Journal Home > Volume 1 , issue 1

Organic synthesis driven by heterogeneous catalysis is a central research theme to both fundamental research and industrial production of fine chemicals. However, the employment of stoichiometric strong oxidizing or reducing reagents (e.g., K2Cr2O7 and LiAlH4) and harsh reaction conditions (e.g., high temperature and pressure) always leads to the products of overreaction and other by-product residues (e.g., salt and acid waste). Thus the poor control of product selectivity and tremendous energy consumption result in the urgent demand to develop novel technologies for heterogeneous catalysis. Given the current global theme of development in CO2 reduction and sustainable energy utilization, one promising protocol is heterogeneous photocatalysis. It enables sustainable solar-to-chemical energy conversion under mild conditions (e.g., room temperature, ambient pressure, and air as the oxidant) and offers unique reaction pathways for improved selectivity control. To accurately tailor the selectivity of desired products, the electronic structure (e.g., positions of valence-band maximum and conduction-band minimum), geometric structure (e.g., nanorod, nanosheet, and porous morphology), and surface chemical micro-environment (e.g., vacancy sites and co-catalysts) of heterogeneous photocatalysts require rational design and construction. In this review, we will briefly analyze some effective photocatalytic systems with the excellent regulation ability of product selectivity in organic transformations (mainly oxidation and reduction types) under visible light irradiation, and put forward opinions on the optimal fabrication of nanostructured photocatalysts to realize selective organic synthesis.


menu
Abstract
Full text
Outline
About this article

Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light

Show Author's information Yitao Dai1,2( )Yujie Xiong2( )
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

Abstract

Organic synthesis driven by heterogeneous catalysis is a central research theme to both fundamental research and industrial production of fine chemicals. However, the employment of stoichiometric strong oxidizing or reducing reagents (e.g., K2Cr2O7 and LiAlH4) and harsh reaction conditions (e.g., high temperature and pressure) always leads to the products of overreaction and other by-product residues (e.g., salt and acid waste). Thus the poor control of product selectivity and tremendous energy consumption result in the urgent demand to develop novel technologies for heterogeneous catalysis. Given the current global theme of development in CO2 reduction and sustainable energy utilization, one promising protocol is heterogeneous photocatalysis. It enables sustainable solar-to-chemical energy conversion under mild conditions (e.g., room temperature, ambient pressure, and air as the oxidant) and offers unique reaction pathways for improved selectivity control. To accurately tailor the selectivity of desired products, the electronic structure (e.g., positions of valence-band maximum and conduction-band minimum), geometric structure (e.g., nanorod, nanosheet, and porous morphology), and surface chemical micro-environment (e.g., vacancy sites and co-catalysts) of heterogeneous photocatalysts require rational design and construction. In this review, we will briefly analyze some effective photocatalytic systems with the excellent regulation ability of product selectivity in organic transformations (mainly oxidation and reduction types) under visible light irradiation, and put forward opinions on the optimal fabrication of nanostructured photocatalysts to realize selective organic synthesis.

Keywords:

organic synthesis, selectivity control, heterogeneous photocatalysis, photocatalyst design, visible light irradiation
Received: 11 April 2022 Revised: 06 May 2022 Accepted: 10 May 2022 Published: 12 May 2022 Issue date: June 2022
References(163)
[1]
Taber, D. F. Oxidation and reduction in organic synthesis. In Organic Synthesis: State of the Art 2005-2007. Taber, D. F., Ed.; John Wiley & Sons, Inc. : Hoboken, 2008; pp 143-144.https://doi.org/10.1002/9780470385975.ch72
[2]
Smith, M. B. Functional group exchange reactions: Oxidations. In Organic Synthesis. Smith, M. B., Ed.; 4th ed. Academic Press: Boston, 2017; pp 215-307.https://doi.org/10.1016/B978-0-12-800720-4.00006-4
[3]
Smith, M. B. Functional group exchange reactions: Reductions. In Organic Synthesis. Smith, M. B., Ed.; 4th ed. Academic Press: Boston, 2017; pp 309-418.https://doi.org/10.1016/B978-0-12-800720-4.00007-6
[4]
van Santen, R. A. Heterogeneous catalysis. In Modern Heterogeneous Catalysis: An Introduction. van Santen, R. A., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, 2017; pp 1-13.https://doi.org/10.1002/9783527810253
[5]

Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89-111.

[6]

Guo, J.; Qin, Y. T.; Zhu, Y. F.; Zhang, X. F.; Long, C.; Zhao, M. T.; Tang, Z. Y. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366-5396.

[7]

Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; McDermott, W. P.; Chieregato, A.; Hermans, I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 2016, 354, 1570-1573.

[8]

Lian, Z.; Si, C. W.; Jan, F.; Zhi, S. K.; Li, B. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination. ACS Catal. 2021, 11, 9279-9292.

[9]

Zhang, Z. H.; Huber, G. W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018, 47, 1351-1390.

[10]

Teong, S. P.; Yi, G. S.; Zhang, Y. G. Hydroxymethylfurfural production from bioresources: Past, present and future. Green Chem. 2014, 16, 2015-2026.

