Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Converting methanol to high-value formate through electrochemical methods can significantly reduce the energy consumption associated with conventional production processes. In this study, we directly synthesized iron-doped cobalt phosphate (Fe-CoPO) on nickel foam (NF) to achieve excellent activity for the methanol electro-oxidation reaction (MOR). Our results demonstrated that Fe-CoPO produced a current density of 100 mA·cm−2 at a significantly low operating potential of 1.436 V (vs. reversible hydrogen electrode (RHE)) and operated steadily for 16 h at this current density with a Faradaic efficiency (FE) of 97%. Furthermore, Fe-CoPO maintained a high FE of 100% even at an extremely high current density of 300 mA·cm−2 for 8 h. We found that the high MOR activity of Fe-CoPO results from electrochemical reconstruction to generate the Co2+/3+–O bond. The heterogeneous interface between Fe and Co inhibits the formation of Co4+, which significantly enhances the MOR activity. Thus, this work not only provides insights into the mechanism of MOR over Co-based catalysts but also offers a novel direction for developing highly active MOR catalysts.
Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; Xian, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.
Wen, Y. Z.; Liu, C.; Huang, R.; Zhang, H.; Li, X. B.; de Arquer, F. P. G.; Liu, Z.; Li, Y. Y.; Zhang, B. Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 2022, 13, 4871.
Jiang, H.; Sun, M. Z.; Wu, S. L.; Huang, B. L.; Lee, C. S.; Zhang, W. J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv. Funct. Mater. 2021, 31, 2104951.
Guo, Y.; Yang, X. B.; Liu, X. C.; Tong, X. L.; Yang, N. J. Coupling methanol oxidation with hydrogen evolution on bifunctional Co-doped rh electrocatalyst for efficient hydrogen generation. Adv. Funct. Mater. 2023, 33, 2209134.
Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.
Duan, Z. Y.; Ren, T. L.; Mao, Q. Q.; Yu, H. J.; Deng, K.; Xu, Y.; Wang, Z. Q.; Wang, L.; Wang, H. L. Metal–organic framework derived Os-doped NixP/N-doped carbon composite nanosheet arrays toward boosting methanol oxidation into value-added chemicals coupled with hydrogen production. J. Mater. Chem. A 2022, 10, 18126–18131.
Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B: Environ. 2021, 281, 119510.
Yang, Q. F.; Zhang, C. J.; Dong, B.; Cui, Y. C.; Wang, F.; Cai, J. H.; Jin, P.; Feng, L. Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe–WOx electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA·cm−2. Appl. Catal. B: Environ. 2021, 296, 120359.
Bin, L.; Xiao, T. Y.; Sun, X. L.; Peng, H. Q.; Wang, X.; Zhao, Y. F.; Zhang, W. J.; Song, Y. F. Hierarchical trace copper incorporation activated cobalt layered double hydroxide as a highly selective methanol conversion electrocatalyst to realize energy-matched photovoltaic-electrocatalytic formate and hydrogen co-production. J. Mater. Chem. A 2022, 10, 19649–19661.
Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.
Zhu, Y. P.; Chen, H. C.; Hsu, C. S.; Lin, T. S.; Chang, C. J.; Chang, S. C.; Tsai, L. D.; Chen, H. M. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 2019, 4, 987–994.
Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.
Wang, P.; Qi, J.; Li, C.; Chen, X.; Wang, T. H.; Liang, C. H. N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. Chemelectrochem 2020, 7, 745–752.
Wu, B. Q.; Yang, Z. H.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Nie, F.; Ren, Z. T.; Cao, Y. H.; Li, Z.; Zhang, X. Hierarchical sheet-on-sheet heterojunction array of a β-Ni(OH)2/Fe(OH)3 self-supporting anode for effective overall alkaline water splitting. Dalton Trans. 2021, 50, 12547–12554.
Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2–FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.
Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p–p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.
Dai, T. Y.; Zhang, X.; Sun, M. Z.; Huang, B. L.; Zhang, N.; Da, P. F.; Yang, R.; He, Z. D.; Wang, W.; Xi, P. X. et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction. Adv. Mater. 2021, 33, 2102593.
Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.
Li, H. G.; Di, S. L.; Niu, P.; Wang, S. L.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601–1610.
Mu, X. Q.; Yuan, H. M.; Jing, H. Y.; Xia, F. J.; Wu, J. S.; Gu, X. Y.; Chen, C. Y.; Bao, J. C.; Liu, S. L.; Mu, S. C. Superior electrochemical water oxidation in vacancy defect-rich 1.5 nm ultrathin trimetal-organic framework nanosheets. Appl. Catal. B: Environ. 2021, 296, 120095.
Callejas, J. F.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28, 6017–6044.
Theerthagiri, J.; Murthy, A. P.; Lee, S. J.; Karuppasamy, K.; Arumugam, S. R.; Yu, Y.; Hanafiah, M. M.; Kim, H. S.; Mittal, V.; Choi, M. Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425.
Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P. Evaluating the Stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018, 3, 1360–1365.
Miao, J. J.; Teng, X.; Zhang, R.; Guo, P. F.; Chen, Y.; Zhou, X. H.; Wang, H. Q.; Sun, X. N.; Zhang, L. B. “Carbohydrate-universal” electrolyzer for energy-saving hydrogen production with Co3FePx@NF as bifunctional electrocatalysts. Appl. Catal. B: Environ. 2020, 263, 118109.
Li, J. M.; Kang, Y. M.; Lei, Z. Q.; Liu, P. Well-controlled 3D flower-like CoP3/CeO2/C heterostructures as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Appl. Catal. B: Environ. 2023, 321, 122029.
Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal–organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.
Huang, H. L.; Li, J. R.; Wang, K. K.; Han, T. T.; Tong, M. M.; Li, L. S.; Xie, Y. B.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal–organic frameworks. Nat. Commun. 2015, 6, 8847.
Zhang, C.; Huang, Y.; Yu, Y. F.; Zhang, J. F.; Zhuo, S. F.; Zhang, B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 2017, 8, 2769–2775.
Xiao, X. F.; He, C. T.; Zhao, S. L.; Li, J.; Lin, W. S.; Yuan, Z. K.; Zhang, Q.; Wang, S. Y.; Dai, L. M.; Yu, D. S. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 2017, 10, 893–899.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
Wu, T. L.; Pi, M. Y.; Wang, X. D.; Zhang, D. K.; Chen, S. J. Three-dimensional metal–organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Phys. Chem. Chem. Phys. 2017, 19, 2104–2110.
Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1702513.
Li, Y. B.; Zhao, C. Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability. ACS Catal. 2017, 7, 2535–2541.
Zhao, S. H.; Wang, T. Q.; Ji, Z. J.; Song, Y. J.; Li, Y.; Liu, J.; Hu, W. P. Spatial decoupling of dehydrogenation and CO oxidation by Ni–Co–Ti hierarchical trimetallic catalyst for electrocatalytic oxidation of methanol. Appl. Catal. B: Environ. 2023, 320, 122024.
Zhao, B.; Liu, J. W.; Yin, Y. R.; Wu, D.; Luo, J. L.; Fu, X. Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886.
Zhang, X. F.; Li, X. C.; Li, R. C.; Lu, Y.; Song, S. Q.; Wang, Y. Highly active core–shell carbon/NiCo2O4 double microtubes for efficient oxygen evolution reaction: Ultralow overpotential and superior cycling stability. Small 2019, 15, 1903297.
Xin, Y.; Sun, L. P.; Huo, L. H.; Zhao, H. Co–Ni–P nanoneedle array heterostructures with built-in potential for selective methanol oxidation coupled with H2 evolution. ACS Appl. Nano Mater. 2023, 6, 10312–10321.
Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.
Li, J. S.; Luo, Z. S.; He, F.; Zuo, Y.; Zhang, C. Q.; Liu, J. F.; Yu, X. T.; Du, R. F.; Zhang, T.; Infante-Carrió, M. F. et al. Colloidal Ni–Co–Sn nanoparticles as efficient electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2018, 6, 22915–22924.
Siahroudi, M. G.; Daryakenari, A. A.; Molamahaleh, Y. B.; Cao, Q.; Daryakenari, M. A.; Delaunay, J. J.; Siavoshi, H.; Molaei, F. Ethylene glycol assisted solvo-hydrothermal synthesis of NGr–Co3O4 nanostructures for ethanol electrooxidation. Int. J. Hydrogen Energy 2020, 45, 30357–30366.
Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.
Mushiana, T.; Khan, M.; Abdullah, M. I.; Zhang, N.; Ma, M. M. Facile sol–gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022, 15, 5014–5023.
Hao, S. J.; Cong, M. Y.; Xu, H. W.; Ding, X.; Gao, Y. Bismuth-based electrocatalysts for identical value-added formic acid through coupling CO2 reduction and methanol oxidation. Small 2024, 20, 2307741.
Jiang, S.; Xiao, T. Y.; Xu, C.; Wang, S. W.; Peng, H. Q.; Zhang, W. J.; Liu, B.; Song, Y. F. Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen Co-production. Small 2023, 19, 2208027.
Huang, Y. K.; Li, T.; Feng, H.; Lv, L. T.; Tang, T. X.; Lin, Z.; Ye, K. H.; Wang, Y. Q. High-valence co stabilized by in-situ growth of ZIF-67 on NiCo-LDH for enhanced performance in oxygen evolution reaction. Small 2025, 21, 2407443.
