Journal Home > Volume 1 , issue 1

The key role played by carbon dioxide in global temperature cycles has stimulated constant research attention on carbon capture and storage. Among the various options, lithium–carbon dioxide batteries are intriguing, not only for the transformation of waste carbon dioxide to value-added products, but also for the storage of electricity from renewable power resources and balancing the carbon cycle. The development of this system is still in its early stages and faces tremendous hurdles caused by the introduction of carbon dioxide. In this review, detailed discussion on the critical problems faced by the electrode, the interface, and the electrolyte is provided, along with the rational strategies required to address these problematic issues for efficient carbon dioxide fixation and conversion. We hope that this review will provide a resource for a comprehensive understanding of lithium–carbon dioxide batteries and will serve as guidance for exploring reversible and rechargeable alkali metal-based carbon dioxide battery systems in the future.


menu
Abstract
Full text
Outline
About this article

Challenges and prospects of lithium–CO2 batteries

Show Author's information Shilin Zhang1,§Liang Sun1,§Qining Fan2Fangli Zhang1Zhijie Wang1Jinshuo Zou1Shiyong Zhao1Jianfeng Mao1Zaiping Guo1,2( )
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
Institute for Superconducting & Electronic Materials, University of Wollongong, NSW 2500, Australia

§ Shilin Zhang and Liang Sun contributed equally to this work.

Abstract

The key role played by carbon dioxide in global temperature cycles has stimulated constant research attention on carbon capture and storage. Among the various options, lithium–carbon dioxide batteries are intriguing, not only for the transformation of waste carbon dioxide to value-added products, but also for the storage of electricity from renewable power resources and balancing the carbon cycle. The development of this system is still in its early stages and faces tremendous hurdles caused by the introduction of carbon dioxide. In this review, detailed discussion on the critical problems faced by the electrode, the interface, and the electrolyte is provided, along with the rational strategies required to address these problematic issues for efficient carbon dioxide fixation and conversion. We hope that this review will provide a resource for a comprehensive understanding of lithium–carbon dioxide batteries and will serve as guidance for exploring reversible and rechargeable alkali metal-based carbon dioxide battery systems in the future.

Keywords:

lithium (Li)–carbon dioxide batteries, Li metal, catalyst, mechanism, interface
Received: 25 January 2022 Revised: 28 February 2022 Accepted: 09 March 2022 Published: 12 March 2022 Issue date: June 2022
References(117)
[1]

Zhang, S. L.; Liu, Y.; Fan, Q. N.; Zhang, C. F.; Zhou, T. F.; Kalantar-Zadeh, K.; Guo, Z. P. Liquid metal batteries for future energy storage. Energy Environ. Sci. 2021, 14, 4177–4202.

[2]

Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658.

[3]

Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li–CO2 and Na–CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

[4]

Takechi, K.; Shiga, T.; Asaoka, T. A Li–O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

[5]

Xu, S. M.; Das, S. K. Archer, L. A. The Li–CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

[6]

Jiao, Y. N.; Qin, J.; Sari, H. M. K.; Li, D. J.; Li, X. F.; Sun, X. L. Recent progress and prospects of Li–CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Mater. 2021, 34, 148–170.

[7]

Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal–CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

[8]

Qiao, Y.; Yi, J.; Wu, S. C.; Liu, Y.; Yang, S. X.; He, P.; Zhou, H. S. Li–CO2 electrochemistry: A new strategy for CO2 fixation and energy storage. Joule 2017, 1, 359–370.

[9]

Wang, D.; Yang, J. G.; He, P.; Zhou, H. S. A low-charge-overpotential lithium-CO2 cell based on a binary molten salt electrolyte. Energy Environ. Sci. 2021, 14, 4107–4114.

[10]

Liu, B.; Sun, Y. L.; Liu, L. Y.; Chen, J. T.; Yang, B. J.; Xu, S.; Yan, X. B. Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 2019, 12, 887–922.

[11]

Liu, Z. X.; Zhang, Y. T.; Jia, C. K.; Wan, H.; Peng, Z.; Bi, Y. J.; Liu, Y.; Peng, Z. Q.; Wang, Q.; Li, H. et al. Decomposing lithium carbonate with a mobile catalyst. Nano Energy 2017, 36, 390–397.

