Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hydrogenative coupling of CO2 to ethanol presents a sustainable pathway for carbon neutralization, yet the fundamental active sites and reaction pathway/mechanism remain unclear. Here, we investigate CO2 hydrogenative coupling over Cu/CeO2−x catalysts, achieving an optimal CO2 conversion of ~ 5% and ethanol selectivity of ~ 95% under 30 atm, H2/CO2 = 3, at 240 °C, and gas hourly space velocity (GHSV) = 120 mL·gcat−1·h−1. We revealed that both Cu(I) and oxygen vacancies (Ov) serve as active sites, with turnover frequencies (TOFs) of 0.23 h−1 per Ov site and 3.97 h−1 per Cu(I) site, respectively. We also concluded that neither Cu(I) nor Ov can function independently; both Cu(I) and Ov are required for CO2 activation and ethanol formation. Operando Fourier-transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations identify CH2OH* and CH2* as key intermediates in the C–C coupling step. These findings establish a mechanistic framework for CO2 hydrogenative coupling and provide valuable insights for designing more efficient catalysts for ethanol synthesis from CO2 conversion.
Ye, R.; Ding, J.; Reina, T. R.; Duyar, M. S.; Li, H.; Luo, W.; Zhang, R.; Fan, M.; Feng, G.; Sun, J. et al. Design of catalysts for selective CO2 hydrogenation. Nat. Synth. 2025, 4, 288–302.
Du, P.; Ait El Fakir, A.; Zhao, S.; Dostagir, N. H. M. D.; Pan, H.; Ting, K. W.; Mine, S.; Qian, Y.; Shimizu, K.; Toyao, T. Ethanol synthesis via catalytic CO2 hydrogenation over multi-elemental KFeCuZn/ZrO2 catalyst. Chem. Sci. 2024, 15, 15925–15934.
Zeng, F.; Mebrahtu, C.; Xi, X.; Liao, L.; Ren, J.; Xie, J.; Heeres, H. J.; Palkovits, R. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Appl. Catal. B: Environ. 2021, 291, 120073.
Latsiou, A. I.; Charisiou, N. D.; Frontistis, Z.; Bansode, A.; Goula, M. A. CO2 hydrogenation for the production of higher alcohols: Trends in catalyst developments, challenges and opportunities. Catal. Today 2023, 420, 114179.
Yang, Y. X.; White, M. G.; Liu, P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu (111) surfaces. J. Phys. Chem. C 2012, 116, 248–256.
Liu, L. N.; Fan, F.; Jiang, Z.; Gao, X. F.; Wei, J. J.; Fang, T. Mechanistic study of Pd–Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. J. Phys. Chem. C 2017, 121, 26287–26299.
Liu, L. N.; Fan, F.; Bai, M. M.; Xue, F.; Ma, X. R.; Jiang, Z.; Fang, T. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu (111) surfaces. Mol. Catal. 2019, 466, 26–36.
Murthy, P. S.; Wang, Z.; Wang, L.; Zhao, J.; Wang, Z.; Liang, W.; Huang, J. Improved CO2 hydrogenation on Ni-ZnO/MCM-41 catalysts with cooperative Ni and ZnO sites. Energy & Fuels 2020, 34, 16320–16329.
Liu, L. N.; Yao, H. D.; Jiang, Z.; Fang, T. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3 (111) surface. Appl. Surf. Sci. 2018, 451, 333–345.
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.
Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic, and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135.
Wang, W.; Jiang, X.; Wang, X.; Song, C. Fe–Cu bimetallic catalysts for selective CO2 hydrogenation to olefin-rich C2+ hydrocarbons. Ind. Eng. Chem. Res. 2018, 57, 4535–4542.
Zhang, Q. H.; Kang, J. C.; Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030–1058.
Li, Z.; Wu, W.; Wang, M.; Wang, Y.; Ma, X.; Luo, L.; Chen, Y.; Fan, K.; Pan, Y.; Li, H. et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nat. Commun. 2022, 13, 2396.
Vogt, C.; Monai, M.; Sterk, E. B.; Palle, J.; Melcherts, A. E. M.; Zijlstra, B.; Groeneveld, E.; Berben, P. H.; Boereboom, J. M.; Hensen, E. J. M. et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 2019, 10, 5330.
Cheng, K.; Li, Y.; Kang, J.; Zhang, Q.; Wang, Y. Selectivity control by relay catalysis in CO and CO2 hydrogenation to multicarbon compounds. Acc. Chem. Res. 2024, 57, 714–725.
Nie, X.; Wang, H.; Janik, M. J.; Chen, Y.; Guo, X.; Song, C. Mechanistic insight into C–C coupling over Fe–Cu bimetallic catalysts in CO2 hydrogenation. J. Phys. Chem. C 2017, 121, 13164–13174.
Weisz, P. B.; Prater, C. D. Interpretation of measurements in experimental catalysis. Adv. Catal. 1954, 6, 143–196.
Mears, D. E. Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 1971, 20, 127–131.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Campbell, C. T.; Árnadóttir, L.; Sellers, J. R. V. Kinetic prefactors of reactions on solid surfaces. Z. Phys. Chem. 2013, 227, 1435–1454.
Plata, J. J.; Márquez, A. M.; Fdez. Sanz, J. Communication: Improving the density functional theory + U description of CeO2 by including the contribution of the O 2p electrons. J. Chem. Phys. 2012, 136, 041101.
Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.
Zou, N.; Chen, J.; Qiu, T.; Zheng, Y. Direct hydrogenation of CO2 to ethanol at ambient conditions using Cu(I)-MOF in a dielectric barrier discharge plasma reactor. J. Mater. Chem. A 2023, 11, 10766–10775.
Zhou, C. S.; Aitbekova, A.; Liccardo, G.; Oh, J.; Stone, M. L.; McShane, E. J.; Werghi, B.; Nathan, S.; Song, C. Y.; Ciston, J. et al. Steam-assisted selective CO2 hydrogenation to ethanol over Ru–In catalysts. Angew. Chem., Int. Ed. 2024, 63, e202406761.
Tan, A. F. J.; Isnaini, M. D.; Phisalaphongb, M.; Yip, A. C. K. The engineering of CO2 hydrogenation catalysts for higher alcohol synthesis. RSC Sustain. 2024, 2, 3638–3654.
Asare Bediako, B. B.; Qian, Q.; Han, B. Synthesis of C2+ chemicals from CO2 and H2 via C–C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.
Xu, D.; Wang, Y.; Ding, M.; Hong, X.; Liu, G.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021, 7, 849–881.
Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.
776
Views
212
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).
Comments on this article