Ren, X.; Li, M. G.; Qiu, L. Y.; Guo, X.; Tian, F. Y.; Han, G. H.; Yang, W. W.; Yu, Y. S. Cationic vacancies and interface engineering on crystalline-amorphous gamma-phase Ni–Co oxyhydroxides achieve ultrahigh mass/areal/volumetric energy density flexible all-solid-state asymmetric supercapacitor. J. Mater. Chem. A 2023, 11, 5754–5765.
Jiang, N.; Yu, J. T.; Wu, Z. H.; Zhao, J. H.; Zeng, Y. Y.; Li, H. X.; Meng, M.; He, Y. T.; Jiao, P. X.; Pan, H. C. et al. Surface gradient desodiation chemistry in layered oxide cathode materials. Angew. Chem., Int. Ed. 2024, 63, e202410080.
Zhong, J. Y.; Chen, Q. M.; Guo, C. X.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Al3+ leaching induced Co4+ on CoFeAl layered double hydroxide for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 23530–23539.
Chen, Z.; Kronawitter, C. X.; Yeh, Y. W.; Yang, X. F.; Zhao, P.; Yao, N.; Koel, B. E. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J. Mater. Chem. A 2017, 5, 842–850.
Huang, Y. C.; Wu, Y. J.; Lu, Y. R.; Chen, J. L.; Lin, H. J.; Chen, C. T.; Chen, C. L.; Jing, C.; Zhou, J.; Zhang, L. J. et al. Direct identification of O–O bond formation through three-step oxidation during water splitting by operando soft X-ray absorption spectroscopy. Adv. Sci. 2024, 11, 2470244.
Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe–CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.
Rajan, A. P. S.; Senthil, R. A.; Moon, C. J.; Kumar, A.; Min, A.; Ubaidullah, M.; Choi, M. Y. Insights into dual-functional catalytic activity of laser-driven CoGaIr-LDH nanosheets in water electrolysis for green hydrogen production via in-situ Raman and theoretical analyses. Chem. Eng. J. 2024, 502, 157848.
Qi, Y. B.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Promoting electrocatalytic oxidation of methanol to formate through interfacial interaction in NiMo oxide-CoMo oxide mixture-derived catalysts. Chin. J. Catal. 2024, 56, 139–149.
Han, J. R.; Wang, H. B.; Wang, Y. T.; Zhang, H.; Li, J.; Xia, Y. J.; Zhou, J. S.; Wang, Z. Y.; Luo, M. C.; Wang, Y. H. et al. Lattice oxygen activation through deep oxidation of Co4N by Jahn–Teller-active dopants for improved electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2024, 63, e202405839.
Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.
Zhao, X.; Li, Y. Y.; Cui, Y.; Saqib, M.; Zhang, X. Y.; Hao, R.; Zheng, Z. P. Spatiotemporally and chemically resolved imaging of electrocatalytic oxygen evolution on single nanoplates of cobalt-layered hydroxide. J. Am. Chem. Soc. 2023, 145, 20897–20906.
Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W. et al. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat. Commun. 2023, 14, 997.
Yang, H.; Li, F. S.; Zhan, S. Q.; Liu, Y. W.; Li, W. L.; Meng, Q. J.; Kravchenko, A.; Liu, T. Q.; Yang, Y.; Fang, Y. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 2022, 5, 414–429.
Li, D. Y.; Xiang, R.; Yu, F.; Zeng, J. S.; Zhang, Y.; Zhou, W. C.; Liao, L. L.; Zhang, Y.; Tang, D. S.; Zhou, H. Q. In situ regulating cobalt/iron oxide–oxyhydroxide exchange by dynamic iron incorporation for robust oxygen evolution at large current density. Adv. Mater. 2024, 36, 2305685.
Li, D. R.; Wan, W. J.; Wang, Z. W.; Wu, H. Y.; Wu, S. X.; Jiang, T.; Cai, G. X.; Jiang, C. Z.; Ren, F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv. Energy Mater. 2022, 12, 2201913.
Ye, S. H.; Wang, J. P.; Hu, J.; Chen, Z. D.; Zheng, L. R.; Fu, Y. H.; Lei, Y. Q.; Ren, X. Z.; He, C. X.; Zhang, Q. L. et al. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal. 2021, 11, 6104–6112.
Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. Escience 2022, 2, 87–94.
Zhu, B. T.; Dong, B.; Wang, F.; Yang, Q. F.; He, Y. P.; Zhang, C. J.; Jin, P.; Feng, L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 2023, 14, 1686.
Fu, S. Q.; Ma, Y. R.; Yang, X. C.; Yao, X.; Jiao, Z.; Cheng, L. L.; Zhao, P. D. Defect and interface engineering of hexagonal Fe2O3/ZnCo2O4 n–n heterojunction for efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 333, 122813.
Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.
Lu, Y. X.; Liu, T. Y.; Huang, Y. C.; Zhou, L.; Li, Y. Y.; Chen, W.; Yang, L.; Zhou, B.; Wu, Y. D.; Kong, Z. J. et al. Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 2022, 12, 4242–4251.
584
Views
84
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).