AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dual-mode triboelectric field polarization induced sweat evaporation for personal moisture management cotton textiles

Maorong ZhengXinyang HeWendi LiuYunna HaoLiming Wang ( )Xiaohong Qin ( )
Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

This work is the first to propose a dual-mode triboelectric field polarization that promotes sweat evaporation in personal moisture management textiles. Not only can the generated triboelectric field be used to decompose the large-sized water clusters into small-sized water clusters or water monomers to accelerate sweat evaporation, but also to stably monitor the movement posture of the human body.

Abstract

Cotton fiber, as a soft and skin-friendly natural fiber, is gaining increasing attention, but how to realize the ideal cotton fabric for sweat rapid evaporation remains challenging. Herein, for the first time, a personal moisture management cotton electronic textile (PMMC e-textile) with a pleated structure and dual-mode triboelectric promoting evaporation is developed. The PMMC e-textile can not only rapidly evaporate sweat in the form of small molecules through electric field polarization, but also stably monitor the movement signal of the human body in the state of sweating. In the two working modes, the water evaporation rate is 0.210 g/h in the triboelectric field generated in the horizontal stretching–recovery mode, and 0.247 g/h in the vertical contact separation mode (1.41 and 1.66 times faster than cotton fabric, respectively). This work exhibits a good fusion of wet comfort textiles and wearable electronics.

Electronic Supplementary Material

Download File(s)
7469_ESM.pdf (1.8 MB)

References

[1]

Peng, Y. C.; Li, W.; Liu, B. F.; Jin, W. L.; Schaadt, J.; Tang, J.; Zhou, G. M.; Wang, G. Y.; Zhou, J. W.; Zhang, C. et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat. Commun. 2021, 12, 6122.

[2]

Wang, R.; Fang, S. L.; Xiao, Y. C.; Gao, E. L.; Jiang, N.; Li, Y. W.; Mou, L. L.; Shen, Y. N.; Zhao, W. B.; Li, S. T. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 2019, 366, 216–221.

[3]

Zhang, L.; Guo, Y. W.; Mo, R. L.; Liu, X.; Wang, G.; Wu, R. H.; Liu, H. L. Hierarchical weaving metafabric for unidirectional water transportation and evaporative cooling. Adv. Funct. Mater. 2023, 33, 2307590.

[4]

Zhang, Y. F.; Fu, J. J.; Ding, Y. C.; Babar, A. A.; Song, X.; Chen, F.; Yu, X. G.; Zheng, Z. J. Thermal and moisture managing E-textiles enabled by Janus hierarchical gradient honeycombs. Adv. Mater. 2024, 36, 2311633.

[5]

Lao, L.; Shou, D.; Wu, Y. S.; Fan, J. T. “Skin-like” fabric for personal moisture management. Sci. Adv. 2020, 6, eaaz0013.

[6]

Zhang, Q.; Wang, M. Y.; Chen, T.; Chen, Z. P.; Liu, D. F.; Zhang, Z. X.; Zhuo, L.; Wang, Y. G.; Xiao, X. F.; Zhu, B. et al. Sweat gland-like fabric for personal thermal-wet comfort management. Adv. Funct. Mater. 2024, 2409807.

[7]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[8]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[9]

Hsu, P. C.; Liu, C.; Song, A. Y.; Zhang, Z.; Peng, Y. C.; Xie, J.; Liu, K.; Wu, C. L.; Catrysse, P. B.; Cai, L. L. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895.

[10]

Hsu, P. C.; Li, X. Q. Photon-engineered radiative cooling textiles, Science 2020, 370, 784–785.

[11]

Fan, Q. C.; Fan, H. W.; Han, H. Z.; Bai, Z. Y.; Wu, X. L.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Li, K. R.; Wang, H. Z. Dynamic thermoregulatory textiles woven from scalable-manufactured radiative electrochromic fibers. Adv. Funct. Mater. 2024, 34, 2310858.

