Journal Home > Volume 1 , Issue 1

Low temperature aqueous batteries (LT-ABs) have attracted extensive attention recent years. The LT-ABs suffer from electrolyte freezing, slow ionic diffusion and sluggish interfacial redox kinetics at low temperature. In this review, we discuss physicochemical properties of aqueous electrolytes in terms of phase diagram, ion diffusion and interfacial redox kinetics to guide the design of low temperature aqueous electrolytes (LT-AEs). Firstly, the characteristics of equilibrium and non-equilibrium phase diagrams are introduced to analyze the antifreezing mechanisms and propose design strategies for LT-AEs. Then, the temperature/concentration/charge carrier dependence conductivity characteristics in aqueous electrolytes are reviewed to comprehend and regulate the ion diffusion kinetics. Moreover, we introduce interfacial studies in aqueous and non-aqueous batteries and propose potential improvement strategies for interfacial redox kinetics in LT-ABs. Finally, we summarize design strategies of LT-AEs for developing high performance LT-ABs.


menu
Abstract
Full text
Outline
About this article

Design strategies for low temperature aqueous electrolytes

Show Author's information Liwei JiangDejian DongYi-Chun Lu( )
Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China

Abstract

Low temperature aqueous batteries (LT-ABs) have attracted extensive attention recent years. The LT-ABs suffer from electrolyte freezing, slow ionic diffusion and sluggish interfacial redox kinetics at low temperature. In this review, we discuss physicochemical properties of aqueous electrolytes in terms of phase diagram, ion diffusion and interfacial redox kinetics to guide the design of low temperature aqueous electrolytes (LT-AEs). Firstly, the characteristics of equilibrium and non-equilibrium phase diagrams are introduced to analyze the antifreezing mechanisms and propose design strategies for LT-AEs. Then, the temperature/concentration/charge carrier dependence conductivity characteristics in aqueous electrolytes are reviewed to comprehend and regulate the ion diffusion kinetics. Moreover, we introduce interfacial studies in aqueous and non-aqueous batteries and propose potential improvement strategies for interfacial redox kinetics in LT-ABs. Finally, we summarize design strategies of LT-AEs for developing high performance LT-ABs.

Keywords: low temperature, phase diagram, aqueous electrolytes, ionic diffusion, interfacial redox kinetics

References(80)

[1]

Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

[2]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433-11456.

[3]

Yoshino, A. The birth of the lithium-ion battery. Angew. Chem., Int. Ed. 2012, 51, 5798-5800.

[4]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

[5]

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.

[6]

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788-11827.

[7]

Zhao, Y. W.; Chen, Z.; Mo, F. N.; Wang, D. H.; Guo, Y.; Liu, Z. X.; Li, X. L.; Li, Q.; Liang, G. J.; Zhi, C. Y. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 2021, 8, 2002590.

[8]

Nian, Q. S.; Sun, T. J.; Liu, S.; Du, H. H.; Ren, X. D.; Tao, Z. L. Issues and opportunities on low-temperature aqueous batteries. Chem. Eng. J. 2021, 423, 130253.

[9]

Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Promoting rechargeable batteries operated at low temperature. Acc. Chem. Res. 2021, 54, 3883-3894.

[10]

Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem. -Eur. J. 2021, 27, 15842-15865.

[11]

Hubble, D.; Brown, D. E.; Zhao, Y. Z.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550-578.

[12]

Zheng, J. X.; Hou, Y. Y.; Duan, Y. D.; Song, X. H.; Wei, Y.; Liu, T. C.; Hu, J. T.; Guo, H.; Zhuo, Z. Q.; Liu, L. L. et al. Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries. Nano Lett. 2015, 15, 6102-6109.

[13]

Kundu, D.; Vajargah, S. H.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881-892.

[14]

Ramanujapuram, A.; Yushin, G. Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 2018, 8, 1802624.