[11]

Rajendran, S.; Raghunathan, R.; Hevus, I.; Krishnan, R.; Ugrinov, A.; Sibi, M. P.; Webster, D. C.; Sivaguru, J. Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources. Angew. Chem., Int. Ed. 2015, 54, 1159-1163.

[12]

Hopkins, K. T.; Wilson, W. D.; Bender, B. C.; McCurdy, D. R.; Hall, J. E.; Tidwell, R. R.; Kumar, A.; Bajic, M.; Boykin, D. W. Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents. J. Med. Chem. 1998, 41, 3872-3878.

[13]

Braisted, A. C.; Oslob, J. D.; Delano, W. L.; Hyde, J.; McDowell, R. S.; Waal, N.; Yu, C.; Arkin, M. R.; Raimundo, B. C. Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J. Am. Chem. Soc. 2003, 125, 3714-3715.

[14]

Liu, H.; Cao, X. J.; Wei, J. N.; Jia, W. L.; Li, M. Z.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Liu, S. J. et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Fe2O3-promoted MnO2 catalyst. ACS Sustainable Chem. Eng. 2019, 7, 7812-7822.

[15]

Hirai, H. Oligomers from hydroxymethylfurancarboxylic acid. J. Macromol. Sci. : Part A - Chem. 1984, 21, 1165-1179.

[16]

Antonyraj, C. A.; Kim, B.; Kim, Y.; Shin, S.; Lee, K. Y.; Kim, I.; Cho, J. K. Heterogeneous selective oxidation of 5-hydroxymethyl- 2-furfural (HMF) into 2, 5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF. Catal. Commun. 2014, 57, 64-68.

[17]

Nie, J. F.; Xie, J. H.; Liu, H. C. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts. J. Catal. 2013, 301, 83-91.

[18]

Neaţu, F.; Petrea, N.; Petre, R.; Somoghi, V.; Florea, M.; Parvulescu, V. I. Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts. Catal. Today 2016, 278, 66-73.

[19]

Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M. M.; Langer, P.; Steinfeldt, N. Influence of support on the aerobic oxidation of HMF into FDCA over preformed Pd nanoparticle based materials. Appl. Catal. A: Gen. 2014, 478, 107-116.

[20]

Sahu, R.; Dhepe, P. L. Synthesis of 2, 5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts. React. Kinet. Mech. Catal. 2014, 112, 173-187.

[21]

Gorbanev, Y. Y.; Klitgaard, S. K.; Woodley, J. M.; Christensen, C. H.; Riisager, A. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2009, 2, 672-675.

[22]

Salak Asghari, F.; Yoshida, H. Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind. Eng. Chem. Res. 2006, 45, 2163-2173.

[23]

Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3D-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611-2680.

[24]

Zhao, J. X.; Chen, C. Q.; Xing, C. H.; Jiao, Z. F.; Yu, M. T.; Mei, B. B.; Yang, J.; Zhang, B. Y.; Jiang, Z.; Qin, Y. Selectivity regulation in Au-catalyzed nitroaromatic hydrogenation by anchoring single-site metal oxide promoters. ACS Catal. 2020, 10, 2837-2844.

[25]

Zhang, M.; Liu, Q.; Sun, L. B.; Su, H. J.; Qi, C. X. Synthesis of high efficient and stable Au@ZIF-8 with difference particle size for chemselective hydrogenation of nitro compounds. Catal. Lett. 2020, 150, 438-449.

[26]

Bae, S.; Gim, S.; Kim, H.; Hanna, K. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B: Environ. 2016, 182, 541-549.

[27]

Moghaddam, M. M.; Pieber, B.; Glasnov, T.; Kappe, C. O. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow. ChemSusChem 2014, 7, 3122-3131.

[28]

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-1076.

[29]

Duan, Y. N.; Dong, X. S.; Song, T.; Wang, Z. Z.; Xiao, J. L.; Yuan, Y. Z.; Yang, Y. Hydrogenation of functionalized nitroarenes catalyzed by single-phase pyrite FeS2 nanoparticles on N, S-codoped porous carbon. ChemSusChem 2019, 12, 4636-4644.

[30]

Thombal, P. R.; Rao, K. M.; Zo, S.; Narayanan, K. B.; Thombal, R. S.; Han, S. S. Efficient metal-free catalytic reduction of nitro to amine over carbon sheets doped with nitrogen. Catal. Lett. 2022, 152, 538-546.

[31]

Lang, X. J.; Chen, X. D.; Zhao, J. C. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473-486.

[32]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[33]

Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem. 2016, 18, 5391-5411.

[34]

Luo, N. C.; Montini, T.; Zhang, J.; Fornasiero, P.; Fonda, E.; Hou, T. T.; Nie, W.; Lu, J. M.; Liu, J. X.; Heggen, M. et al. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose- derived methylfurans. Nat. Energy 2019, 4, 575-584.

[35]

Gisbertz, S.; Pieber, B. Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem 2020, 4, 456-475.

