Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In active reconfigurable polarization conversion metasurfaces, the integration of electromagnetic radiation performance and heat dissipation efficiency presents two critical challenges. In this work, we proposed a graphene-based reconfigurable polarization metasurface that integrates heat dissipation and electromagnetic regulation functions. The proposed graphene metasurface modulates the polarization state of the reflected wave at multiple frequency bands via the on-off switching of PIN diodes. When the PIN diode is in the ON state, the metaurface can modulate the incident linear polarization wave into its cross-polarization wave in 5.73–6.15 and 11.25–13.10 GHz, and into a circular polarization wave in 6.27–10.18 GHz. When the PIN diode is switched to the off state, the cross-polarization transitions are achieved in 5.75–7.32 and 12.83–14.24 GHz, with full reflection in the band of 7.92–10.15 GHz, and circular polarization in 12.83–14.24 GHz. In addition, when the graphene metasurface system worked after a long period of operation, the temperature of the graphene metasurface is 21.3 °C, which is 34.2 °C lower than that of the copper metasurface, this has less impact on the temperature drift effect of the PIN diode. The integrated graphene polarized reconfigurable metasurface for radiation and heat dissipation addresses the performance, volume, and thermal management limitations of traditional systems through multifunctional integration and dynamic tunability, offering significant potential for future smart electromagnetic devices application in communication, radar, and Internet of Things.
Yu, N. F.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150.
Glybovski, S. B.; Tretyakov, S. A.; Belov, P. A.; Kivshar, Y. S.; Simovski, C. R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72.
Gu, X. X.; Liu, D. X.; Sadhu, B. Packaging and antenna integration for silicon-based millimeter-wave phased arrays: 5G and beyond. IEEE J. Microw. 2021, 1, 123–134.
Liu, B.; Liu, J.; Hu, C. C.; Song, K. X.; Huang, Y. H. Low-temperature co-fired ceramics with high thermal expansion and reliability for millimeter-wave antennas. Cell Rep. Phys. Sci. 2024, 5, 101959.
Lu, T. J.; Jin, J. M. Electrical-thermal co-simulation for analysis of high-power RF/microwave components. IEEE Trans. Electromagn. Compat. 2017, 59, 93–102.
Bar-Cohen, A.; Wang, P. Thermal management of on-chip hot spot. J. Heat. Transfer. 2012, 134, 051017.
Garimella, S. V.; Fleischer, A. S.; Murthy, J. Y.; Keshavarzi, A.; Prasher, R.; Patel, C.; Bhavnani, S. H.; Venkatasubramanian, R.; Mahajan, R.; Joshi, Y. et al. Thermal challenges in next-generation electronic systems. IEEE Trans. Compon. Packaging Technol. 2008, 31, 801–815.
West, P. R.; Stewart, J. L.; Kildishev, A. V.; Shalaev, V. M.; Shkunov, V. V.; Strohkendl, F.; Zakharenkov, Y. A.; Dodds, R. K.; Byren, R. All-dielectric subwavelength metasurface focusing lens. Opt. Express. 2014, 22, 26212–26221.
Zhang, H. H.; Liu, X. Y.; Liu, Y.; Fan, Z. C.; Du, H. L. Thermal-mechanical-electromagnetic multiphysics simulation of satellite phased array antenna based on DGTD and FEM method. IEEE J. Multiscale Multiphys Comput. Tech. 2024, 9, 236–246.
Zheng, W.; Jia, X. Y.; Zhou, Z. Y.; Yang, J.; Wang, Q. W. Multi-physical field coupling simulation and thermal design of 10 kV-KYN28A high-current switchgear. Therm. Sci. Eng. Prog. 2023, 43, 101954.
Shahil, K. M. F.; Balandin, A. A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331–1340.
Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today. 2014, 17, 163–174.
Shnawah, D. A.; Sabri, M. F. M.; Badruddin, I. A. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 2012, 52, 90–99.
Hajmohammadi, M. R.; Alipour, P.; Parsa, H. Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int. J. Heat Mass Transfer. 2018, 126, 808–815.
Kandlikar, S. G.; Grande, W. J. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transfer Eng. 2003, 24, 3–17.
Xu, C.; Ren, Z. H.; Wei, J. X.; Lee, C. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications. iScience 2022, 25, 103799.
Jiang, B. X.; Hu, H. Q.; Tian, J.; Lei, S. W.; Wu, Y. J.; Chen, B. An active multifunctional metamaterial with four operating modes. IEEE Trans. Antennas Propag. 2024, 72, 4221–4231.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.