[15]

Ding, M. S.; Xu, K. Phase diagram, conductivity, and glass transition of LiTFSI-H2O binary electrolytes. J. Phys. Chem. C 2018, 122, 16624-16629.

[16]

Monnin, C.; Dubois, M.; Papaiconomou, N.; Simonin, J. P. Thermodynamics of the LiCl + H2O system. J. Chem. Eng. Data 2002, 47, 1331-1336.

[17]

Corti, H. R.; Angell, C. A.; Auffret, T.; Levine, H.; Buera, M. P.; Reid, D. S.; Roos, Y. H.; Slade, L. Empirical and theoretical models of equilibrium and non-equilibrium transition temperatures of supplemented phase diagrams in aqueous systems (IUPAC technical report). Pure Appl. Chem. 2010, 82, 1065-1097.

[18]

Andrews, F. C. Colligative properties of simple solutions. Science 1976, 194, 567-571.

[19]

Schumacher, O.; Marvel, C. J.; Kelly, M. N.; Cantwell, P. R.; Vinci, R. P.; Rickman, J. M.; Rohrer, G. S.; Harmer, M. P. Complexion time-temperature-transformation (TTT) diagrams: Opportunities and challenges. Curr. Opin. Solid State Mater. Sci. 2016, 20, 316-323.

[20]

Wang, W. H.; Dong, C.; Shek, C. H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45-89.

[21]

Turnbull, D.; Fisher, J. C. Rate of nucleation in condensed systems. J. Chem. Phys. 1949, 17, 71-73.

[22]

MacFarlane, D. R.; Kadiyala, R. K.; Angell, C. A. Direct observation of time-temperature-transformation curves for crystallization of ice from solutions by a homogeneous mechanism. J. Phys. Chem. 1983, 87, 1094-1095.

[23]

Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Liu, P.; Jin, T.; Chen, X. C.; Li, H. X.; Lu, W. B.; Jiao, L. F. Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 2022, 18, 2107662.

[24]

Xu, J. J.; Ji, X.; Zhang, J. X.; Yang, C. Y.; Wang, P. F.; Liu, S. F.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. S. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4||Li4Ti5O12 pouch cells. Nat. Energy 2022, 7, 186-193.

[25]

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 ℃. Energy Environ. Sci. 2019, 12, 706-715.

[26]

Zhao, L. S.; Pan, L. Q.; Cao, Z. X.; Wang, Q. Confinement-induced vitrification of aqueous sodium chloride solutions. Chem. Phys. Lett. 2016, 647, 170-174.

[27]

Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495-503.

[28]

Reber, D.; Kühnel, R. S.; Battaglia, C. Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Materials Lett. 2019, 1, 44-51.

[29]

Zhang, Q.; Ma, Y. L.; Lu, Y.; Li, L.; Wan, F.; Zhang, K.; Chen, J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.

[30]

Nian, Q. S.; Wang, J. Y.; Liu, S.; Sun, T. J.; Zheng, S. B.; Zhang, Y.; Tao, Z. L.; Chen, J. Aqueous batteries operated at -50 ℃. Angew. Chem., Int. Ed. 2019, 58, 16994-16999.

[31]

Tron, A.; Jeong, S.; Park, Y. D.; Mun, J. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustainable Chem. Eng. 2019, 7, 14531-14538.

[32]

Jiang, H.; Shin, W.; Ma, L.; Hong, J. J.; Wei, Z. X.; Liu, Y.; Zhang, S. Y.; Wu, X. Y.; Xu, Y. K.; Guo, Q. B. et al. A high-rate aqueous proton battery delivering power below -78 ℃ via an unfrozen phosphoric acid. Adv. Energy Mater. 2020, 10, 2000968.

[33]

Suo, L. M.; Han, F. D.; Fan, X. L.; Liu, H. L.; Xu, K.; Wang, C. S. "Water-in-salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications. J. Mater. Chem. A 2016, 4, 6639-6644.