[36]

Filippini, G.; Longobardo, F.; Forster, L.; Criado, A.; Di Carmine, G.; Nasi, L.; D'Agostino, C.; Melchionna, M.; Fornasiero, P.; Prato, M. Light-driven, heterogeneous organocatalysts for C-C bond formation toward valuable perfluoroalkylated intermediates. Sci. Adv. 2020, 6, eabc9923.

[37]

Longobardo, F.; Gentile, G.; Criado, A.; Actis, A.; Colussi, S.; Dal Santo, V.; Chiesa, M.; Filippini, G.; Fornasiero, P.; Prato, M. et al. Tailored amorphization of graphitic carbon nitride triggers superior photocatalytic C-C coupling towards the synthesis of perfluoroalkyl derivatives. Mater. Chem. Front. 2021, 5, 7267-7275.

[38]

Lam, E.; Reisner, E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem., Int. Ed. 2021, 60, 23306-23312.

[39]

Rosso, C.; Filippini, G.; Criado, A.; Melchionna, M.; Fornasiero, P.; Prato, M. Metal-free photocatalysis: Two-dimensional nanomaterial connection toward advanced organic synthesis. ACS Nano 2021, 15, 3621-3630.

[40]

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704-710.

[41]

Dai, Y. T.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation. Angew. Chem., Int. Ed. 2020, 59, 5788-5796.

[42]

Dai, Y. T.; Li, C.; Shen, Y. B.; Lim, T.; Xu, J.; Li, Y. W.; Niemantsverdriet, H.; Besenbacher, F.; Lock, N.; Su, R. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 2018, 9, 60.

[43]

Dai, Y. T.; Li, C.; Shen, Y. B.; Zhu, S. J.; Hvid, M. S.; Wu, L. C.; Skibsted, J.; Li, Y. W.; Niemantsverdriet, J. W. H.; Besenbacher, F. et al. Efficient solar-driven hydrogen transfer by bismuth-based photocatalyst with engineered basic sites. J. Am. Chem. Soc. 2018, 140, 16711-16719.

[44]

Li, X. B.; Xin, Z. K.; Xia, S. G.; Gao, X. Y.; Tung, C. H.; Wu, L. Z. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem. Soc. Rev. 2020, 49, 9028-9056.

[45]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

[46]

Shi, X. F.; Zhang, J. H.; Cui, G. W.; Deng, N.; Wang, W.; Wang, Q.; Tang, B. Photocatalytic H2 evolution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO. Nano Res. 2018, 11, 979-987.

[47]

Duan, J. Y.; Shi, W. D.; Xu, L. L.; Mou, G. Y.; Xin, Q. L.; Guan, J. G. Hierarchical nanostructures of fluorinated and naked Ta2O5 single crystalline nanorods: Hydrothermal preparation, formation mechanism and photocatalytic activity for H2 production. Chem. Commun. 2012, 48, 7301-7303.

[48]

Wang, L. N.; Shi, X. Q.; Jia, Y. F.; Cheng, H. F.; Wang, L.; Wang, Q. Z. Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chin. Chem. Lett. 2021, 32, 1869-1878.

[49]

Deng, C. H.; Ye, F.; Wang, T.; Ling, X. H.; Peng, L. L.; Yu, H.; Ding, K. Z.; Hu, H. M.; Dong, Q.; Le, H. R. et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 2022, 15, 2003-2012.

[50]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

[51]

Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555-560.

[52]

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

[53]

Long, R.; Li, Y.; Song, L.; Xiong, Y. J. Coupling solar energy into reactions: Materials design for surface plasmon-mediated catalysis. Small 2015, 11, 3873-3889.

[54]

Ye, W.; Long, R.; Huang, H.; Xiong, Y. J. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008-1021.

[55]

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.

[56]

Chen, X.; Zhu, H. Y.; Zhao, J. C.; Zheng, Z. F.; Gao, X. P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem., Int. Ed. 2008, 47, 5353-5356.

[57]

Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem., Int. Ed. 2008, 47, 7931- 7933.

[58]

Ahlawat, M.; Mittal, D.; Rao, V. G. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Commun. Mater. 2021, 2, 114.

[59]

Li, J.; Lou, Z. Z.; Li, B. J. Nanostructured materials with localized surface plasmon resonance for photocatalysis. Chin. Chem. Lett. 2022, 33, 1154-1168.

[60]

Xiong, L. Q.; Tang, J. W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances. Adv. Energy Mater. 2021, 11, 2003216.

[61]

Valenzuela, M. A.; Albiter, E.; Ríos-Bernÿ, O.; Córdova, I.; Flores, S. O. Photocatalytic reduction of organic compounds. J. Adv. Oxid. Technol. 2010, 13, 321-340.

[62]

Stroyuk, O. L.; Kuchmy, S. Y. Heterogeneous photocatalytic selective reductive transformations of organic compounds: A review. Theor. Exp. Chem. 2020, 56, 143-173.

[63]

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.

[64]

Sarina, S.; Zhu, H. Y.; Jaatinen, E.; Xiao, Q.; Liu, H. W.; Jia, J. F.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793-5801.

[65]

Wu, D.; Li, Z. Y.; Qi, Z. M.; Hu, S. W.; Long, R.; Song, L.; Xiong, Y. J. Boosting photocatalytic activity in cross-coupling reactions by constructing pd-oxide heterostructures. ChemNanoMat 2020, 6, 920-924.

