Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the explosive expansion of information, there is a growing need for non-volatile memories with high storage density and reconfigurability. Emerging two-dimensional (2D) ferroelectric materials enable the design of various high-performance functional devices that can potentially address these challenges. Here, we report a ferroelectric semiconductor floating-gate transistor based on an α-In2Se3/hexagonal boron nitride (h-BN)/multi-layered graphene (MLG) van der Waals heterostructure on a SiO2/Si substrate. Thanks to the coexistence of both out-of-plane and in-plane polarizations in an α-In2Se3 channel, pairs of polarization-modulated channel resistance states can be successfully generated between the floating-gate-modulated on and off states, which can be programmed by either vertical gate pulses or planar drain pulses. These features enable a 2-bit multi-level memory in both three-terminal or two-terminal operational modes, significantly increasing the storage density and reconfigurability. The present results introduce a new design degree of freedom for floating-gate memories and provide fresh insights into future non-volatile memory technologies.
Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.
Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.
Kahng, D.; Sze, S. M. A floating gate and its application to memory devices. Bell Syst. Tech. J. 1967, 46, 1288–1295.
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519.
Zhao, C.; Zhao, C. Z.; Taylor, S.; Chalker, P. R. Review on non-volatile memory with high-k dielectrics: Flash for generation beyond 32 nm. Materials 2014, 7, 5117–5145.
Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Nguyen, V. L.; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.
Garcia, V.; Bibes, M. Inside story of ferroelectric memories. Nature 2012, 483, 279–280.
Khosla, R.; Sharma, S. K. Integration of ferroelectric materials: An ultimate solution for next-generation computing and storage devices. ACS Appl. Electron. Mater. 2021, 3, 2862–2897.
Ma, C.; Tao, L. F.; Luo, Z.; Sun, H. Y.; Liu, C. C.; Wang, Z. J.; Zhou, X.; Jin, X.; Yin, Y. W.; Li, X. G. Efficient parallel multi-bit logic-in-memory based on a ultrafast ferroelectric tunnel junction memristor. Adv. Electron. Mater. 2021, 7, 2000988.
Xu, L. P.; Duan, Z. H.; Zhang, P.; Wang, X.; Zhang, J. Z.; Shang, L. Y.; Jiang, K.; Li, Y. W.; Zhu, L. Q.; Gong, Y. J. et al. Ferroelectric-modulated MoS2 field-effect transistors as multilevel nonvolatile memory. ACS Appl. Mater. Interfaces 2020, 12, 44902–44911.
Zhang, Q.; Xiong, H.; Wang, Q. F.; Xu, L. P.; Deng, M. H.; Zhang, J. Z.; Fuchs, D.; Li, W. W.; Shang, L. Y.; Li, Y. W. et al. Tunable multi-bit nonvolatile memory based on ferroelectric field-effect transistors. Adv. Electron. Mater. 2022, 8, 2101189.
Si, M. W.; Saha, A. K.; Gao, S. J.; Qiu, G.; Qin, J. K.; Duan, Y. Q.; Jian, J.; Niu, C.; Wang, H. Y.; Wu, W. Z. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586.
Ma, T. P.; Han, J. P. Why is nonvolatile ferroelectric memory field-effect transistor still elusive. IEEE Electron Device Lett. 2002, 23, 386–388.
Ishiwara, H. Current status and prospects of FET-type ferroelectric memories. J. Semicond. Technol. Sci. 2001, 1, 1–14.
Yurchuk, E.; Müller, J.; Müller, S.; Paul, J.; Pešić, M.; van Bentum, R.; Schroeder, U.; Mikolajick, T. Charge-trapping phenomena in HfO2-based FeFET-type nonvolatile memories. IEEE Trans. Electron Dev. 2016, 63, 3501–3507.
Xu, X. M.; Guo, T. C.; Kim, H.; Hota, M. K.; Alsaadi, R. S.; Lanza, M.; Zhang, X. X.; Alshareef, H. N. Growth of 2D materials at the wafer scale. Adv. Mater. 2022, 34, 2108258.
Zhou, K.; Shang, G.; Hsu, H. H.; Han, S. T.; Roy, V. A. L.; Zhou, Y. Emerging 2D metal oxides: From synthesis to device integration. Adv. Mater. 2023, 35, 2207774.
Chen, C. S.; Zhou, Y. Q.; Tong, L.; Pang, Y.; Xu, J. B. Emerging 2D ferroelectric devices for in-sensor and in-memory computing. Adv. Mater. 2025, 37, 2400332.
Lin, S. M.; Zhang, G. Y.; Lai, Q. L.; Fu, J.; Zhu, W. G.; Zeng, H. L. Recent advances in layered two-dimensional ferroelectrics from material to device. Adv. Funct. Mater. 2023, 33, 2304139.
Wang, W. J.; Meng, Y.; Wang, W.; Zhang, Y. X.; Li, B. W.; Yan, Y.; Gao, B. X.; Ho, J. C. 2D ferroelectric materials: Emerging paradigms for next-generation ferroelectronics. Mater. Today Electron. 2023, 6, 100080.
Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419–425.