[12]

Rheinhardt, J. H.; Singh, P.; Tarakeshwar, P.; Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2017, 2, 454–461.

[13]

Kwak, W. J.; Hirshberg, D.; Sharon, D.; Afri, M.; Frimer, A. A.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 2016, 9, 2334–2345.

[14]

Wang, X. G.; Wang, C. Y.; Xie, Z. J.; Zhang, X.; Chen, Y. N.; Wu, D. H.; Zhou, Z. Improving electrochemical performances of rechargeable Li–CO2 batteries with an electrolyte redox mediator. ChemElectroChem 2017, 4, 2145–2149.

[15]

Yin, W.; Grimaud, A.; Azcarate, I.; Yang, C. Z.; Tarascon, J. M. Electrochemical reduction of CO2 mediated by quinone derivatives: Implication for Li–CO2 battery. J. Phys. Chem. C 2018, 122, 6546–6554.

[16]

Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater. 2018, 28, 1707536.

[17]

Hu, C. G.; Lin, Y.; Connell, J. W.; Cheng, H. M.; Gogotsi, Y.; Titirici, M. M.; Dai, L. M. Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 2019, 31, 1806128.

[18]

Hu, C. G.; Qu, J.; Xiao, Y.; Zhao, S. L.; Chen, H.; Dai, L. M. Carbon nanomaterials for energy and biorelated catalysis: Recent advances and looking forward. ACS Cent. Sci. 2019, 5, 389–408.

[19]

Xiao, Y.; Du, F.; Hu, C. G.; Ding, Y.; Wang, Z. L.; Roy, A.; Dai, L. M. High-performance Li–CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 2020, 5, 916–921.

[20]

Qie, L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Dai, L. M. Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holeygraphene cathode. Angew. Chem. , Int. Ed. 2017, 56, 6970–6974.

[21]

Li, X. L.; Zhou, J. W.; Zhang, J. X.; Li, M.; Bi, X. X.; Liu, T. C.; He, T.; Cheng, J. L.; Zhang, F.; Li, Y. P. et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li–CO2 batteries. Adv. Mater. 2019, 31, 1903852.

[22]

Song, L.; Hu, C. G.; Xiao, Y.; He, J. P.; Lin, Y.; Connell, J. W.; Dai, L. M. An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 2020, 71, 104595.

[23]

Li, X. L.; Zhang, J. X.; Qi, G. C.; Cheng, J. L.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li–CO2 batteries. Energy Storage Mater. 2021, 35, 148–156.

[24]

Qiao, Y.; Wu, J. W.; Zhao, J.; Li, Q. L.; Zhang, P. J.; Hao, C. S.; Liu, X. L.; Yang, S. T.; Liu, Y. Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries. Energy Storage Mater. 2020, 27, 133–139.

[25]

Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li–CO2 batteries. Small 2018, 14, 1800641.

[26]

Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium–copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li–CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

[27]

Li, X.; Wang, H.; Chen, Z. X.; Xu, H. S.; Yu, W.; Liu, C. B.; Wang, X. W.; Zhang, K.; Xie, K. Y.; Loh, K. P. Covalent-organicframework-based Li–CO2 batteries. Adv. Mater. 2019, 31, 1905879.

[28]

Kong, Y. L.; Gong, H.; Song, L.; Jiang, C.; Wang, T.; He, J. P. Nanosized Au particle-modified carbon nanotubes as an effective and stable cathode for Li–CO2 batteries. Eur. J. Inorg. Chem. 2021, 2021, 590–596.

[29]

Xing, Y.; Wang, K.; Li, N.; Su, D.; Wong, W. T.; Huang, B. L.; Guo, S. J. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter 2020, 2, 1494–1508.

[30]

Jin, Y. C.; Chen, F. Y.; Wang, J. L. Achieving low charge overpotential in a Li–CO2 battery with bimetallic RuCo nanoalloy decorated carbon nanofiber cathodes. ACS Sustainable Chem. Eng. 2020, 8, 2783–2792.

[31]

Zhai, Y. J.; Tong, H.; Deng, J. L.; Li, G. Y.; Hou, Y.; Zhang, R. H.; Wang, J.; Lu, Y. Y.; Liang, K.; Chen, P. et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li–CO2 batteries. Energy Storage Mater. 2021, 43, 391–401.