Song, R. G.; Jiang, S. Q.; Hu, Z. L.; Fan, C.; Li, P.; Ge, Q.; Mao, B. Y.; He, D. P. Ultra-high conductive graphene assembled film for millimeter wave electromagnetic protection. Sci. Bull. 2022, 67, 1122–1125.
Li, L.; Yang, J. L.; Tan, R.; Shu, W.; Low, C. J.; Zhang, Z. X.; Zhao, Y.; Li, C.; Zhang, Y. J.; Li, X. C. et al. Large-scale current collectors for regulating heat transfer and enhancing battery safety. Nat. Chem. Eng. 2024, 1, 542–551.
Zeng, B. B.; Huang, Z. Q.; Singh, A.; Yao, Y.; Azad, A. K.; Mohite, A. D.; Taylor, A. J.; Smith, D. R.; Chen, H. T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light: Sci. Appl. 2018, 7, 51.
Sun, S. Z.; Jiao, D. Multiphysics modeling and simulation of 3-D Cu-graphene hybrid nanointerconnects. IEEE Trans. Microw. Theory Tech. 2020, 68, 490–500.
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.
Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.
Chen, M. Y.; Chang, L.; Zhang, A. X. Heat-dissipating mobile antenna: A novel mobile antenna concept with extremely small clearance and integrated heat-dissipating function. IEEE Trans. Antennas Propag. 2024, 72, 7480–7492.
Li, H. L.; Xiao, S. N.; Yu, H. L.; Xue, Y. H.; Yang, J. H. A review of graphene-based films for heat dissipation. New Carbon Mater. 2021, 36, 897–908.
Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.
Dong, W. L.; Qiu, Y. M.; Zhou, X. L.; Banas, A.; Banas, K.; Breese, M. B. H.; Cao, T.; Simpson, R. E. Tunable mid-infrared phase-change metasurface. Adv. Opt. Mater. 2018, 6, 1701346.
Li, Y. Z.; Abbosh, A. Reconfigurable reflectarray antenna using single-layer radiator controlled by PIN diodes. IET Microw. Antennas Propag. 2015, 9, 664–671.
Grady, N. K.; Heyes, J. E.; Chowdhury, D. R.; Zeng, Y.; Reiten, M. T.; Azad, A. K.; Taylor, A. J.; Dalvit, D. A. R.; Chen, H. T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307.
Huang, J. X.; Fu, T.; Li, H. O.; Shou, Z. Y.; Gao, X. A reconfigurable terahertz polarization converter based on metal-graphene hybrid metasurface. Chin. Opt. Lett. 2020, 18, 013102.
Zhang, H. H.; Chao, J. B.; Wang, Y. W.; Liu, Y.; Xu, Y. X.; Yao, H. M.; Jiang, L. J.; Li, X. H. Electromagnetic-thermal co-design of base station antennas with all-metal EBG structures. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3008–3012.
Tan, X.; Liu, T. H.; Zhou, W. J.; Yuan, Q. L.; Ying, J. F.; Yan, Q. W.; Lv, L.; Chen, L.; Wang, X. Z.; Du, S. Y. et al. Enhanced electromagnetic shielding and thermal conductive properties of polyolefin composites with a Ti3C2Tx MXene/graphene framework connected by a hydrogen-bonded interface. ACS Nano. 2022, 16, 9254–9266.
Sun, S. Y.; Jiang, W.; Gong, S. X.; Hong, T. Reconfigurable linear-to-linear polarization conversion metasurface based on PIN diodes. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1722–1726.
Yang, Z. Y.; Kou, N.; Yu, S. X.; Long, F.; Yuan, L. L.; Ding, Z.; Zhang, Z. P. Reconfigurable multifunction polarization converter integrated with PIN diode. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 557–560.
Liu, W.; Ke, J. C.; Xiao, C.; Zhang, L.; Cheng, Q.; Cui, T. J. Broadband polarization-reconfigurable converter using active metasurfaces. IEEE Trans. Antennas Propag. 2023, 71, 3725–3730.
Pramanik, S.; Bakshi, S. C.; Koley, C.; Mitra, D.; Monti, A.; Bilotti, F. Active metasurface-based reconfigurable polarization converter with multiple and simultaneous functionalities. IEEE Antenn. Wirel. Pr. 2023, 20, 522–526.
248
Views
33
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).