AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Light activated “spy” bacteria: Mediated PTT/PDT/Lysozyme hydrolysis for synergistic treatment of MRSA wound infections

Yana Liu1,2,§Chuang Liu1,2,§Qi Chen3Zhaowei Chen1,2Chunhua Lu1,2 ( )
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry, Fuzhou University, Fuzhou 350108, China
School of Medicine, Fuzhou University, Fuzhou 350108, China
Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China

§ Yana Liu and Chuang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

This work designed a delivery system based on Escherichia coli (Ec) that both carries lysozyme (LYZ) and adsorbs the photosensitizer indocyanine green (ICG) on its surface, referred to as Ec-LYZ-ICG. Under 808 nm laser irradiation, Ec-LYZ-ICG utilizes the synergistic effects of ICG-induced photothermal therapy (PTT) and photodynamic therapy (PDT) to disrupt the bacterial membrane and release LYZ. The combined actions of PTT and PDT directly damage MRSA, while LYZ further hydrolyzes the bacteria.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) presents a significant challenge in wound infection treatment due to its antibiotic resistance and biofilm formation. To address this, we utilized Escherichia coli (Ec) as a carrier to deliver lysozyme (LYZ) and adsorb the photosensitizer indocyanine green (ICG), resulting in the Ec-LYZ-ICG multi-functional antimicrobial platform. Since both Ec and MRSA are bacteria, this platform can act as a “spy”, evading the immune surveillance of MRSA and effectively penetrating infection sites. Upon exposure to 808 nm laser irradiation, Ec-LYZ-ICG utilizes the synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) induced by ICG, which ruptures Ec membrane and releases LYZ. The combined PTT and PDT directly damage MRSA, while LYZ further hydrolyzes MRSA. This strategy, with its “spy-like” camouflage and penetration abilities, overcomes MRSA’s antibiotic resistance and immune evasion, providing new insights and approaches for the precise treatment of MRSA infections.

Electronic Supplementary Material

Download File(s)
7637_ESM.pdf (5.7 MB)

References

[1]

Lee, A. S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 31, 4.

[2]

Turner, N. A.; Sharma-Kuinkel, B. K.; Maskarinec, S. A.; Eichenberger, E. M.; Shah, P. P.; Carugati, M.; Holland, T. L.; Fowler, V. G. Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218.

[3]

Kim, W.; Zhu, W. P.; Hendricks, G. L.; Van Tyne, D.; Steele, A. D.; Keohane, C. E.; Fricke, N.; Conery, A. L.; Shen, S.; Pan, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 2018, 556, 103–107.

[4]

Adedeji-Olulana, A. F.; Wacnik, K.; Lafage, L.; Pasquina-Lemonche, L.; Tinajero-Trejo, M.; Sutton, J. A. F.; Bilyk, B.; Irving, S. E.; Portman Ross, C. J.; Meacock, O. J. et al. Two codependent routes lead to high-level MRSA. Science 2024, 386, 573–580.

[5]

García-Fernández, E.; Koch, G.; Wagner, R. M.; Fekete, A.; Stengel, S. T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S. M.; Stigloher, C. et al. Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell 2017, 171, 1354–1367.e20.

[6]

Paiva, J. A.; Eggimann, P. Treatment of severe MRSA infections: Current practice and further development. Intensive Care Med. 2017, 43, 233–236.

[7]

Sedlmayer, F.; Woischnig, A. K.; Unterreiner, V.; Fuchs, F.; Baeschlin, D.; Khanna, N.; Fussenegger, M. 5-Fluorouracil blocks quorum-sensing of biofilm-embedded methicillin-resistant Staphylococcus aureus in mice. Nucleic Acids Res. 2021, 49, e73.

[8]

Ouyang, J.; Bu, Q. Y.; Tao, N.; Chen, M. K.; Liu, H. J.; Zhou, J.; Liu, J. G.; Deng, B.; Kong, N.; Zhang, X. C. et al. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact. Mater. 2022, 18, 446–458.

[9]

Yuan, Z.; Wu, J. S.; Xiao, Y.; Yang, H.; Meng, S. Y.; Dai, L. L.; Li, P.; Cai, K. Y. A photo-therapeutic nanocomposite with bio-responsive oxygen self-supplying combats biofilm infections and inflammation from drug-resistant bacteria. Adv. Funct. Mater. 2023, 33, 2302908.

[10]

Jiang, F.; Wang, J.; Ren, Z.; Hu, Y. J.; Wang, B. Y.; Li, M. Z.; Yu, J. L.; Tang, J.; Guo, G. Y.; Cheng, Y. S. et al. Targeted light-induced immunomodulatory strategy for implant-associated infections via reversing biofilm-mediated immunosuppression. ACS Nano 2024, 18, 6990–7010.