[66]

Zhu, X. L.; Lin, Y. X.; Sun, Y.; Beard, M. C.; Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 2019, 141, 733-738.

[67]

Dai, Y. T.; Tüysüz, H. Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides. ChemSusChem 2019, 12, 2587-2592.

[68]

Duan, M. L.; Hu, C. Y.; Duan, D. L.; Chen, R. T.; Wang, C. M.; Wu, D.; Xia, T.; Liu, H. J.; Dai, Y. T.; Long, R. et al. ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides. Appl. Catal. B: Environ. 2022, 307, 121211.

[69]

Zhao, Y. B.; Antonietti, M. Visible-light-irradiated graphitic carbon nitride photocatalyzed diels-alder reactions with dioxygen as sustainable mediator for photoinduced electrons. Angew. Chem., Int. Ed. 2017, 56, 9336-9340.

[70]

Huang, Z. P.; Zhao, Z. T.; Zhang, C. F.; Lu, J. M.; Liu, H. F.; Luo, N. C.; Zhang, J.; Wang, F. Enhanced photocatalytic alkane production from fatty acid decarboxylation via inhibition of radical oligomerization. Nat. Catal. 2020, 3, 170-178.

[71]

Han, Y. Z.; Huang, H.; Zhang, H. C.; Liu, Y.; Han, X.; Liu, R. H.; Li, H. T.; Kang, Z. H. Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. ACS Catal. 2014, 4, 781-787.

[72]

Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chem. Sci. 2012, 3, 2812-2822.

[73]

Zhang, Z. Z.; Yang, Y. Y.; Wang, Y. Y.; Yang, L. L.; Li, Q.; Chen, L. X.; Xu, D. S. Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)-H bond activation. Angew. Chem., Int. Ed. 2020, 59, 18136-18139.

[74]

Guo, X. N.; Hao, C. H.; Jin, G. Q.; Zhu, H. Y.; Guo, X. Y. Copper nanoparticles on graphene support: An efficient photocatalyst for coupling of nitroaromatics in visible light. Angew. Chem., Int. Ed. 2014, 53, 1973-1977.

[75]

Wang, H.; Wang, L.; Zhang, J.; Wang, C. T.; Liu, Z. Y.; Gao, X. H.; Meng, X. J.; Yoo, S. J.; Kim, J. G.; Zhang, W. et al. Interfacial CoOx layers on TiO2 as an efficient catalyst for solvent-free aerobic oxidation of hydrocarbons. ChemSusChem 2018, 11, 3965-3974.

[76]

bin Saiman, M. I.; Brett, G. L.; Tiruvalam, R.; Forde, M. M.; Sharples, K.; Thetford, A.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Murphy, D. M. et al. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 5981-5985.

[77]

Yuan, R. S.; Fan, S. L.; Zhou, H. X.; Ding, Z. X.; Lin, S.; Li, Z. H.; Zhang, Z. Z.; Xu, C.; Wu, L.; Wang, X. X. et al. Chlorine-radical-mediated photocatalytic activation of C-H bonds with visible light. Angew. Chem., Int. Ed. 2013, 52, 1035-1039.

[78]

Liu, Y.; Chen, L.; Yuan, Q.; He, J.; Au, C. T.; Yin, S. F. A green and efficient photocatalytic route for the highly-selective oxidation of saturated alpha-carbon C-H bonds in aromatic alkanes over flower-like Bi2WO6. Chem. Commun. 2016, 52, 1274-1277.

[79]

Huang, H. W.; Yuan, H. F.; Zhao, J. W.; Solís-Fernández, G.; Zhou, C.; Seo, J. W.; Hendrix, J.; Debroye, E.; Steele, J. A.; Hofkens, J. et al. C(sp3)-H bond activation by perovskite solar photocatalyst cell. ACS Energy Lett. 2019, 4, 203-208.

[80]

Huang, Y.; Liu, C. B.; Li, M. Y.; Li, H. Z.; Li, Y. W.; Su, R.; Zhang, B. Photoimmobilized Ni clusters boost photodehydrogenative coupling of amines to imines via enhanced hydrogen evolution kinetics. ACS Catal. 2020, 10, 3904-3910.

[81]

Okunaka, S.; Tokudome, H.; Hitomi, Y. Selective oxidation of toluene to benzaldehyde over Pd/BiVO4 particles under blue to green light irradiation. J. Catal. 2020, 391, 480-484.

[82]

Pahari, S. K.; Doong, R. A. Few-layered phosphorene-graphitic carbon nitride nanoheterostructure as a metal-free photocatalyst for aerobic oxidation of benzyl alcohol and toluene. ACS Sustainable Chem. Eng. 2020, 8, 13342-13351.

[83]

Dai, Y. T.; Tüysüz, H. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation. Sol. RRL 2021, 5, 2100265.

[84]

Pahari, S. K.; Pal, P.; Srivastava, D. N.; Ghosh, S. C.; Panda, A. B. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers. Chem. Commun. 2015, 51, 10322-10325.