[32]

Baek, K.; Jeon, W. C.; Woo, S.; Kim, J. C.; Lee, J. G.; An, K.; Kwak, S. K.; Kang, S. J. Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium–carbon dioxide cell. Nat. Commun. 2020, 11, 456.

[33]

Liu, L. M.; Zhang, L. B.; Wang, K.; Wu, H.; Mao, H.; Li, L.; Sun, Z. J.; Lu, S. Y.; Zhang, D. Y.; Yu, W. et al. Understanding the dual-phase synergy mechanism in Mn2O3-Mn3O4 catalyst for efficient Li–CO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 33846–33854.

[34]

Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. High performance Li–CO2 batteries with NiO–CNT cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.

[35]

Hou, Y. Y.; Wang, J. Z.; Liu, L. L.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M. Chen, J. Mo2C/CNT: An efficient catalyst for rechargeable Li–CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

[36]

Xiao, X.; Zhang, Z. J.; Yu, W. T.; Shang, W. X.; Ma, Y. Y.; Zhu, X. B.; Tan, P. Ultrafine Co-doped NiO nanoparticles decorated on carbon nanotubes improving the electrochemical performance and cycling stability of Li–CO2 batteries. ACS Appl. Energy Mater. 2021, 4, 11858–11866.

[37]

Pipes, R.; He, J. R.; Bhargav, A.; Manthiram, A. Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li–CO2 batteries. Energy Storage Mater. 2020, 31, 95–104.

[38]

Hu, C. G.; Gong, L. L.; Xiao, Y.; Yuan, Y. F.; Bedford, N. M.; Xia, Z. H.; Ma, L.; Wu, T. P.; Lin, Y.; Connell, J. W. et al. Highperformance, long-life, rechargeable Li–CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 2020, 32, 1907436.

[39]

Ahmadiparidari, A.; Warburton, R. E.; Majidi, L.; Asadi, M.; Chamaani, A.; Jokisaari, J. R.; Rastegar, S.; Hemmat, Z.; Sayahpour, B.; Assary, R. S. et al. A long-cycle-life lithium–CO2 battery with carbon neutrality. Adv. Mater. 2019, 31, 1902518.

[40]

Liu, Y. L.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681.

[41]

Ye, F. H.; Gong, L. L.; Long, Y. D.; Talapaneni, S. N.; Zhang, L. P.; Xiao, Y.; Liu, D.; Hu, C. G.; Dai, L. M. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li–CO2 batteries. Adv. Energy Mater. 2021, 11, 2101390.

[42]

Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843.

[43]

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

[44]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[45]

Pang, J. F.; Sun, J. M.; Zheng, M. Y.; Li, H. Q.; Wang, Y.; Zhang, T. Transition metal carbide catalysts for biomass conversion: A review. Appl. Catal. B Environ. 2019, 254, 510–522.

[46]

Zhang, Z.; Bai, W. L.; Cai, Z. P.; Cheng, J. H.; Kuang, H. Y.; Dong, B. X.; Wang, Y. B.; Wang, K. X.; Chen, J. S. Enhanced electrochemical performance of aprotic Li–CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem. , Int. Ed. 2021, 60, 16404–16408.

[47]

Zhou, J. W.; Li, X. L.; Yang, C.; Li, Y. C.; Guo, K. K.; Cheng, J. L.; Yuan, D. W.; Song, C. H.; Lu, J.; Wang, B. A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 2019, 31, 1804439.

[48]
Chhabra, R. P.; Shankar, V. Coulson and Richardson's Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications; 7th ed. Elsevier: Amsterdam, 2017.
[49]

Abdel-Mageed, A. M.; Widmann, D.; Olesen, S. E.; Chorkendorff, I.; Behm, R. J. Selective CO methanation on highly active Ru/TiO2 catalysts: Identifying the physical origin of the observed activation/deactivation and loss in selectivity. ACS Catal. 2018, 8, 5399–5414.

[50]

La Parola, V.; Kantcheva, M.; Milanova, M.; Venezia, A. M. Structure control of silica-supported mono and bimetallic Au–Pt catalysts via mercapto capping synthesis. J. Catal. 2013, 298, 170–178.