[12]

Ding, C. F.; Lin, Y. Y.; Cheng, N. B.; Meng, N.; Wang, X. F.; Yin, X.; Yu, J. Y.; Ding, B. Dual-cooling textile enables vertical heat dissipation and sweat evaporation for thermal and moisture regulation. Adv. Funct. Mater. 2024, 34, 2400987.

[13]

Oglakcioglu, N.; Celik, P.; Ute, T. B.; Marmarali, A.; Kadoglu, H. Thermal comfort properties of angora rabbit/cotton fiber blended knitted fabrics. Text. Res. J. 2009, 79, 888–894.

[14]

Khan, A. Q.; Yu, K. Q.; Li, J. T.; Leng, X. Q.; Wang, M. L.; Zhang, X. S.; An, B. G.; Fei, B.; Wei, W.; Zhuang, H. C. et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv. Fiber Mater. 2022, 4, 1572–1583.

[15]

Hou, K. R.; Ji, Y. T.; Chang, Y.; Yun, Z. F.; Hang, X. H.; Zheng, L. J.; Cheng, G. L.; Cai, Z. S. Characterization of Porel fiber structure and thermal-wet comfort of its fabrics. Fiber. Polym. 2023, 24, 2557–2564.

[16]

Havenith, G.; Bröde, P.; Hartog, E. D.; Kuklane, K.; Holmer, I.; Rossi, R. M.; Richards, M.; Farnworth, B.; Wang, X. X. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin. J. Appl. Physiol. 2013, 114, 778–785.

[17]

Parada, M.; Vontobel, P.; Rossi, R. M.; Derome, D.; Carmeliet, J. Dynamic wicking process in textiles. Transport Porous Med. 2017, 119, 611–632.

[18]

Zhou, X. H.; Wang, Z.; Xiong, T.; He, B.; Wang, Z. X.; Zhang, H. Z.; Hu, D. M.; Liu, Y. T.; Yang, C. L.; Li, Q. W. et al. Fiber crossbars: An emerging architecture of smart electronic textiles. Adv. Mater. 2023, 35, 2300576.

[19]

Zheng, Y. B.; Tang, N.; Omar, R.; Hu, Z. P.; Duong, T.; Wang, J.; Wu, W. W.; Haick, H. Smart materials enabled with artificial intelligence for healthcare wearables. Adv. Funct. Mater. 2021, 31, 2105482.

[20]

Singha, K.; Kumar, J.; Pandit, P. Recent advancements in wearable & smart textiles: An overview. Mater. Today: Proc. 2019, 16, 1518–1523.

[21]

Sun, J. K.; Guo, W. J.; Mei, G. K.; Wang, S. L.; Wen, K.; Wang, M. L.; Feng, D. Y.; Qian, D.; Zhu, M. F.; Zhou, X. et al. Artificial spider silk with buckled sheath by nano-pulley combing. Adv. Mater. 2023, 35, 2212112.

[22]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

[23]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[24]

Peng, X.; Dong, K.; Zhang, Y. F.; Wang, L. L.; Wei, C. H.; Lv, T. M.; Wang, Z. L.; Wu, Z. Y. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 2022, 32, 2112241.

[25]

Gong, X. B.; Ding, M. L.; Gao, P.; Liu, X. Y.; Yu, J. Y.; Zhang, S. C.; Ding, B. High-performance liquid-repellent and thermal-wet comfortable membranes using triboelectric nanostructured nanofiber/meshes. Adv. Mater. 2023, 35, 2305606.

[26]

Li, J. J.; Gong, W. J.; Zhao, W. Q.; Zhu, Y. T.; Bai, J.; Xia, Z. G.; Zhou, X.; Liu, Z. F. Recent advances in flexible self-oscillating actuators. eScience 2024, 4, 100250.

[27]

Yang, W. F.; Gong, W.; Hou, C. Y.; Su, Y.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 5541.

[28]

Gong, W.; Wang, X. L.; Yang, W. F.; Zhou, J.; Han, X.; Dickey, M. D.; Su, Y.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H. et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles. Adv. Mater. 2021, 33, 2007352.

