; Boies, A.; De Volder, M. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Adv. Energy Mater. 2021, 11, 2100115.

[55]

Man, Y. Y.; Hao, Q. F.; Chen, F.; Chen, X. T.; Wang, Y. J.; Liu, T. G.; Liu, F.; Li, N. A photo-assisted chargeable aqueous zinc-iodine battery. ChemElectroChem 2019, 6, 5872–5875.

[56]

Xia, C.; Kwok, C. Y.; Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. Science 2018, 361, 777–781.

[57]

Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494.

[58]

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

[59]

Nishioka, K.; Tanaka, M.; Fujimoto, H.; Amaya, T.; Ogoshi, S.; Tobisu, M.; Nakanishi, S. Overlooked factors required for electrolyte solvents in Li-O2 batteries: Capabilities of quenching 1O2 and forming highly-decomposable Li2O2. Angew. Chem., Int. Ed. 2022, 61, e202112769.

[60]

Zhu, Z.; Lv, Q. L.; Ni, Y. X.; Gao, S. N.; Geng, J. R.; Liang, J.; Li, F. J. Internal electric field and interfacial bonding engineered step-scheme junction for a visible-light-involved lithium-oxygen battery. Angew. Chem., Int. Ed. 2022, 134, e202116699.

[61]

Xue, H. R.; Mu, X. W.; Tang, J.; Fan, X. L.; Gong, H.; Wang, T.; He, J. P.; Yamauchi, Y. A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous Li-O2 batteries. J. Mater. Chem. A 2016, 4, 9106–9112.

[62]

Xue, H. R.; Wu, S. C.; Tang, J.; Gong, H.; He, P.; He, J. P.; Zhou, H. S. Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 8427–8435.

[63]

Veeramani, V.; Chen, Y. H.; Wang, H. C.; Hung, T. F.; Chang, W. S.; Wei, D. H.; Hu, S. F.; Liu, R. S. CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O2 batteries. Chem. Eng. J. 2018, 349, 235–240.

[64]
Gong, H.; Wang, T.; Chang, K.; Li, P.; Liu, L. Q.; Yu, X. Y.; Gao, B.; Xue, H. R.; Ma, R. Z.; He, J. P. et al. Revealing V effect on the discharge products in high-performance Li-O2 batteries with heterostructured photocatalysts. Carbon Energy, in press, https://10.1002/cey2.208
[65]

Liu, Y.; Li, N.; Liao, K. M.; Li, Q.; Ishida, M.; Zhou, H. S. Lowering the charge voltage of Li-O2 batteries via an unmediated photoelectrochemical oxidation approach. J. Mater. Chem. A 2016, 4, 12411–12415.

[66]

Feng, Y. Y.; Xue, H. R.; Wang, T.; Gong, H.; Gao, B.; Xia, W.; Jiang, C.; Li, J. J.; Huang, X. L.; He, J. P. Enhanced Li2O2 decomposition in rechargeable Li-O2 battery by incorporating WO3 nanowire array photocatalyst. ACS Sustainable Chem. Eng. 2019, 7, 5931–5939.

[67]

Xue, H. R.; Wang, T.; Feng, Y. Y.; Gong, H.; Fan, X. L.; Gao, B.; Kong, Y. L.; Jiang, C.; Zhang, S. T.; Huang, X. L. et al. Efficient separation of photoexcited carriers in a g-C3N4-decorated WO3 nanowire array heterojunction as the cathode of a rechargeable Li-O2 battery. Nanoscale 2020, 12, 18742–18749.

[68]

Qiao, Y.; Liu, Y.; Jiang, K. Z.; Li, X.; He, Y. B.; Li, Q.; Wu, S. C.; Zhou, H. S. Boosting the cycle life of aprotic Li-O2 batteries via a photo-assisted hybrid Li2O2-scavenging strategy. Small Methods 2018, 2, 1700284.

[69]

Gong, H.; Wang, T.; Xue, H. R.; Fan, X. L.; Gao, B.; Zhang, H. B.; Shi, L.; He, J. P.; Ye, J. H. Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Mater. 2018, 13, 49–56.

[70]

Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. An illumination-assisted flexible self-powered energy system based on a Li-O2 battery. Angew. Chem., Int. Ed. 2019, 58, 16411–16415.

[71]

Tong, S. F.; Luo, C. P.; Li, J. D.; Mei, Z. W.; Wu, M. M.; O'Mullane, A. P.; Zhu, H. Y. Utilizing a photocatalysis process to achieve a cathode with low charging overpotential and high cycling durability for a Li-O2 battery. Angew. Chem., Int. Ed. 2020, 59, 20909–20913.