[11]

Abedon, S. T. Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv. Drug Deliv. Rev. 2019, 145, 18–39.

[12]

Park, J.; Hassan, M. A.; Nabawy, A.; Li, C. H.; Jiang, M. D.; Parmar, K.; Reddivari, A.; Goswami, R.; Jeon, T.; Patel, R. et al. Engineered bacteriophage-polymer nanoassemblies for treatment of wound biofilm infections. ACS Nano 2024, 18, 26928–26936.

[13]

Roy, S.; Hasan, I.; Guo, B. Recent advances in nanoparticle-mediated antibacterial applications. Coord. Chem. Rev. 2023, 482, 215075.

[14]

Huang, J.; Wu, S. L.; Wang, Y.; Shen, J.; Wang, C. F.; Zheng, Y. F.; Chu, P. K.; Liu, X. M. Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds. Bioact. Mater. 2024, 37, 14–29.

[15]

Wang, W. Q.; Gao, P.; Gui, H. S.; Wei, X. L.; Zhang, H. G.; Wang, X. W. Copper-based nanomaterials for the treatment of bacteria-infected wounds: Material classification, strategies and mechanisms. Coord. Chem. Rev. 2025, 522, 216205.

[16]

Missiakas, D.; Schneewind, O. Staphylococcus aureus vaccines: Deviating from the carol. J. Exp. Med. 2016, 213, 1645–1653.

[17]

Jin, Y. L.; Lu, Y.; Jiang, X.; Wang, M.; Yuan, Y. Q.; Zeng, Y. N.; Guo, L.; Li, W. Accelerated infected wound healing by probiotic-based living microneedles with long-acting antibacterial effect. Bioact. Mater. 2024, 38, 292–304.

[18]

Xu, H. T.; Li, Y. Q.; Song, J. P.; Zhou, L. Y.; Wu, K. Z.; Lu, X. Y.; Zhai, X. N.; Wan, Z. L.; Gao, J. Highly active probiotic hydrogels matrixed on bacterial EPS accelerate wound healing via maintaining stable skin microbiota and reducing inflammation. Bioact. Mater. 2024, 35, 31–44.

[19]

Yuan, Z. W.; Wang, J.; Qu, Q. W.; Zhu, Z. X.; Xu, M.; Zhao, M. M.; Sun, C. X.; Peng, H. X.; Huang, X. Y.; Dong, Y. et al. Celastrol combats methicillin-resistant Staphylococcus aureus by Targeting Δ1-pyrroline-5-carboxylate dehydrogenase. Adv. Sci. 2023, 10, 2302459.

[20]

Leśnierowski, G.; Yang, T. Y. Lysozyme and its modified forms: A critical appraisal of selected properties and potential. Trends Food Sci. Technol. 2021, 107, 333–342.

[21]

Le, G. N.; Li, Y. Q.; Cai, L.; Zhang, L.; Pei, W.; Zhu, X. Y.; Xu, S. C.; Zhang, J. R.; Chen, J. Lysozyme-based nanozyme encapsulated in double-network hydrogel for monitoring and repair of MRSA infected wounds. Chem. Eng. J. 2023, 477, 146421.

[22]

Li, Z.; Lu, S.; Liu, W. Z.; Dai, T.; Ke, J. X.; Li, X. J.; Li, R. F.; Zhang, Y. X.; Chen, Z.; Chen, X. Y. Synergistic lysozyme-photodynamic therapy against resistant bacteria based on an intelligent upconversion nanoplatform. Angew. Chem., Int. Ed. 2021, 60, 19201–19206.

[23]

Wang, Y. Z.; Lv, Q. J.; Chen, Y.; Xu, L. T.; Feng, M.; Xiong, Z. Y.; Li, J. J.; Ren, J.; Liu, J.; Liu, B. Bilayer hydrogel dressing with lysozyme-enhanced photothermal therapy for biofilm eradication and accelerated chronic wound repair. Acta Pharm. Sin. B 2023, 13, 284–297.

[24]

Wang, A. H.; Li, L. Q.; Zheng, L. Q.; Jiang, B. P.; Liu, Y. H.; Huang, R. M.; Qiu, H. M.; Ji, S. C.; Liang, H.; Shen, X. C. A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti-recurrence of diabetic wound infection by activating the cGAS-STING pathway. Aggregate 2025, 6, e662.

[25]

Zhou, X.; Yu, X. Z.; You, T. T.; Zhao, B. H.; Dong, L. L.; Huang, C.; Zhou, X. Q.; Xing, M.; Qian, W.; Luo, G. X. 3D printing-based hydrogel dressings for wound healing. Adv. Sci. 2024, 11, 2404580.