[85]

Li, Z.; Zhang, M.; Xin, X.; Lv, H. J. Mechanistic studies on the photooxidation of 5-hydroxymethylfurfural by polyoxometalate catalysts and atmospheric oxygen. ChemCatChem 2021, 13, 1389-1395.

[86]

Li, C. C.; Na, Y. Recent advances in photocatalytic oxidation of 5-hydroxymethylfurfural. ChemPhotoChem 2021, 5, 502-511.

[87]

Xu, S.; Zhou, P.; Zhang, Z. H.; Yang, C. J.; Zhang, B. G.; Deng, K. J.; Bottle, S.; Zhu, H. Y. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc. 2017, 139, 14775-14782.

[88]

Iqbal, N.; Choi, S.; You, Y. M.; Cho, E. J. Aerobic oxidation of aldehydes by visible light photocatalysis. Tetrahedron Lett. 2013, 54, 6222-6225.

[89]

Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.

[90]

Khan, A.; Goepel, M.; Kubas, A.; Łomot, D.; Lisowski, W.; Lisovytskiy, D.; Nowicka, A.; Colmenares, J. C.; Gläser, R. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by visible light-driven photocatalysis over in situ substrate-sensitized titania. ChemSusChem 2021, 14, 1351-1362.

[91]

Xue, J. J.; Huang, C. J.; Zong, Y. Q.; Gu, J. D.; Wang, M. X.; Ma, S. S. Fe(Ⅲ)-grafted Bi2MoO6 nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation. Appl. Organomet. Chem. 2019, 33, e5187.

[92]

DiMeglio, J. L.; Breuhaus-Alvarez, A. G.; Li, S. Q.; Bartlett, B. M. Nitrate-mediated alcohol oxidation on cadmium sulfide photocatalysts. ACS Catal. 2019, 9, 5732-5741.

[93]

Zhou, B. W.; Song, J. L.; Zhang, Z. R.; Jiang, Z. W.; Zhang, P.; Han, B. X. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. Green Chem. 2017, 19, 1075-1081.

[94]
Zhang, W. Z.; Li, X. X.; Liu, S. R.; Qiu, J. H.; An, J. H.; Yao, J. F.; Zuo, S. L.; Zhang, B.; Xia, H. A.; Li, C. Z. Photocatalytic oxidation of 5-hydroxymethylfurfural over interfacial-enhanced Ag/TiO2 under visible light irradiation. ChemSusChem, in press, http://doi.org/10.1002/cssc.202102158.https://doi.org/10.1002/cssc.202102158
[95]

Ma, B.; Wang, Y. Y.; Guo, X. N.; Tong, X. L.; Liu, C.; Wang, Y. W.; Guo, X. Y. Photocatalytic synthesis of 2, 5-diformylfuran from 5-hydroxymethyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides. Appl. Catal. A: Gen. 2018, 552, 70-76.

[96]

Ilkaeva, M.; Krivtsov, I.; García-López, E. I.; Marcì, G.; Khainakova, O.; García, J. R.; Palmisano, L.; Díaz, E.; Ordóñez, S. Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5- furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. J. Catal. 2018, 359, 212-222.

[97]

Zhu, Y. K.; Zhang, Y.; Cheng, L. L.; Ismael, M.; Feng, Z. Y.; Wu, Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation. Adv. Powder Technol. 2020, 31, 1148-1159.

[98]

Ayed, C.; Huang, W.; Kizilsavas, G.; Landfester, K.; Zhang, K. A. I. Photocatalytic partial oxidation of 5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF) over a covalent triazine framework in water. ChemPhotoChem 2020, 4, 571-576.

[99]

Zhang, M.; Li, Z.; Xin, X.; Zhang, J. H.; Feng, Y. Q.; Lv, H. J. Selective valorization of 5-hydroxymethylfurfural to 2, 5-diformylfuran using atmospheric O2 and MAPbBr3 perovskite under visible light. ACS Catal. 2020, 10, 14793-14800.

[100]

Wan, X. Y.; Zhou, C. M.; Chen, J. S.; Deng, W. P.; Zhang, Q. H.; Yang, Y. H.; Wang, Y. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2, 5-furandicarboxylic acid in water catalyzed by functionalized carbon nanotube-supported Au-Pd alloy nanoparticles. ACS Catal. 2014, 4, 2175-2185.

[101]

Sharma, A. S.; Sharma, V. S.; Kaur, H.; Varma, R. S. Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chem. 2020, 22, 5902-5936.

[102]
BCC Research LLC. CHM102A Olefin Derivatives: Global Markets to 2022, 2018. https://www.bccresearch.com/market-research/chemicals/olefin-derivatives-global-markets.html (accessed April 11 2022)
[103]
Sienel, G.; Rieth, R.; Rowbottom, K. T. Epoxides. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, 2000.https://doi.org/10.1002/14356007.a09_531
[104]

Lin, M.; Xia, C. J.; Zhu, B.; Li, H.; Shu, X. T. Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: A 1.0 kt/a pilot-scale study. Chem. Eng. J. 2016, 295, 370-375.