[51]

Tang, Y. J.; Wu, Y.; Xu, W. Q.; Jiao, L.; Chen, Y. F.; Sha, M.; Ye, H. R.; Gu, W. L.; Zhu, C. Z. Ultrathin ruthenium nanosheets with crystallinity-modulated peroxidase-like activity for protein discrimination. Anal. Chem 2022, 94, 1022–1028.

[52]

Hong, S. K.; Wang, Y.; Kim, N.; Lee, S. B. Polymer-based electrolytes for all-solid-state lithium–sulfur batteries: From fundamental research to performance improvement. J. Mater. Sci. 2021, 56, 8358–8382.

[53]

Hao, J. N.; Li, B.; Li, X. L.; Zeng, X. H.; Zhang, S. L.; Yang, F. H.; Liu, S. L.; Li, D.; Wu, C.; Guo, Z. P. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020, 32, 2003021.

[54]

Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

[55]

Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

[56]

Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600.

[57]

Ma, Y. N.; Shi, R.; Zhang, T. R. Research progress on triphase interface electrocatalytic carbon dioxide reduction. Acta Chim. Sin. 2021, 79, 369–377.

[58]

Zeng, X. H.; Xie, K. X.; Liu, S. L.; Zhang, S. L.; Hao, J. N.; Liu, J. T.; Pang, W. K.; Liu, J. W.; Rao, P. H.; Wang, Q. H. et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA·cm–2 and 30 mA·h·cm–2. Energy Environ. Sci. 2021, 14, 5947–5957.

[59]

Zhang, S. L.; Fan, Q. N.; Liu, Y.; Xi, S. B.; Liu, X. F.; Wu, Z. B.; Hao, J. N.; Pang, W. K.; Zhou, T. F.; Guo, Z. P. Dehydration-triggered ionic channel engineering in potassium niobate for Li/K-ion storage. Adv. Mater. 2020, 32, 2000380.

[60]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[61]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[62]

Yu, X. W.; Manthiram, A. Electrode-electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 2018, 11, 527–543.

[63]

Aurbach, D.; Gofer, Y.; Ben-Zion, M.; Aped, P. The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency. J. Electroanal. Chem. 1992, 339, 451–471.

[64]

Qiu, F. L.; Ren, S. Y.; Mu, X. W.; Liu, Y. J.; Zhang, X. P.; He, P.; Zhou, H. S. Towards a stable Li–CO2 battery: The effects of CO2 to the Li metal anode. Energy Storage Mater. 2020, 26, 443–447.

[65]

Han, B.; Zhang, Z.; Zou, Y. C.; Xu, K.; Xu, G. Y.; Wang, H.; Meng, H.; Deng, Y. H.; Li, J.; Gu, M. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryoelectron microscopy. Adv. Mater. 2021, 33, 2100404.

[66]

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium–oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

[67]

Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

[68]

Sun, X. Y.; Hou, Z. P.; He, P.; Zhou, H. S. Recent advances in rechargeable Li–CO2 batteries. Energy Fuels 2021, 35, 9165–9186.

[69]

Sharon, D.; Afri, M.; Noked, M.; Garsuch, A.; Frimer, A. A.; Aurbach, D. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 2013, 4, 3115–3119.

[70]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417.

[71]

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 2016, 1, 16128.

[72]

Guo, H. P.; Luo, W. B.; Chen, J.; Chou, S. L.; Liu, H. K.; Wang, J. Z. Review of electrolytes in nonaqueous lithium-oxygen batteries. Adv. Sustainable Syst. 2018, 2, 1700183.

[73]

Zhang, W.; Huang, Y.; Liu, Y.; Wang, L.; Chou, S. L.; Liu, H. K. Strategies toward stable nonaqueous alkali metal-O2 batteries. Adv. Energy Mater. 2019, 9, 1900464.

[74]

Tong, B.; Huang, J.; Zhou, Z. B.; Peng, Z. Q. The salt matters: Enhanced reversibility of Li–O2 batteries with a Li[(CF3SO2)(n-C4F9SO2)N]-based electrolyte. Adv. Mater. 2018, 30, 1704841.

[75]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[76]

Zhang, Z.; Bai, W. L.; Wang, K. X.; Chen, J. S. Electrocatalyst design for aprotic Li–CO2 batteries. Energy Environ. Sci. 2020, 13, 4717–4737.