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
Marega, G. M.; Wang, Z. Y.; Zhao, Y. F.; Ji, H. G.; Ottesen, A.; Tripathi, M.; Radenovic, A.; Kis, A. How to achieve large-area ultra-fast operation of MoS2 monolayer flash memories. IEEE Nanotechnol. Mag. 2023, 17, 39–43.
Liu, A. H.; Zhang, X. W.; Liu, Z. Y.; Li, Y. N.; Peng, X. Y.; Li, X.; Qin, Y.; Hu, C.; Qiu, Y. Q.; Jiang, H. et al. The roadmap of 2D materials and devices toward chips. Nanomicro Lett. 2024, 16, 119.
Wu, L. M.; Wang, A. W.; Shi, J.; Yan, J. H.; Zhou, Z.; Bian, C.; Ma, J. J.; Ma, R. S.; Liu, H. T.; Chen, J. C. et al. Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. Nat. Nanotechnol. 2021, 16, 882–887.
Luo, Z. D.; Yang, M. M.; Liu, Y.; Alexe, M. Emerging opportunities for 2D semiconductor/ferroelectric transistor-structure devices. Adv. Mater. 2021, 33, 2005620.
Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 Nanoflakes. Nano Lett. 2017, 17, 5508–5513.
Xue, F.; He, X.; Wang, Z. Y.; Retamal, J. R. D.; Chai, Z.; Jing, L. L.; Zhang, C. H.; Fang, H.; Chai, Y.; Jiang, T. et al. Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 2021, 33, 2008709.
Li, Y.; Chen, C.; Li, W.; Mao, X. Y.; Liu, H.; Xiang, J. Y.; Nie, A. M.; Liu, Z. Y.; Zhu, W. G.; Zeng, H. L. Orthogonal electric control of the out-of-plane field-effect in 2D ferroelectric α-In2Se3. Adv. Electron. Mater. 2020, 6, 2000061.
Hibino, H.; Kageshima, H.; Kotsugi, M.; Maeda, F.; Guo, F. Z.; Watanabe, Y. Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys. Rev. B 2009, 79, 125437.
Sup Choi, M.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Hwan Lee, S.; Kim, P.; Hone, J.; Jong Yoo, W. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624.
Kremer, G.; Mahmoudi, A.; M’Foukh, A.; Bouaziz, M.; Rahimi, M.; Della Rocca, M. L.; Le Fèvre, P.; Dayen, J. F.; Bertran, F.; Matzen, S. et al. Quantum confinement and electronic structure at the surface of van der Waals ferroelectric α-In2Se3. ACS Nano 2023, 17, 18924–18931.
Lv, B. H.; Yan, Z.; Xue, W. H.; Yang, R. L.; Li, J. Y.; Ci, W. J.; Pang, R. X.; Zhou, P.; Liu, G.; Liu, Z. Y. et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater. Horiz. 2021, 8, 1472–1480.
Mukherjee, S.; Koren, E. Indium selenide (In2Se3)-an emerging van der Waals material for photodetection and non-volatile memory applications. Isr. J. Chem. 2022, 62, e202100112.
Nguyen, T. H.; Nguyen, V. Q.; Duong, A. T.; Cho, S. 2D semiconducting α-In2Se3 single crystals: Growth and huge anisotropy during transport. J. Alloys Compd. 2019, 810, 151968.
Xue, F.; He, X.; Retamal, J. R. D.; Han, A.; Zhang, J. W.; Liu, Z. X.; Huang, J. K.; Hu, W. J.; Tung, V.; He, J. H. et al. Gate-tunable and multidirection-switchable memristive phenomena in a van der Waals ferroelectric. Adv. Mater. 2019, 31, 1901300.
Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.
Poh, S. M.; Tan, S. J. R.; Wang, H.; Song, P.; Abidi, I. H.; Zhao, X. X.; Dan, J. D.; Chen, J. S.; Luo, Z. T.; Pennycook, S. J. et al. Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction. Nano Lett. 2018, 18, 6340–6346.
Fan, Z. Y.; Lu, J. G. Electrical properties of ZnO nanowire field-effect transistors characterized with scanning probes. Appl. Phys. Lett. 2005, 86, 032111.
Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.
Wang, S. P.; He, C. L.; Tang, J.; Lu, X. B.; Shen, C.; Yu, H.; Du, L. J.; Li, J. F.; Yang, R.; Shi, D. X. et al. New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 2019, 5, 1800726.
Cui, C. J.; Hu, W. J.; Yan, X. X.; Addiego, C.; Gao, W. P.; Wang, Y.; Wang, Z.; Li, L. Z.; Cheng, Y. C.; Li, P. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett. 2018, 18, 1253–1258.
Cheng, Z. C.; Song, X. F.; Jiang, L. F.; Wang, L. D.; Sun, J. M.; Yang, Z. X.; Jian, Y. X.; Zhang, S. L.; Chen, X.; Zeng, H. B. A mixed-dimensional WS2/GaSb heterojunction for high-performance p–n diodes and junction field-effect transistors. J. Mater. Chem. C 2022, 10, 1511–1516.
195
Views
35
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).