AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Highly stretchable oil gel biomedical robots

Lixia Wang1,2Junxing Zhang1,2Xiang Sun1,2Aisong Chen1,2Dongfang Wang1,2 ( )Qian Li1,2
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

The original Si-gel/pCrO2@SiO2 micro-robot can move efficiently and stably in different directions, while under the 60 mT premagnetization condition, the micro-robot can drive more efficiently without the same magnetic field.

Abstract

Although functional polymeric soft-bodied robots have received widespread attention in fields such as precision industry and biomedical engineering, the limited reconfigurability has restricted their further development. To meet the requirements of biomedical applications for device safety and reconfigurability, an organosilica gel (Si-gel)/high-purity chromium dioxide (pCrO2)@silica (SiO2) micro-robot is constructed using a solvothermal reaction method, which exhibits excellent biocompatibility and reconfigurable actuation. Wettability tests show that the oil-based gel maintains a high contact angle of 114.75° even after 600 s of water droplet exposure, demonstrating strong hydrophobicity and stability. Mechanical testing indicates that the obtained Si-gel displays higher fracture elongation (an increase of 174.64%) and elastic recovery (over 90% after 20 cycles of 100% tensile strain and 15 cycles of 80% compressive strain) compared to the original polydimethylsiloxane (PDMS). Magnetic actuation results demonstrate that pre-magnetization under a 60 mT field can achieve customized motion speeds from 29.5 to 70.0 mm/s without changing the external magnetic field. The device exhibits excellent stability under repeated high-temperature exposure, repeated magnetization, and hundreds of continuous driving cycles. Furthermore, the micro-robot shows promising biocompatibility and enhanced organic–inorganic compatibility, suggesting its potential as an effective alternative to catheter-implanted biomedical aids.

Electronic Supplementary Material

Download File(s)
7408_ESM.pdf (2.5 MB)

References

[1]

McEvoy, M. A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689.

[2]

Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.

[3]

Wu, Y. C.; Yim, J. K.; Liang, J. M.; Shao, Z. C.; Qi, M. J.; Zhong, J. W.; Luo, Z. H.; Yan, X. J.; Zhang, M.; Wang, X. H. et al. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 2019, 4, eaax1594.

[4]
Ren, Z. G. Research on soft microbots fabricated by femtosecond laser and their manipulation performance. Ph.D. Dissertation, University of Science and Technology of China, Hefei, China, 2024.
[5]

Li, Y. N.; Fu, C. L.; Huang. L. L.; Chen, L. H.; Ni, Y. H.; Zheng, Q. H. Cellulose-based multi-responsive soft robots for programmable smart devices. Chem. Eng. J. 2024, 498, 155099.

[6]

Pan. F. F.; Chen, L.; Liu, F.; Ji, X. B. Electric field induced mechanical flapping motors enabling soft robotic and wearable applications. Sens. Actuators A: Phys. 2024, 376, 115662.

[7]

Taccola, S.; Bakhshi, H.; Sifuentes, M. S.; Lloyd, P.; Tinsley, L. J.; Macdonald, J.; Bacchetti, A.; Cespedes, O.; Chandler, J. H.; Valdastri, P. et al. Dual-material aerosol jet printing of magneto-responsive polymers with in-process tailorable composition for small-scale soft robotics. Adv. Mater. Technol. 2024, 9, 2400463.

[8]

Zhou, Z. Q.; Wang, X. T.; Yu, H. C.; Yu, C. L.; Zhang, F. A. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules 2022, 55, 2193–2201.

[9]

Jones, T. J.; Jambon-Puillet, E.; Marthelot, J.; Brun, P. T. Bubble casting soft robotics. Nature 2021, 599, 229–233.

[10]

Hao, Z. T.; Song, S. Z.; Li, B.; Jia, Q. X.; Zheng, T. F.; Zhang, Z. C. A solvent driven dual responsive actuator based on MOF/polymer composite. Sens. Actuators B: Chem 2022, 358, 131448.

[11]

Shi, Y.; Askounis, E.; Plamthottam, R.; Libby, T.; Peng, Z. H.; Youssef, K.; Pu, J. H.; Pelrine, R.; Pei, Q. B. A processable, high-performance dielectric elastomer and multilayering process. Science 2022, 377, 228–232.