[105]

Khatib, S. J.; Oyama, S. T. Direct oxidation of propylene to propylene oxide with molecular oxygen: A review. Catal. Rev. 2015, 57, 306-344.

[106]

Teržan, J.; Huš, M.; Likozar, B.; Djinović, P. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: A review. ACS Catal. 2020, 10, 13415-13436.

[107]

Ohno, T.; Masaki, Y.; Hirayama, S.; Matsumura, M. TiO2- photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J. Catal. 2001, 204, 163-168.

[108]

Huang, Y. M.; Liu, Z.; Gao, G. P.; Xiao, G.; Du, A. J.; Bottle, S.; Sarina, S.; Zhu, H. Y. Stable copper nanoparticle photocatalysts for selective epoxidation of alkenes with visible light. ACS Catal. 2017, 7, 4975-4985.

[109]

Marimuthu, A.; Zhang, J. W.; Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 2013, 339, 1590-1593.

[110]

Hosseini-Sarvari, M.; Bazyar, Z. Selective visible-light photocatalytic aerobic oxidation of alkenes to epoxides with Pd/ZnO nanoparticles. ChemistrySelect 2020, 5, 8853-8857.

[111]

Weerathunga, H.; Brock, A. J.; Sarina, S.; Deshan, A. D. K.; Zhu, H. Y.; Waclawik, E. R. AuCu/ZnO heterogeneous photocatalysts: Photodeposited AuCu alloy effect on product selectivity in alkene epoxidation. J. Photochem. Photobiol. A: Chem. 2022, 426, 113732.

[112]

Tan, H.; Kong, P.; Zhang, R. G.; Gao, M. T.; Liu, M. X.; Gu, X. M.; Liu, W. F.; Zheng, Z. F. Controllable generation of reactive oxygen species on cyano-group-modified carbon nitride for selective epoxidation of styrene. Innovation 2021, 2, 100089.

[113]

Gu, Q.; Jiang, P. P.; Shen, Y. R.; Zhang, K.; Wai, P. T.; Haryono, A. Lamellar porous Mo-modified carbon nitride polymers photocatalytic epoxidation of olefins. Mol. Catal. 2021, 504, 111441.

[114]

Li, M.; Ma, L. N.; Luo, L.; Liu, Y. G.; Xu, M.; Zhou, H.; Wang, Y.; Li, Z. H.; Kong, X. G.; Duan, H. H. Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst. Appl. Catal. B: Environ. 2022, 309, 121268.

[115]

Füldner, S.; Mild, R.; Siegmund, H. I.; Schroeder, J. A.; Gruber, M.; König, B. Green-light photocatalytic reduction using dye-sensitized TiO2 and transition metal nanoparticles. Green Chem. 2010, 12, 400-406.

[116]

Shiraishi, Y.; Togawa, Y.; Tsukamoto, D.; Tanaka, S.; Hirai, T. Highly efficient and selective hydrogenation of nitroaromatics on photoactivated rutile titanium dioxide. ACS Catal. 2012, 2, 2475-2481.

[117]

Liu, L. C.; Gu, X. R.; Ji, Z. Y.; Zou, W. X.; Tang, C. J.; Gao, F.; Dong, L. Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions. J. Phys. Chem. C 2013, 117, 18578-18587.

[118]

Shiraishi, Y.; Hirakawa, H.; Togawa, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. Rutile crystallites isolated from degussa (Evonik) P25 TiO2: Highly efficient photocatalyst for chemoselective hydrogenation of nitroaromatics. ACS Catal. 2013, 3, 2318-2326.

[119]

Chen, Z.; Liu, S. Q.; Yang, M. Q.; Xu, Y. J. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl. Mater. Interfaces 2013, 5, 4309-4319.

[120]

Eskandari, P.; Kazemi, F.; Zand, Z. Photocatalytic reduction of aromatic nitro compounds using CdS nanostructure under blue LED irradiation. J. Photochem. Photobiol. A: Chem. 2014, 274, 7-12.

[121]

Gao, W. Z.; Xu, Y.; Chen, Y.; Fu, W. F. Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni2P/CdS catalyst under visible-light irradiation. Chem. Commun. 2015, 51, 13217-13220.

[122]

Toyao, T.; Saito, M.; Horiuchi, Y.; Mochizuki, K.; Iwata, M.; Higashimura, H.; Matsuoka, M. Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst. Catal. Sci. Technol. 2013, 3, 2092-2097.

[123]

Wu, W. M.; Lin, R.; Shen, L. J.; Liang, R. W.; Yuan, R. S.; Wu, L. Highly efficient visible-light-induced photocatalytic hydrogenation of nitrobenzene to aniline in water. RSC Adv. 2013, 3, 10894-10899.

[124]

Zhu, H. Y.; Ke, X. B.; Yang, X. Z.; Sarina, S.; Liu, H. W. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem., Int. Ed. 2010, 49, 9657-9661.

[125]

Ke, X. B.; Zhang, X. G.; Zhao, J.; Sarina, S.; Barry, J.; Zhu, H. Y. Selective reductions using visible light photocatalysts of supported gold nanoparticles. Green Chem. 2013, 15, 236-244.