[77]

Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. , Int. Ed. 2021, 60, 19572–19590.

[78]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[79]

Cui, H. J.; Guo, Y. B.; Guo, L. M.; Wang, L.; Zhou, Z.; Peng, Z. Q. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J. Mater. Chem. A 2018, 6, 18782–18793.

[80]

Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270–7284.

[81]

Zhang, Q.; Wang, Z. J.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Guo, Z. P. Cathode materials for potassium-ion batteries: Current status and perspective. Electrochem. Energy Rev. 2018, 1, 625–658.

[82]

Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

[83]

Liang, G. M.; Wu, Z. B.; Didier, C.; Zhang, W. C.; Cuan, J.; Li, B. H.; Ko, K. Y.; Hung, P. Y.; Lu, C. Z.; Chen, Y. Z. et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by siteselective doping. Angew. Chem. , Int. Ed. 2020, 59, 10594–10602.

[84]

Wang, C. Z.; Lu, Y. C.; Lu, S. Y.; Ma, S. Y.; Zhu, X. D.; Li, Z. J.; Liu, Q. C. Boosting Li–CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. J. Power Sources 2021, 495, 229782.

[85]

Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

[86]

Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Gao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Carbon dioxide in the cage: Manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries. Energy Environ. Sci. 2018, 11, 1318–1325.

[87]

Adegoke, K. A.; Maxakato, N. W. Porous metal–organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Mater. Today Energy 2021, 21, 100816.

[88]

Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

[89]

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

[90]

Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

[91]

Zhang, S. L.; Yao, F.; Yang, L.; Zhang, F. Z.; Xu, S. L. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries. Carbon 2015, 93, 143–150.

[92]

Li, L.; Zhang, W. C.; Wang, X.; Zhang, S. L.; Liu, Y. J.; Li, M. H.; Zhu, G. J.; Zheng, Y.; Zhang, Q.; Zhou, T. F. et al. Hollow-carbontemplated few-layered V5S8 nanosheets enabling ultrafast potassium storage and long-term cycling. ACS Nano 2019, 13, 7939–7948.

[93]

Zhang, S. L.; Zheng, Y.; Huang, X. J.; Hong, J.; Cao, B.; Hao, J. N.; Fan, Q. N.; Zhou, T. F.; Guo, Z. P. Structural engineering of hierarchical micro-nanostructured Ge-C framework by controlling the nucleation for ultralong-life Li storage. Adv. Energy Mater. 2019, 9, 1900081.

[94]

Yang, F. H.; Hong, J.; Hao, J. N.; Zhang, S. L.; Liang, G. M.; Long, J.; Liu, Y. Q.; Liu, N. N.; Pang, W. K.; Chen, J. et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage. Adv. Energy Mater. 2020, 10, 1903826.

[95]

Li, J. T.; Dai, A.; Amine, K.; Lu, J. Correlating catalyst design and discharged product to reduce overpotential in Li–CO2 batteries. Small 2021, 17, 2007760.

[96]

Jin, Y. C.; Hu, C. G.; Dai, Q. B.; Xiao, Y.; Lin, Y.; Connell, J. W.; Chen, F. Y.; Dai, L. M. High-performance Li–CO2 batteries based on metal-free carbon quantum dot/holey graphene composite catalysts. Adv. Funct. Mater. 2018, 28, 1804630.

[97]

Xing, W.; Li, S.; Du, D. F.; Wang, D. D.; Liao, Y. F.; Ge, S. H.; Xu, J.; Bai, P.; Liu, Z.; Wang, Y. H. et al. Revealing the impacting factors of cathodic carbon catalysts for Li–CO2 batteries in the pore-structure point of view. Electrochim. Acta 2019, 311, 41–49.

[98]

Liu, H. F.; Xia, J.; Zhang, N.; Cheng, H.; Bi, W. T.; Zu, X. L.; Chu, W. S.; Wu, H. A.; Wu, C. Z.; Xie, Y. Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 2021, 4, 202–211.

[99]

Zhou, J. W.; Liu, Y.; Zhang, S. L.; Zhou, T. F.; Guo, Z. P. Metal chalcogenides for potassium storage. InfoMat 2020, 2, 437–465.

