Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Isosbestic behavior has been traditionally deemed as a spectroscopic indicator of a chemical reaction, in which a reactant transforms directly to a product without intermediates. Room-temperature transformations of colloidal semiconductor magic-size clusters (MSCs) from MSC-a to MSC-b display interrupted spectral shifts in optical absorption with or without isosbestic behavior. We demonstrate that a multicomponent model explains consistently the pathway. The model invokes precursor compounds (PCs) of MSCs as intermediates, with three key steps from MSC-a to PC-a (step 1), to PC-b (step 2), and to MSC-b (step 3). Monomer substitution assists step 2 (PC-a to PC-b). Based on the experimental result and theoretical study, we conclude that when step 1 or 2 or 3 is rate-determining, isosbestic behavior can be ideally perfect or distorted or absent, respectively. Our study provides a deeper understanding of isosbestic behavior and of MSC transformations that are assisted by PC intermediates and monomer substitution.
Kringle, L.; Thornley, W. A.; Kay, B. D.; Kimmel, G. A. Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science 2020, 369, 1490–1492.
Geissler, P. L. Temperature dependence of inhomogeneous broadening: On the meaning of isosbestic points. J. Am. Chem. Soc. 2005, 127, 14930–14935.
Senior, W. A.; Verrall, R. E. Spectroscopic evidence for the mixture model in HOD solutions. J. Phys. Chem. 1969, 73, 4242–4249.
Walrafen, G. E. Raman spectral studies of HDO in H2O. J. Chem. Phys. 1968, 48, 244–251.
Gao, Z.; Xie, X. X.; Zhang, J.; Yuan, W.; Yan, H. X.; Tian, W. A coopetition-driven strategy of parallel/perpendicular aromatic stacking enabling metastable supramolecular polymerization. Nat. Commun. 2024, 15, 10762.
Gupta, D.; Bhatt, A.; Gupta, V.; Miglani, C.; Joseph, J. P.; Ralhan, J.; Mandal, D.; Ali, E.; Pal, A. Photochemically sequestered off-pathway dormant states of peptide amphiphiles for predictive on-demand piezoresponsive nanostructures. Chem. Mater. 2022, 34, 4456–4470.
Xu, F.; Pfeifer, L.; Crespi, S.; Leung, F. K. C.; Stuart, M. C. A.; Wezenberg, S. J.; Feringa, B. L. From photoinduced supramolecular polymerization to responsive organogels. J. Am. Chem. Soc. 2021, 143, 5990–5997.
Endo, M.; Fukui, T.; Jung, S. H.; Yagai, S. Takeuchi, M. ; Sugiyasu, K. Photoregulated living supramolecular polymerization established by combining energy landscapes of photoisomerization and nucleation-elongation processes. J. Am. Chem. Soc. 2016, 138, 14347–14353.
Chan, J. C. H.; Lam, W. H.; Yam, V. W. W. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: A promising candidate for optical memory storage materials. J. Am. Chem. Soc. 2014, 136, 16994–16997.
Cao, Y. T.; Malola, S.; Matus, M. F.; Chen, T. K.; Yao, Q. F.; Shi, R.; Häkkinen, H.; Xie, J. P. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 2021, 7, 2227–2244.
Qin, Z. X.; Zhang, J. W.; Wan, C. Q.; Liu, S.; Abroshan, H.; Jin, R. C.; Li, G. Atomically precise nanoclusters with reversible isomeric transformation for rotary nanomotors. Nat. Commun. 2020, 11, 6019.
Cao, Y. T.; Fung, V.; Yao, Q. F.; Chen, T. K.; Zang, S. Q.; Jiang, D. E.; Xie, J. P. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 2020, 11, 5498.
Guan, Z. J.; Hu, F.; Li, J. J.; Wen, Z. R.; Lin, Y. M.; Wang, Q. M. Isomerization in alkynyl-protected gold nanoclusters. J. Am. Chem. Soc. 2020, 142, 2995–3001.
Yao, Q. F.; Fung, V.; Sun, C.; Huang, S. D.; Chen, T. K.; Jiang, D. E.; Lee, J. Y.; Xie, J. P. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2018, 9, 1979.
Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 8667.
Petty, J. T.; Sergev, O. O.; Nicholson, D. A.; Goodwin, P. M.; Giri, B.; McMullan, D. R. A silver cluster-DNA equilibrium. Anal. Chem. 2013, 85, 9868–9876.
Hemdan, S. S.; Al Jebaly, A. M.; Ali, F. K. Importance of isosbestic point in spectroscopy: A review. J. Sci. Hum. Stu. 2019, 62, 1–21.
Chylewski, C. Generalization of the isosbestic point. Angew. Chem., Int. Ed. 1971, 10, 195–196.