[126]

Naya, S. I.; Niwa, T.; Kume, T.; Tada, H. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 2014, 53, 7305-7309.

[127]

Mondal, B.; Mukherjee, P. S. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to Azo compounds. J. Am. Chem. Soc. 2018, 140, 12592-12601.

[128]

Xiao, Q.; Liu, Z.; Wang, F.; Sarina, S.; Zhu, H. Y. Tuning the reduction power of visible-light photocatalysts of gold nanoparticles for selective reduction of nitroaromatics to azoxy-compounds—Tailoring the catalyst support. Appl. Catal. B: Environ. 2017, 209, 69-79.

[129]

Liu, Z.; Huang, Y. M.; Xiao, Q.; Zhu, H. Y. Selective reduction of nitroaromatics to azoxy compounds on supported Ag-Cu alloy nanoparticles through visible light irradiation. Green Chem. 2016, 18, 817-825.

[130]
Zhang, D. S.; Ren, P. J.; Liu, W. W.; Li, Y. R.; Salli, S.; Han, F. Y.; Qiao, W.; Liu, Y.; Fan, Y. Z.; Cui, Y. et al. Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202204256.
[131]

Oger, C.; Balas, L.; Durand, T.; Galano, J. M. Are alkyne reductions chemo-, regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules?. Chem. Rev. 2013, 113, 1313-1350.

[132]

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294-7301.

[133]

Zhao, X. J.; Zhou, L. Y.; Zhang, W. Y.; Hu, C. Y.; Dai, L.; Ren, L. T.; Wu, B. H.; Fu, G.; Zheng, N. F. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 2018, 4, 1080-1091.

[134]

Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J. B.; Tian, H.; Yang, C. S.; Li, M. R.; Fu, Q.; Mu, R. T.; Gong, J. L. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem., Int. Ed. 2019, 58, 7668-7672.

[135]

Kominami, H.; Higa, M.; Nojima, T.; Ito, T.; Nakanishi, K.; Hashimoto, K.; Imamura, K. Copper-modified titanium dioxide: A simple photocatalyst for the chemoselective and diastereoselective hydrogenation of alkynes to alkenes under additive-free conditions. ChemCatChem 2016, 8, 2019-2022.

[136]

Li, M. Q.; Zhang, N.; Long, R.; Ye, W.; Wang, C. M.; Xiong, Y. J. PdPt alloy nanocatalysts supported on TiO2: Maneuvering metal- hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation. Small 2017, 13, 1604173.

[137]

Kominami, H.; Shiba, M.; Hashimoto, A.; Imai, S.; Nakanishi, K.; Tanaka, A.; Hashimoto, K.; Imamura, K. Titanium(IV) oxide having a copper co-catalyst: A new type of semihydrogenation photocatalyst working efficiently at an elevated temperature under hydrogen-free and poison-free conditions. Phys. Chem. Chem. Phys. 2018, 20, 19321-19325.

[138]

Kojima, Y.; Fukui, M.; Tanaka, A.; Hashimoto, K.; Kominami, H. Additive-free semihydrogenation of an alkynyl group to an alkenyl group over Pd-TiO2 photocatalyst utilizing temporary in-situ deactivation. ChemCatChem 2018, 10, 3605-3611.

[139]

Fukui, M.; Omori, Y.; Kitagawa, S. Y.; Tanaka, A.; Hashimoto, K.; Kominami, H. Visible light-induced diastereoselective semihydrogenation of alkynes to cis-alkenes over an organically modified titanium(IV) oxide photocatalyst having a metal co- catalyst. J. Catal. 2019, 374, 36-42.

[140]

Lian, J. H.; Chai, Y. C.; Qi, Y.; Guo, X. Y.; Guan, N. J.; Li, L. D.; Zhang, F. X. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation. Chin. J. Catal. 2020, 41, 598-603.

[141]

Su, K. Y.; Wang, Y. H.; Zhang, C. F.; Gao, Z. Y.; Han, J. Y.; Wang, F. Tuning the Pt species on Nb2O5 by support-induced modification in the photocatalytic transfer hydrogenation of phenylacetylene. Appl. Catal. B: Environ. 2021, 298, 120554.

[142]

Imai, S.; Kojima, Y.; Fudo, E.; Tanaka, A.; Kominami, H. Controlling the performance of a silver co-catalyst by a palladium core in TiO2-photocatalyzed alkyne semihydrogenation and H2 production. Appl. Catal. A: Gen. 2021, 624, 118331.

[143]

Jia, T. T.; Meng, D.; Ji, H. W.; Sheng, H.; Chen, C. C.; Song, W. J.; Zhao, J. C. Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel. Appl. Catal. B: Environ. 2022, 304, 121004.

[144]

Luo, N. C.; Wang, M.; Li, H. J.; Zhang, J.; Hou, T. T.; Chen, H. J.; Zhang, X. C.; Lu, J. M.; Wang, F. Visible-light-driven self- hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 2017, 7, 4571-4580.