[72]

Zhu, Z.; Shi, X. M.; Fan, G. L.; Li, F. J.; Chen, J. Photo-energy conversion and storage in an aprotic Li-O2 battery. Angew. Chem., Int. Ed. 2019, 58, 19021–19026.

[73]

Lv, Q. L.; Zhu, Z.; Zhao, S.; Wang, L. B.; Zhao, Q.; Li, F. J.; Archer, L. A.; Chen, J. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light. J. Am. Chem. Soc. 2021, 143, 1941–1947.

[74]

Qiao, G. Y.; Guan, D. H.; Yuan, S.; Rao, H.; Chen, X.; Wang, J. A.; Qin, J. S.; Xu, J. J.; Yu, J. H. Perovskite quantum dots encapsulated in a mesoporous metal-organic framework as synergistic photocathode materials. J. Am. Chem. Soc. 2021, 143, 14253–14260.

[75]

Jia, C. Y.; Zhang, F.; She, L. N.; Li, Q.; He, X. X.; Sun, J.; Lei, Z. B.; Liu, Z. H. Ultra-large sized siloxene nanosheets as bifunctional photocatalyst for a Li-O2 battery with superior round-trip efficiency and extra-long durability. Angew. Chem., Int. Ed. 2021, 60, 11257–11261.

[76]

Zhu, Z.; Ni, Y. X.; Lv, Q. L.; Geng, J. R.; Xie, W.; Li, F. J.; Chen, J. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride. Proc. Natl. Acad. Sci. USA 2021, 118, e2024619118.

[77]

Song, H. C.; Wang, S.; Song, X. Y.; Wang, J.; Jiang, K. Z.; Huang, S. H.; Han, M.; Xu, J.; He, P.; Chen, K. J. et al. Solar-driven all-solid-state lithium-air batteries operating at extreme low temperatures. Energy Environ. Sci. 2020, 13, 1205–1211.

[78]

Gong, H.; Xue, H. R.; Gao, B.; Li, Y.; Yu, X. Y.; Fan, X. L.; Zhang, S. T.; Wang, T.; He, J. P. Solar-enhanced hybrid lithium-oxygen batteries with a low voltage and superior long-life stability. Chem. Commun. 2020, 56, 13642–13645.

[79]

Xue, H. R.; Gong, H.; Lu, X. Y.; Gao, B.; Wang, T.; He, J. P.; Yamauchi, Y.; Sasaki, T.; Ma, R. Z. Aqueous formate-based Li-CO2 battery with low charge overpotential and high working voltage. Adv. Energy Mater. 2021, 11, 2101630.

[80]

Deng, Q. H.; Yang, Y.; Mao, C. F.; Wang, T. Y.; Fang, Z.; Yan, W. W.; Yin, K.; Zhang, Y. W. Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li-CO2 batteries. Adv. Energy Mater. 2022, 12, 2103667.

[81]

Zhuo, Z. Q.; Dai, K. H.; Qiao, R. M.; Wang, R.; Wu, J. P.; Liu, Y. L.; Peng, J. Y.; Chen, L. Q.; Chuang, Y. D.; Pan, F. et al. Cycling mechanism of Li2MnO3: Li-CO2 batteries and commonality on oxygen redox in cathode materials. Joule 2021, 5, 975–997.

[82]

Wang, D.; Yang, J. G.; He, P.; Zhou, H. S. A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 2021, 14, 4107–4114.

[83]

Yang, C.; Guo, K. K.; Yuan, D. W.; Cheng, J. L.; Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J. Am. Chem. Soc. 2020, 142, 6983–6990.

[84]

Zhang, Z.; Bai, W. L.; Cai, Z. P.; Cheng, J. H.; Kuang, H. Y.; Dong, B. X.; Wang, Y. B.; Wang, K. X.; Chen, J. S. Enhanced electrochemical performance of aprotic Li-CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem., Int. Ed. 2021, 60, 16404–16408.

[85]

Liu, Y. Q.; Zhao, S. Y.; Wang, D. S.; Chen, B.; Zhang, Z. Y.; Sheng, J. Z.; Zhong, X. W.; Zou, X. L.; Jiang, S. P.; Zhou, G. M. et al. Toward an understanding of the reversible Li-CO2 batteries over metal-N4-functionalized graphene electrocatalysts. ACS Nano 2022, 16, 1523–1532.

[86]

Guan, D. H.; Wang, X. X.; Li, M. L.; Li, F.; Zheng, L. J.; Huang, X. L.; Xu, J. J. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem., Int. Ed. 2020, 59, 19518–19524.