[29]

Dong, Z. J.; Ge, M. T.; Ding, Y. Q.; Cong, H. L.; Zhao, G.; Ma, P. B. Sweat transmission management of 3D concave-convex-lattice structure weft knitted fabric. ACS Appl. Polym. Mater. 2023, 5, 7497–7506.

[30]

Karthik, T.; Senthilkumar, P.; Murugan, R. Analysis of comfort and moisture management properties of polyester/milkweed blended plated knitted fabrics for active wear applications. J. Ind. Text. 2018, 47, 897–920.

[31]

Yin, Y. Y.; Wang, J. N.; Zhao, S. Y.; Fan, W.; Zhang, X. L.; Zhang, C.; Xing, Y.; Li, C. J. Stretchable and tailorable triboelectric nanogenerator constructed by nanofibrous membrane for energy harvesting and self-powered biomechanical monitoring. Adv. Mater. Technol. 2018, 3, 1700370.

[32]

He, H. L.; Yu, Z. C. Effect of air gap entrapped in firefighter protective clothing on thermal resistance and evaporative resistance. Autex Res. J. 2018, 18, 28–34.

[33]

Fan, W.; Lei, R. X.; Dou, H.; Wu, Z.; Lu, L. L.; Wang, S. J.; Liu, X. Q.; Chen, W. C.; Rezakazemi, M.; Aminabhavi, T. M. et al. Sweat permeable and ultrahigh strength 3D PVDF piezoelectric nanoyarn fabric strain sensor. Nat. Commun. 2024, 15, 3509.

[34]

Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

[35]

Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J. Y.; Shin, H. J.; Kim, S. W.; Cho, J. H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778.

[36]

Qin, Z.; Yin, Y. Y.; Zhang, W. Z.; Li, C. J.; Pan, K. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl. Mater. Interfaces 2019, 11, 12452–12459.

[37]

Wu, H. S.; Wang, C.; Liu, L. P.; Liu, Z. L.; He, J. H.; Zhang, C. C.; Duan, J. A. Bioinspired stretchable strain sensor with high linearity and superhydrophobicity for underwater applications. Adv. Funct. Mater. 2025, 35, 2413552.

[38]

Jiao, J. Y.; Lu, Q. X.; Wang, Z. L.; Qin, Y.; Cao, X. Sandwich as a triboelectric nanogenerator. Nano Energy 2021, 79, 105411.

[39]

An, S. S.; Pu, X. J.; Zhou, S. Y.; Wu, Y. H.; Li, G.; Xing, P. C.; Zhang, Y. S.; Hu, C. G. Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS Nano 2022, 16, 9359–9367.

[40]

Wei, C. H.; Cheng, R. W.; Ning, C.; Wei, X. Y.; Peng, X.; Lv, T. M.; Sheng, F. F.; Dong, K.; Wang, Z. L. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv. Funct. Mater. 2023, 33, 2303562.

[41]

Gao, L.; Yang, J.; Zhao, Y.; Zhao, X. X.; Zhou, K. K.; Zhai, W.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Multilayer bionic tunable strain sensor with mutually non-interfering conductive networks for machine learning-assisted gesture recognition. Adv. Funct. Mater. 2025, 35, 2416911.

[42]

Wang, Y. L.; Qin, W. J.; Yang, M.; Tian, Z. H.; Guo, W. J.; Sun, J. K.; Zhou, X.; Fei, B.; An, B. G.; Sun, R. M. et al. High linearity, low hysteresis Ti3C2TX MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds. Adv. Funct. Mater. 2023, 33, 2301587.

Nano Research
Article number: 94907469
Cite this article:
Zheng M, He X, Liu W, et al. Dual-mode triboelectric field polarization induced sweat evaporation for personal moisture management cotton textiles. Nano Research, 2025, 18(6): 94907469. https://doi.org/10.26599/NR.2025.94907469
Topics:

409

Views

80

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 19 March 2025
Revised: 14 April 2025
Accepted: 14 April 2025
Published: 16 May 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return