[12]

Kim, I. H.; Choi, S.; Lee, J.; Jung, J.; Yeo, J.; Kim, J. T.; Ryu, S.; Ahn, S. K.; Kang, J.; Poulin, P. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol 2022, 17, 1198–1205.

[13]

Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249.

[14]

Li, X. F.; Du, Y. M.; Xiao, C.; Ding, X.; Pan, X. S.; Zheng, K.; Liu, X. L.; Chen, L.; Gong, Y.; Xue, M. et al. Tendril-inspired programmable liquid metal photothermal actuators for soft robots. Adv. Funct. Mater. 2024, 34, 2470019.

[15]

Yan, B.; Chen, Y. L.; Zhou, C.; Sun, Q.; Gao, F.; Yang, X. Y.; Xiao, X. T. Design of an active-passive composite impedance controller for a soft robotic arm under contact constraints. Biomimetics 2024, 9, 742.

[16]

Zhang, H.; Yang, X.; Valenzuela, C.; Chen, Y. H.; Yang, Y. Z.; Ma, S. S.; Wang, L.; Feng, W. Wireless power transfer to electrothermal liquid crystal elastomer actuators. ACS Appl. Mater. Interfaces 2023, 15, 27195–27205.

[17]

Wang, L. X.; Sun, X.; Wang, D. F.; Cui, P. Y.; Wang, J.; Li, Q. High-precision, programmable soft wireless robotics for cooling tower cleaning based on Internet of Things technology. Chem. Eng. J. 2024, 495, 153268.

[18]

Alapan, Y.; Karacakol, A. C.; Guzelhan, S. N.; Isik, I.; Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 2020, 6, eabc6414.

[19]
Bottjer, W. G.; Ingersoll, H. G. Stabilized ferromagnetic chromium dioxide. U.S. Patent 3512930A, May 19, 1970.
[20]

Huang, J.; Cai, Y. C.; Xue, C. Y.; Ge, J.; Zhao, H. Y.; Yu, S. H. Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process. Nano Res. 2021, 14, 3636–3642.

[21]

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

[22]
Xing, J. B. Study on the preparation of silica microspheres by Stober method. Master Degree Thesis, Xidian University, Xi’an, China, 2015.
[23]
Biswas, S. Development of a novel series of GMR materials of half-metallic ferromagnetic CrO2 nanoceramics. Ph.D. Dissertation, Indian Institute of Technology, Chennai, Indian, 2007.
[24]
Li, K. Application of silica nanoparticles in structured coloredfabrics and refractory organics. Master Degree Thesis, Wuhan Textile University, Wuhan, China, 2020.
[25]

Zhang, N. C.; Gao, Y. H.; Zhang, H.; Feng, X.; Cai, H. H.; Liu, Y. L. Preparation and characterization of core–shell structure of SiO2@Cu antibacterial agent. Colloids Surf B: Biointerfaces 2010, 81, 537–543.

[26]

Bullen, H. A.; Garrett, S. J. CrO2 by XPS: Comparison of CrO2 powder to CrO2 films on TiO2(110) single crystal surfaces. Surf. Sci. Spectra 2001, 8, 225–233.

[27]

Wan, P.; Li, S.; Ye, Y. Z.; Huang, H. Z.; He, X. F.; Wan, S. A biocompatible, degradable, and recyclable photothermal actuator. Mater. Lett. 2024, 376, 137305.

[28]

Huang, J. B.; Yu, X. Y.; Li, L. Y.; Wang, W. X.; Zhang, H. T.; Zhang, Y.; Zhu, J.; Ma, J. Design of light-driven biocompatible and biodegradable microrobots containing Mg-based metallic glass nanowires. ACS Nano 2024, 18, 2006–2016.

Nano Research
Article number: 94907408
Cite this article:
Wang L, Zhang J, Sun X, et al. Highly stretchable oil gel biomedical robots. Nano Research, 2025, 18(6): 94907408. https://doi.org/10.26599/NR.2025.94907408
Topics:

377

Views

34

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 January 2025
Revised: 07 March 2025
Accepted: 28 March 2025
Published: 26 May 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return