Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although functional polymeric soft-bodied robots have received widespread attention in fields such as precision industry and biomedical engineering, the limited reconfigurability has restricted their further development. To meet the requirements of biomedical applications for device safety and reconfigurability, an organosilica gel (Si-gel)/high-purity chromium dioxide (pCrO2)@silica (SiO2) micro-robot is constructed using a solvothermal reaction method, which exhibits excellent biocompatibility and reconfigurable actuation. Wettability tests show that the oil-based gel maintains a high contact angle of 114.75° even after 600 s of water droplet exposure, demonstrating strong hydrophobicity and stability. Mechanical testing indicates that the obtained Si-gel displays higher fracture elongation (an increase of 174.64%) and elastic recovery (over 90% after 20 cycles of 100% tensile strain and 15 cycles of 80% compressive strain) compared to the original polydimethylsiloxane (PDMS). Magnetic actuation results demonstrate that pre-magnetization under a 60 mT field can achieve customized motion speeds from 29.5 to 70.0 mm/s without changing the external magnetic field. The device exhibits excellent stability under repeated high-temperature exposure, repeated magnetization, and hundreds of continuous driving cycles. Furthermore, the micro-robot shows promising biocompatibility and enhanced organic–inorganic compatibility, suggesting its potential as an effective alternative to catheter-implanted biomedical aids.
McEvoy, M. A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689.
Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.
Wu, Y. C.; Yim, J. K.; Liang, J. M.; Shao, Z. C.; Qi, M. J.; Zhong, J. W.; Luo, Z. H.; Yan, X. J.; Zhang, M.; Wang, X. H. et al. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 2019, 4, eaax1594.
Li, Y. N.; Fu, C. L.; Huang. L. L.; Chen, L. H.; Ni, Y. H.; Zheng, Q. H. Cellulose-based multi-responsive soft robots for programmable smart devices. Chem. Eng. J. 2024, 498, 155099.
Pan. F. F.; Chen, L.; Liu, F.; Ji, X. B. Electric field induced mechanical flapping motors enabling soft robotic and wearable applications. Sens. Actuators A: Phys. 2024, 376, 115662.
Taccola, S.; Bakhshi, H.; Sifuentes, M. S.; Lloyd, P.; Tinsley, L. J.; Macdonald, J.; Bacchetti, A.; Cespedes, O.; Chandler, J. H.; Valdastri, P. et al. Dual-material aerosol jet printing of magneto-responsive polymers with in-process tailorable composition for small-scale soft robotics. Adv. Mater. Technol. 2024, 9, 2400463.
Zhou, Z. Q.; Wang, X. T.; Yu, H. C.; Yu, C. L.; Zhang, F. A. Dynamic cross-linked polyurea/polydopamine nanocomposites for photoresponsive self-healing and photoactuation. Macromolecules 2022, 55, 2193–2201.
Jones, T. J.; Jambon-Puillet, E.; Marthelot, J.; Brun, P. T. Bubble casting soft robotics. Nature 2021, 599, 229–233.
Hao, Z. T.; Song, S. Z.; Li, B.; Jia, Q. X.; Zheng, T. F.; Zhang, Z. C. A solvent driven dual responsive actuator based on MOF/polymer composite. Sens. Actuators B: Chem 2022, 358, 131448.
Shi, Y.; Askounis, E.; Plamthottam, R.; Libby, T.; Peng, Z. H.; Youssef, K.; Pu, J. H.; Pelrine, R.; Pei, Q. B. A processable, high-performance dielectric elastomer and multilayering process. Science 2022, 377, 228–232.
Kim, I. H.; Choi, S.; Lee, J.; Jung, J.; Yeo, J.; Kim, J. T.; Ryu, S.; Ahn, S. K.; Kang, J.; Poulin, P. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol 2022, 17, 1198–1205.
Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249.
Li, X. F.; Du, Y. M.; Xiao, C.; Ding, X.; Pan, X. S.; Zheng, K.; Liu, X. L.; Chen, L.; Gong, Y.; Xue, M. et al. Tendril-inspired programmable liquid metal photothermal actuators for soft robots. Adv. Funct. Mater. 2024, 34, 2470019.
Yan, B.; Chen, Y. L.; Zhou, C.; Sun, Q.; Gao, F.; Yang, X. Y.; Xiao, X. T. Design of an active-passive composite impedance controller for a soft robotic arm under contact constraints. Biomimetics 2024, 9, 742.
Zhang, H.; Yang, X.; Valenzuela, C.; Chen, Y. H.; Yang, Y. Z.; Ma, S. S.; Wang, L.; Feng, W. Wireless power transfer to electrothermal liquid crystal elastomer actuators. ACS Appl. Mater. Interfaces 2023, 15, 27195–27205.
Wang, L. X.; Sun, X.; Wang, D. F.; Cui, P. Y.; Wang, J.; Li, Q. High-precision, programmable soft wireless robotics for cooling tower cleaning based on Internet of Things technology. Chem. Eng. J. 2024, 495, 153268.
Alapan, Y.; Karacakol, A. C.; Guzelhan, S. N.; Isik, I.; Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 2020, 6, eabc6414.
Huang, J.; Cai, Y. C.; Xue, C. Y.; Ge, J.; Zhao, H. Y.; Yu, S. H. Highly stretchable, soft and sticky PDMS elastomer by solvothermal polymerization process. Nano Res. 2021, 14, 3636–3642.
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.
Zhang, N. C.; Gao, Y. H.; Zhang, H.; Feng, X.; Cai, H. H.; Liu, Y. L. Preparation and characterization of core–shell structure of SiO2@Cu antibacterial agent. Colloids Surf B: Biointerfaces 2010, 81, 537–543.
Bullen, H. A.; Garrett, S. J. CrO2 by XPS: Comparison of CrO2 powder to CrO2 films on TiO2(110) single crystal surfaces. Surf. Sci. Spectra 2001, 8, 225–233.
Wan, P.; Li, S.; Ye, Y. Z.; Huang, H. Z.; He, X. F.; Wan, S. A biocompatible, degradable, and recyclable photothermal actuator. Mater. Lett. 2024, 376, 137305.
Huang, J. B.; Yu, X. Y.; Li, L. Y.; Wang, W. X.; Zhang, H. T.; Zhang, Y.; Zhu, J.; Ma, J. Design of light-driven biocompatible and biodegradable microrobots containing Mg-based metallic glass nanowires. ACS Nano 2024, 18, 2006–2016.
377
Views
34
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).