[100]

Liang, Z. J.; Zou, Q. L.; Wang, Y.; Lu, Y. C. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li–O2 batteries. Small Methods 2017, 1, 1700150.

[101]

Jakobsen, J. B.; Ronne, M. H.; Daasbjerg, K.; Skrydstrup, T. Are amines the holy grail for facilitating CO2 reduction? Angew. Chem. , Int. Ed. 2021, 60, 9174-9179.

[102]

Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

[103]

Chen, L.; Fan, X. L.; Hu, E. Y.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X. Q. et al. Achieving high energy density through increasing the output voltage: A highly reversible 5.3 V battery. Chem 2019, 5, 896–912.

[104]

Yu, Z. A.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

[105]

Liu, S. L.; Mao, J. F.; Pang, W. K.; Vongsvivut, J.; Zeng, X. H.; Thomsen, L.; Wang, Y. Y.; Liu, J. W.; Li, D.; Guo, Z. P. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2104281.

[106]

Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

[107]

Wang, Y. Y.; Wang, Z. J.; Zhao, L.; Fan, Q. N.; Zeng, X. H.; Liu, S. L.; Pang, W. K.; He, Y. B.; Guo, Z. P. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv. Mater. 2021, 33, 2008133.

[108]

Wang, Z. J.; Wang, Y. Y.; Zhang, Z. H.; Chen, X. W.; Lie, W.; He, Y. B.; Zhou, Z.; Xia, G. L.; Guo, Z. P. Building artificial solidelectrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 2020, 30, 2002414.

[109]

Das, S. K.; Xu, S. M.; Emwas, A. H.; Lu, Y. Y.; Srivastava, S.; Archer, L. A. High energy lithium–oxygen batteries—transport barriers and thermodynamics. Energy Environ. Sci. 2012, 5, 8927–8931.

[110]

Jia, P.; Yu, M. Q.; Zhang, X. D.; Yang, T. T.; Zhu, D. D.; Shen, T. D.; Zhang, L. Q.; Tang, Y. F.; Huang, J. Y. In-situ imaging the electrochemical reactions of Li–CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 2022, 15, 542–550.

[111]

Li, J. X.; Wang, L.; Zhao, Y.; Li, S. Y.; Fu, X. M.; Wang, B. J.; Peng, H. S. Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 2020, 30, 2001619.

[112]

Chen, K.; Huang, G.; Ma, J. L.; Wang, J.; Yang, D. Y.; Yang, X. Y.; Yu, Y.; Zhang, X. B. The stabilization effect of CO2 in lithium–oxygen/CO2 batteries. Angew. Chem. , Int. Ed. 2020, 59, 16661–16667.

[113]

Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li–O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem. 2020, 132, 19473–19481.

[114]

Yu, Y.; Huang, G.; Wang, J. Z.; Li, K.; Ma, J. L.; Zhang, X. B. In situ designing a gradient Li+ capture and quasi-spontaneous diffusion anode protection layer toward long-life Li–O2 batteries. Adv. Mater. 2020, 32, 2004157.

[115]

Zhu, Y. H.; Yang, X. Y.; Liu, T.; Zhang, X. B. Flexible 1D batteries: Recent progress and prospects. Adv. Mater. 2020, 32, 1901961.

[116]

Liu, T.; Feng, X. L.; Jin, X.; Shao, M. Z.; Su, Y. T.; Zhang, Y.; Zhang, X. B. Protecting the lithium metal anode for a safe flexible lithium-air battery in ambient air. Angew. Chem. 2019, 131, 18408–18413.

[117]

Yang, X. Y.; Feng, X. L.; Jin, X.; Shao, M. Z.; Yan, B. L.; Yan, J. M.; Zhang, Y.; Zhang, X. B. An illumination-assisted flexible self-powered energy system based on a Li–O2 battery. Angew. Chem. 2019, 131, 16563–16567.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 January 2022
Revised: 28 February 2022
Accepted: 09 March 2022
Published: 12 March 2022
Issue date: June 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge Dr. Tania Silver for valuable comments on this manuscript. This work was supported by the Australian Research Council (ARC) (Nos. DP210101486, DP200101862, and FL210100050).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Reprints and Permission requests may be sought directly from editorial office.

Return