[34]

Viola, W.; Andrew, T. L. An aqueous eutectic electrolyte for low-cost, safe energy storage with an operational temperature range of 150 ℃, from -70 to 80 ℃. J. Phys. Chem. C 2021, 125, 246-251.

[35]

Zhang, L. Y.; Yu, G. H. Hybrid electrolyte engineering enables safe and wide-temperature redox flow batteries. Angew. Chem., Int. Ed. 2021, 60, 15028-15035.

[36]

Zhang, Q.; Xia, K. X.; Ma, Y. L.; Lu, Y.; Li, L.; Liang, J.; Chou, S. L.; Chen, J. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous zn batteries. ACS Energy Lett. 2021, 6, 2704-2712.

[37]

Sun, Y. L.; Ma, H. Y.; Zhang, X. Q.; Liu, B.; Liu, L. Y.; Zhang, X.; Feng, J. Z.; Zhang, Q. N.; Ding, Y. X.; Yang, B. J. et al. Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Funct. Mater. 2021, 31, 2101277.

[38]

Guo, Z. W.; Huang, J. H.; Dong, X. L.; Xia, Y. Y.; Yan, L.; Wang, Z.; Wang, Y. G. An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 2020, 11, 959.

[39]

Yan, L.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Wang, Z.; Wang, Y. G. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 2020, 5, 685-691.

[40]

Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527-3535.

[41]

Zhu, M. S.; Wang, X. J.; Tang, H. M.; Wang, J. W.; Hao, Q.; Liu, L. X.; Li, Y.; Zhang, K.; Schmidt, O. G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2020, 30, 1907218.

[42]

Yue, J. M.; Zhang, J. K.; Tong, Y. X.; Chen, M.; Liu, L. L.; Jiang, L. W.; Lv, T. S.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 2021, 13, 1061-1069.

[43]

Sun, T. J.; Yuan, X. M.; Wang, K.; Zheng, S. B.; Shi, J. Q.; Zhang, Q.; Cai, W. S.; Liang, J.; Tao, Z. L. An ultralow-temperature aqueous zinc-ion battery. J. Mater. Chem. A 2021, 9, 7042-7047.

[44]

Sun, T. J.; Du, H. H.; Zheng, S. B.; Shi, J. Q.; Tao, Z. L. High power and energy density aqueous proton battery operated at -90 ℃. Adv. Funct. Mater. 2021, 31, 2010127.

[45]

Zhu, Z. X.; Wang, W. P.; Yin, Y. C.; Meng, Y. H.; Liu, Z. C.; Jiang, T. L.; Peng, Q.; Sun, J. F.; Chen, W. An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 2021, 143, 20302-20308.

[46]

Sun, T. J.; Zheng, S. B.; Du, H. H.; Tao, Z. L. Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 2021, 13, 204.

[47]

Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 1889, 4U, 226-248.

[48]

Nuernberg, R. B. Numerical comparison of usual Arrhenius-type equations for modeling ionic transport in solids. Ionics 2020, 26, 2405-2412.

[49]

Kohout, J. Modified Arrhenius equation in materials science, chemistry and biology. Molecules 2021, 26, 7162.

[50]

France-Lanord, A.; Grossman, J. C. Correlations from ion pairing and the Nernst-Einstein equation. Phys. Rev. Lett. 2019, 122, 136001.

[51]

He, X. F.; Zhu, Y. Z.; Epstein, A.; Mo, Y. F. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 2018, 4, 18.

[52]

Marcolongo, A.; Marzari, N. Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes. Phys. Rev. Materials 2017, 1, 025402.

[53]

Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. —Ⅱ1. J. Am. Ceram. Soc. 1925, 8, 789-794.

[54]

Garca-Coln, L. S.; del Castillo, L. F.; Goldstein, P. Theoretical basis for the Vogel-Fulcher-Tammann equation. Phys. Rev. B 1989, 40, 7040-7044.