[26]

Yuan, Y.; Chen, L.; Song, K. X.; Cheng, M. M.; Fang, L.; Kong, L. F.; Yu, L. L.; Wang, R. N.; Fu, Z. D.; Sun, M. M. et al. Stable peptide-assembled nanozyme mimicking dual antifungal actions. Nat. Commun. 2024, 15, 5636.

[27]

Wu, L. Y.; Bao, F. F.; Li, L.; Yin, X. P.; Hua, Z. C. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv. Drug Deliv. Rev. 2022, 187, 114363.

[28]

Ijaz, M.; Hasan, I.; Chaudhry, T. H.; Huang, R.; Zhang, L.; Hu, Z. W.; Tan, Q. Q.; Guo, B. Bacterial derivatives mediated drug delivery in cancer therapy: A new generation strategy. J. Nanobiotechnol. 2024, 22, 510.

[29]

Varghese, M.; Balachandran, M. Antibacterial efficiency of carbon dots against gram-positive and gram-negative bacteria: A review. J. Environ. Chem. Eng. 2021, 9, 106821.

[30]

Lin, W. K.; Liu, Y.; Wang, J. H.; Zhao, Z. N.; Lu, K.; Meng, H.; Luoliu, R.; He, X. J.; Shen, J. L.; Mao, Z. W. et al. Engineered bacteria labeled with iridium (III) photosensitizers for enhanced photodynamic immunotherapy of solid tumors. Angew. Chem., Int. Ed. 2023, 62, e202310158.

[31]

Sun, M. X.; Yang, M. C.; Li, S. S.; Wang, C. H.; Zhang, F. R.; Xu, B. L.; Zhang, Y. L.; Sun, X. X.; Yuan, Q. P.; Liu, H. Y. Photothermal lysis of engineered bacteria to modulate amino acid metabolism against tumors. Adv. Funct. Mater. 2023, 33, 2212226.

[32]

Xue, P.; Yang, R. H.; Sun, L. H.; Li, Q.; Zhang, L.; Xu, Z. G.; Kang, Y. J. Indocyanine green-conjugated magnetic Prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nanomicro Lett. 2018, 10, 74.

[33]

Zhu, K. N.; Qian, S. Y.; Guo, H. W.; Wang, Q. Y.; Chu, X. Y.; Wang, X. Y.; Lu, S.; Peng, Y. O.; Guo, Y. S.; Zhu, Z. Q. et al. pH-activatable organic nanoparticles for efficient low-temperature photothermal therapy of ocular bacterial infection. ACS Nano 2022, 16, 11136–11151.

[34]

Liu, S. S.; Wang, B. N.; Yu, Y. W.; Liu, Y. B.; Zhuang, Z. Y.; Zhao, Z. J.; Feng, G. X.; Qin, A. J.; Tang, B. Z. Cationization-enhanced type I and type II ROS generation for photodynamic treatment of drug-resistant bacteria. ACS Nano 2022, 16, 9130–9141.

[35]

Martin, P.; Pardo-Pastor, C.; Jenkins, R. G.; Rosenblatt, J. Imperfect wound healing sets the stage for chronic diseases. Science 2024, 386, eadp2974.

[36]

León, C. H.; Kalacas, N. A.; Mier, A.; Sakhaii, P.; Merlier, F.; Prost, E.; Maffucci, I.; Montagna, V.; Mora-Radó, H.; Dhal, P. K. et al. Synthetic peptide antibodies as TNF-α inhibitors: Molecularly imprinted polymer nanogels neutralize the inflammatory activity of TNF-α in THP-1 derived macrophages. Angew. Chem., Int. Ed. 2023, 62, e202306274.

[37]

Wu, K. K.; Fu, M. M.; Zhao, Y. T.; Gerhard, E.; Li, Y.; Yang, J.; Guo, J. S. Anti-oxidant anti-inflammatory and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing. Bioact. Mater. 2023, 20, 93–110.

[38]

Dai, F. J.; Zhang, J. Y.; Chen, F. J.; Chen, X. W.; Lee, C. J.; Liang, H. Z.; Zhao, L. L.; Tan, H. A multi-responsive hydrogel combined with mild heat stimulation promotes diabetic wound healing by regulating inflammatory and enhancing angiogenesis. Adv. Sci. 2024, 11, 2408783.

Nano Research
Article number: 94907637
Cite this article:
Liu Y, Liu C, Chen Q, et al. Light activated “spy” bacteria: Mediated PTT/PDT/Lysozyme hydrolysis for synergistic treatment of MRSA wound infections. Nano Research, 2025, 18(8): 94907637. https://doi.org/10.26599/NR.2025.94907637
Topics:

112

Views

43

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 March 2025
Revised: 27 May 2025
Accepted: 28 May 2025
Published: 23 June 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return