[145]

Li, H. J.; Gao, Z. Y.; Lei, L. J.; Liu, H. F.; Han, J. Y.; Hong, F.; Luo, N. C.; Wang, F. Photocatalytic transfer hydrogenolysis of aromatic ketones using alcohols. Green Chem. 2020, 22, 3802-3808.

[146]

Shen, C. Q.; Ji, Y. J.; Wang, P. T.; Bai, S. X.; Wang, M.; Li, Y. Y.; Huang, X. Q.; Shao, Q. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal. 2021, 11, 5231-5239.

[147]

Sun, Z. H.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev. 2018, 118, 614-678.

[148]

Liao, Y. H.; Koelewijn, S. F.; Van den Bossche, G.; Van Aelst, J.; Van den Bosch, S.; Renders, T.; Navare, K.; Nicolaï, T.; Van Aelst, K.; Maesen, M. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 2020, 367, 1385-1390.

[149]

Wang, H. L.; Ruan, H.; Feng, M. Q.; Qin, Y. L.; Job, H.; Luo, L. L.; Wang, C. M.; Engelhard, M. H.; Kuhn, E.; Chen, X. W. et al. One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on Zeolite Y. ChemSusChem 2017, 10, 1846-1856.

[150]

Schutyser, W.; Kruger, J. S.; Robinson, A. M.; Katahira, R.; Brandner, D. G.; Cleveland, N. S.; Mittal, A.; Peterson, D. J.; Meilan, R.; Román-Leshkov, Y. et al. Revisiting alkaline aerobic lignin oxidation. Green Chem. 2018, 20, 3828-3844.

[151]

Wang, H. L.; Ruan, H.; Pei, H. S.; Wang, H. M.; Chen, X. W.; Tucker, M. P.; Cort, J. R.; Yang, B. Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation. Green Chem. 2015, 17, 5131-5135.

[152]

Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S. F.; Beckham, G. T.; Sels, B. F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852-908.

[153]

Zhang, C. F.; Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 2020, 53, 470-484.

[154]

Xiang, Z. Y.; Han, W. Y.; Deng, J.; Zhu, W. B.; Zhang, Y.; Wang, H. J. Photocatalytic conversion of lignin into chemicals and fuels. ChemSusChem 2020, 13, 4199-4213.

[155]

Chen, H.; Wan, K.; Zheng, F. J.; Zhang, Z.; Zhang, Y. Y.; Long, D. H. Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review. Renewable Sustainable Energy Rev. 2021, 147, 111217.

[156]

Lin, J. C.; Wu, X. J.; Xie, S. J.; Chen, L. Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. Visible-light-driven cleavage of C-O linkage for lignin valorization to functionalized aromatics. ChemSusChem 2019, 12, 5023-5031.

[157]

Wu, X. J.; Fan, X. T.; Xie, S. J.; Lin, J. C.; Cheng, J.; Zhang, Q. H.; Chen, L. Y.; Wang, Y. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 2018, 1, 772-780.

[158]

Wu, X. J.; Xie, S. J.; Liu, C. X.; Zhou, C.; Lin, J. C.; Kang, J. C.; Zhang, Q. H.; Wang, Z. H.; Wang, Y. Ligand-controlled photocatalysis of CdS quantum dots for lignin valorization under visible light. ACS Catal. 2019, 9, 8443-8451.

[159]

Han, G. Q.; Yan, T.; Zhang, W.; Zhang, Y. C.; Lee, D. Y.; Cao, Z.; Sun, Y. J. Highly selective photocatalytic valorization of lignin model compounds using ultrathin metal/CdS. ACS Catal. 2019, 9, 11341-11349.

[160]

Yoo, H.; Lee, M. W.; Lee, S.; Lee, J.; Cho, S.; Lee, H.; Cha, H. G.; Kim, H. S. Enhancing photocatalytic β-O-4 bond cleavage in lignin model compounds by silver-exchanged cadmium sulfide. ACS Catal. 2020, 10, 8465-8475.

[161]

Li, P. F.; Ouyang, Y. X.; Xiao, G.; Zhao, Y. L.; Sarina, S.; Baeyens, J.; Su, H. J.; Zhu, H. Y. Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chem. 2021, 23, 7780-7789.

[162]

Liu, Z.; Huang, Y. M.; Xiao, G.; Li, P. F.; Su, H. J.; Sarina, S.; Zhu, H. Y. Visible-light-driven efficient cleavage of β-O-4 linkage in a lignin model compound: Phenethyl phenyl ether photocatalyzed by titanium nitride nanoparticles. Energy Fuels 2021, 35, 13315- 13324.

[163]
Ku, C. H.; Guo, H. Q.; Li, K. X.; Wu, Q.; Yan, L. S. One-step fabrication of mesoporous sulfur-doped carbon nitride for highly selective photocatalytic transformation of native lignin to monophenolic compounds. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.03.021.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 April 2022
Revised: 06 May 2022
Accepted: 10 May 2022
Published: 12 May 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (No. 2020YFA0406103), the National Natural Science Foundation of China (NSFC) (Nos. 21725102 and 91961106), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund, Chinese Academy of Sciences (CAS) (No. DNL201922), and the startup grant from University of Science and Technology of China (USTC) (No. KY2260080010).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return