[87]

Li, Z.; Li, M. L.; Wang, X. X.; Guan, D. H.; Liu, W. Q.; Xu, J. J. In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium-CO2 batteries. J. Mater. Chem. A 2020, 8, 14799–14806.

[88]

Wang, X. X.; Guan, D. H.; Li, F.; Li, M. L.; Zheng, L. J.; Xu, J. J. A renewable light-promoted flexible Li-CO2 battery with ultrahigh energy efficiency of 97.9%. Small 2021, 17, 2100642.

[89]

Li, J. X.; Zhang, K.; Zhao, Y.; Wang, C.; Wang, L. P.; Wang, L.; Liao, M.; Ye, L.; Zhang, Y.; Gao, Y. et al. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem., Int. Ed. 2022, 61, e202114612.

[90]

Sarawutanukul, S.; Tomon, C.; Duangdangchote, S.; Phattharasupakun, N.; Sawangphruk, M. Rechargeable photoactive Zn-air batteries using NiCo2S4 as an efficient bifunctional photocatalyst towards OER/ORR at the cathode. Batter. Supercaps 2020, 3, 541–547.

[91]

Tomon, C.; Sarawutanukul, S.; Duangdangchote, S.; Krittayavathananon, A.; Sawangphruk, M. Photoactive Zn-air batteries using spinel-type cobalt oxide as a bifunctional photocatalyst at the air cathode. Chem. Commun. 2019, 55, 5855–5858.

[92]

Wang, H. J.; Yu, H. J.; Yin, S. L.; Xu, Y.; Li, X. N.; Yamauchi, Y.; Xue, H. R.; Wang, L. In situ coating of a continuous mesoporous bimetallic PtRu film on Ni foam: A nanoarchitectured self-standing all-metal mesoporous electrode. J. Mater. Chem. A 2018, 6, 12744–12750.

[93]

Zhang, B. Q.; Wang, S. Y.; Fan, W. J.; Ma, W. G.; Liang, Z. X.; Shi, J. Y.; Liao, S. J.; Li, C. Photoassisted oxygen reduction reaction in H2-O2 fuel cells. Angew. Chem., Int. Ed. 2016, 55, 14748–14751.

[94]

Liu, X. R.; Yuan, Y. F.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc-air battery. Nat. Commun. 2019, 10, 4767.

[95]

Fang, Z. S.; Li, Y.; Li, J.; Shu, C. H.; Zhong, L. F.; Lu, S. L.; Mo, C. S.; Yang, M. J.; Yu, D. S. Capturing visible light in low-band-gap C4N-derived responsive bifunctional air electrodes for solar energy conversion and storage. Angew. Chem., Int. Ed. 2021, 60, 17615–17621.

[96]

Lv, J. Q.; Abbas, S. C.; Huang, Y. Y.; Liu, Q.; Wu, M. X.; Wang, Y. B.; Dai, L. M. A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 2018, 43, 130–137.

[97]

Du, D. F.; Zhao, S.; Zhu, Z.; Li, F. J.; Chen, J. Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery. Angew. Chem., Int. Ed. 2020, 59, 18140–18144.

[98]

Han, J.; Lee, S.; Youn, C.; Lee, J.; Kim, Y.; Choi, T. Hybrid photoelectrochemical-rechargeable seawater battery for efficient solar energy storage systems. Electrochim. Acta 2020, 332, 135443.

[99]

Zhang, G. Y.; Zhao, J. B.; Chow, P. C. Y.; Jiang, K.; Zhang, J. Q.; Zhu, Z. L.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507.

[100]

Wu, X.; Li, B.; Zhu, Z. L.; Chueh, C. C.; Jen, A. K. Y. Designs from single junctions, heterojunctions to multijunctions for high-performance perovskite solar cells. Chem. Soc. Rev. 2021, 50, 13090–13128.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 April 2022
Revised: 06 May 2022
Accepted: 10 May 2022
Published: 26 May 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The authors thank for the financial support from the Natural Science Foundation of Jiangsu Province (Nos. BK20190413 and BK20210616), the China Postdoctoral Science Foundation (No. 2019M661825), Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies (No. EEST2021-2) and the JST-ERATO Yamauchi Materials Space-Tectonics Project (No. JPMJER2003). R. Z. M. acknowledges support from JSPS KAKENNHI (No. 18H03869). H. R. X. acknowledges support from JSPS Postdoctoral Fellowship Program for Foreign Researchers (No. 20F20336).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return