[55]

Cohen, M. H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164-1169.

[56]

Adam, G.; Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139-146.

[57]

Angell, C. A. Free volume model for transport in fused salts: Electrical conductance in glass-forming nitrate melts. J. Phys. Chem. 1964, 68, 1917-1929.

[58]

Angell, C. A.; Bressel, R. D. Fluidity and conductance in aqueous electrolyte solutions. Approach from the glassy state and high-concentration limit. I. Calcium nitrate solutions. J. Phys. Chem. 1972, 76, 3244-3253.

[59]

Tropea, C.; Yarin, A. L.; Foss, J. F. Springer Handbook of Experimental Fluid Mechanics; Springer: Berlin, 2007.

DOI
[60]

Fuoss, R. M. Review of the theory of electrolytic conductance. J. Solution Chem. 1978, 7, 771-782.

[61]

Chandra, A.; Bagchi, B. Ion conductance in electrolyte solutions. J. Chem. Phys. 1999, 110, 10024-10034.

[62]

Banerjee, P.; Bagchi, B. Ions' motion in water. J. Chem. Phys. 2019, 150, 190901.

[63]

Avni, Y.; Adar, R. M.; Andelman, D.; Orland, H. Conductivity of concentrated electrolytes. Phys. Rev. Lett. 2022, 128, 098002.

[64]

Yim, C. H.; Abu-Lebdeh, Y. A. Connection between phase diagram, structure and ion transport in liquid, aqueous electrolyte solutions of lithium chloride. J. Electrochem. Soc. 2018, 165, A547-A556.

[65]

Miyake, T.; Rolandi, M. Grotthuss mechanisms: From proton transport in proton wires to bioprotonic devices. J. Phys. Condens. Matter. 2016, 28, 023001.

[66]

He, X. F.; Zhu, Y. Z.; Mo, Y. F. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017, 8, 15893.

[67]

Pau, P. C. F.; Berg, J. O.; McMillan, W. Application of Stokes' law to ions in aqueous solution. J. Phys. Chem. 1990, 94, 2671-2679.

[68]

Kestin, J.; Sokolov, M.; Wakeham, W. A. Viscosity of liquid water in the range -8 ℃ to 150 ℃. J. Phys. Chem. Ref. Data 1978, 7, 941-948.

[69]

Pethig, R.; Kell, D. B. The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 1987, 32, 933.

[70]

Jiang, L. W.; Liu, L. L.; Yue, J. M.; Zhang, Q. Q.; Zhou, A. X.; Borodin, O.; Suo, L. M.; Li, H.; Chen, L. Q.; Xu, K. et al. High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 2020, 32, 1904427.

[71]

Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026-13030.

[72]

Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 2006, 110, 16066-16081.

[73]

Wu, X. Y.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T. C.; Bi, X. X.; Yuan, Y. F.; Qi, Y. T.; Surta, T. W.; Huang, W. X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 2019, 4, 123-130.

[74]

Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 1964, 15, 155-196.

[75]

Taube, H. Electron transfer between metal complexes: Retrospective. Science 1984, 226, 1028-1036.

[76]

Barbara, P. F.; Meyer, T. J.; Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. 1996, 100, 13148-13168.

[77]

Hou, S.; Ji, X.; Gaskell, K.; Wang, P. F.; Wang, L. N.; Xu, J. J.; Sun, R. M.; Borodin, O.; Wang, C. S. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 2021, 374, 172-178.

[78]
Liang, Z. J.; Cong, G. T.; Wang, Y.; Lu, Y. C. Lithium-air battery mediator. In Metal-Air Batteries: Fundamentals and Applications. Zhang, X. B.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2018; pp 151-205.
DOI
[79]

Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

[80]

Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574-7583.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 February 2022
Revised: 13 April 2022
Accepted: 14 April 2022
Published: 17 April 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

The work described in this paper was fully supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (No. CUHK14304520).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return