AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

The Nano Research Young Innovators (NR45) Awards in nanomaterial self-assembly

International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
Show Author Information

References

[1]

Fu, W. L.; Wang, P.-p. Multi-component nanocrystal supraparticles: Colloidal self-assembly and application. Nano Res. 2025, 18, 94907120.

[2]

Duan, H. Y.; Tan, H. Y.; He, J. Unconventional seed-mediated growth of silver with a macromolecular NHC-Ag precursor. Nano Res. 2025, 18, 94907147.

[3]

Saruyama, M.; Nagai, N.; Xia, Y.; Teranishi, T. One-step preparation of three-dimensional superlattices during nanoparticle synthesis. Nano Res. 2025, 18, 94907284.

[4]

Bu, A.; Cong, H. Mechanically interlocked molecules consisting of radially conjugated macrocycles. Nano Res. 2025, 18, 94907549.

[5]

Chen, J.; Yan, C. Y.; Zhu, B. X.; Huang, C. L.; Cheng, F. R.; Duan, H. Y.; Ye, X. C. Electron microscopy in nanoparticle self-assembly research. Nano Res. 2025, 18, 94907286.

[6]

Chen, P. W.; Fu, K.; Zhang, X. Y.; Zhao, S. Y.; Wu, H. W.; Liu, G. F. Chirality inversion via van der Waals interactions to π–π stacking in non-equilibrium assembly within a narrow temperature range. Nano Res. 2025, 18, 94907095.

[7]

Yan, W. H.; Wang, X. Y.; Pang, D.-W.; Cai, J. R. Interface-driven self-assembly: A robust strategy for chiral generation and amplification in inorganic nanomaterials. Nano Res. 2025, 18, 94907158.

[8]

Li, Z. Y.; Li, M. Q.; Liu, X. G.; Chen, J. L. Design, regulation, and functionalization of self-assembled DNA crystals. Nano Res. 2025, 18, 94907250.

[9]

Ji, M.; Gong, H. Y.; Peng, M. S.; Li, P. X.; Xie, X. L.; Zhou, Z. Y.; Hu, X. X.; Tian, Y. Programmable bottom-up self-assembly of nanomaterials at the nanoscale and microscale. Nano Res. 2025, 18, 94907174.

[10]

Zhang, R.; Xue, T. L.; Yang, D. Y. DNA nanostructures-based delivery system for cancer immunotherapy. Nano Res. 2025, 18, 94907178.

[11]

Niu, R. J.; Du, J. L.; He, W. Q.; Liu, B.; Chao, J. DNA-based plasmonic nanostructures with tailored optical responses. Nano Res. 2025, 18, 94907197.

[12]

Khan, M.; Han, C.; Li, H.; Dong, B. Q.; Li, D. Y.; Khan, Z.; Hu, H. T.; Sun, J. W.; Ni, W. H.; Lan, X. Single-particle insights into the optical activity of planar-layered chiral plasmonic superstructures. Nano Res. 2025, 18, 94907416.

[13]

Gan, Y. H.; Du, H.; Wang, Q. Y.; Li, F. Y.; Ling, D. S. Atomic-level magnetism modulation of nanocrystals for biomedical imaging. Nano Res. 2025, 18, 94907251.

[14]

Li, S. Y. Q.; Wang, X. Y.; Zhang, Z. Q.; Wang, L.; Lin, F. L.; Wang, R.; Liu, X. L.; Sun, W.; Wang, P. Y.; Xue, F. Q. Uniformed mesoporous silica with unique chiral architecture for enhanced endocytosis and fluorescence imaging. Nano Res. 2025, 18, 94907353.

[15]

Wu, C. J.; Li, X. L.; Shum, H. C. Micro/nanomotors from single modal to multimodal propulsion. Nano Res. 2025, 18, 94907105.

[16]

Yang, Y.-L.; Yang, Z.-Y.; Zeng, Q.-S.; Yang, Z.-H.; Fang, C.; Chen, Z.; Zou, D.-H.; Mao, L.-B.; Yu, S.-H. Water-bearable nacre-inspired composite via matrix-induced rapid mineralization as potential compact bone repair material. Nano Res. 2025, 18, 94907143.

[17]

Li, F. Z.; Zhu, Y. Q.; Qi, D. L.; Chen, C. R.; Li, H.; Cao, Z. Y.; Yang, X. Z. Magnetically actuated aggregation of nanoparticles via host–guest interaction for extracellular targeted drug delivery and cancer immunotherapy. Nano Res. 2025, 18, 94907164.

[18]

Li, M. W.; Li, W. P.; Li, Z.; Lu, J. Q. Advances in nanotechnology-enabled adjuvants for peptide-based cancer vaccines. Nano Res. 2025, 18, 94907534.

[19]

Li, X.-L.; Chen, C.; Yang, Z.-Y.; Meng, X.-S.; Zhu, Y.-B.; Feng, X.-F.; Gao, Y.-C.; Wang, W.-Z.; Liu, J.-W. Unique nanowire assemblies enables superior anti-interference capability for accurate structural failure prediction and soft robotics. Nano Res. 2025, 18, 94906990.

[20]

Zhang, M. J.; Gao, W. T.; Zhao, S. S.; Zhuang, T. T. Polymerization-with-assembly enables homogeneous circularly polarized luminescence structures. Nano Res. 2025, 18, 94907150.

[21]

Huang, J.; Yang, X. F.; Jin, X.; Yang, H. C.; Duan, P. F. Chiral photonic micro-particles enabling circularly polarized luminescence for NIR-II optical anti-counterfeiting. Nano Res. 2025, 18, 94907182.

[22]

Cui, C. Y.; Zhu, J.; Feng, S. H.; Yang, M. Nacre-like heterogeneous glass nanocomposites from interfacial assembly. Nano Res. 2025, 18, 94907173.

[23]

Tan, H. Y.; Zhao, H. B.; Shan, G. C. Facile strategy for screening and fabricating metal-organic framework-based sensors for highly sensitive detection of iodine gas. Nano Res. 2025, 18, 94907551.

[24]

Long, L. Q.; Johnson, J. A.; Ren, R.; Michele, L. D.; Edel, J. B.; Ivanov, A. P. Reconfigurable DNA origami hinges for nanopore detection of microRNA. Nano Res. 2025, 18, 94907604.

Nano Research
Article number: 94907678
Cite this article:
Kuang H, Nie Z. The Nano Research Young Innovators (NR45) Awards in nanomaterial self-assembly. Nano Research, 2025, 18(7): 94907678. https://doi.org/10.26599/NR.2025.94907678
Part of a topical collection:

65

Views

11

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Published: 04 July 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return