Brynestad, J.; Smith, G. P. Isosbestic points and internally linear spectra generated by changes in solvent composition or temperature. J. Phys. Chem. 1968, 72, 296–300.
Cohen, M. D.; Fischer, E. 588. Isosbestic points. J. Chem. Soc. 1962, 3044–3052.
Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.
He, L.; Luan, C. R.; Rowell, N.; Zhang, M.; Chen, X. Q.; Yu, K. Transformations among colloidal semiconductor magic-size clusters. Acc. Chem. Res. 2021, 54, 776–786.
Luan, C. R.; Tang, J. B.; Rowell, N.; Zhang, M.; Huang, W.; Fan, H. S.; Yu, K. Four types of CdTe magic-size clusters from one prenucleation stage sample at room temperature. J. Phys. Chem. Lett. 2019, 10, 4345–4353.
Zhang, H.; Luan, C. R.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J. R.; Fan, H. S.; Huang, W. et al. Room-temperature formation pathway for CdTeSe alloy magic-size clusters. Angew. Chem., Int. Ed. 2020, 59, 16943–16952.
Yang, Y. S.; Li, Y.; Luan, C. R.; Rowell, N.; Wang, S. L.; Zhang, C. C.; Huang, W.; Chen, X. Q.; Yu, K. Transformation pathways in colloidal CdTeSe magic-size clusters. Angew. Chem., Int. Ed. 2022, 61, e202114551.
Wang, D. Q.; Liu, Y. H.; Rowell, N.; Wang, S. L.; Zhang, C. C.; Zhang, M.; Luan, C. R.; Yu, K. Direct and indirect evolution of photoluminescent semiconductor CdS magic-size clusters through their precursor compounds. Angew. Chem., Int. Ed. 2023, 62, e202304329.
Ripberger, H. H.; Schnitzenbaumer, K. J.; Nguyen, L. K.; Ladd, D. M.; Levine, K. R.; Dayton, D. G.; Toney, M. F.; Cossairt, B. M. Navigating the potential energy surface of CdSe magic-sized clusters: Synthesis and interconversion of atomically precise nanocrystal polymorphs. J. Am. Chem. Soc. 2023, 145, 27480–27492.
Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; L. Billinge, S. J. L.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645–10653.
Jeon, S.; Heo, T.; Hwang, S. Y.; Ciston, J.; Bustillo, K. C.; Reed, B. W.; Ham, J.; Kang, S.; Kim, S.; Lim, J. et al. Reversible disorder-order transitions in atomic crystal nucleation. Science 2021, 371, 498–503.
Luan, C. R.; Shen, Q.; Rowell, N.; Zhang, M.; Chen, X. Q.; Huang, W.; Yu, K. A real-time in situ demonstration of direct and indirect transformation pathways in CdTe magic-size clusters at room temperature. Angew. Chem., Int. Ed. 2022, 61, e202205784.
Yang, Y. S.; Shen, Q.; Zhang, C. C.; Rowell, N.; Zhang, M.; Chen, X. Q.; Luan, C. R.; Yu, K. Direct and indirect pathways of CdTeSe magic-size cluster isomerization induced by surface ligands at room temperature. ACS Cent. Sci. 2023, 9, 519–530.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.
Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. Molecular orbital theory of the electronic structure of organic compounds. V. molecular theory of bond separation . J. Am. Chem. Soc. 1970, 92, 4796–4801.
Bhawal, B. N.; Morandi, B. Isodesmic reactions in catalysis-only the beginning. Isr. J. Chem. 2018, 58, 94–103.
Rochette, É.; Desrosiers, V.; Soltani, Y.; Fontaine, F. G. Isodesmic C–H borylation: Perspectives and proof of concept of transfer borylation catalysis. J. Am. Chem. Soc. 2019, 141, 12305–12311.
Xue, J.; Zhang, Y. S.; Huan, Z.; Yang, J. D.; Cheng, J. P. Deoxygenation of phosphine oxides by PIII/PV=O redox catalysis via successive isodesmic reactions. J. Am. Chem. Soc. 2023, 145, 15589–15599.
Li, S.; Li, N. N.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Chemical flexibility of atomically precise metal clusters. Chem. Rev. 2024, 124, 7262–7378.
Deng, G. C.; Malola, S.; Ki, T.; Liu, X. L.; Yoo, S.; Lee, K.; Bootharaju, M. S.; Häkkinen, H.; Hyeon, T. Structural isomerism in bimetallic Ag20Cu12 nanoclusters. J. Am. Chem. Soc. 2024, 146, 26751–26758.
Wang, M.; Xia, S.; Jiang, C. J.; He, S. Y.; Xia, J. F.; Wang, Z. H.; Yuan, X.; Liu, L. R.; Chen, J. S. Aggregation inducing reversible conformational isomerization of surface staple in Au18SR14 nanoclusters. Small 2024, 20, 2311895.
430
Views
82
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).