AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Boosting methanol electro-oxidation to formate by trace iron induced suppression of cobalt(IV) formation

Jialong Lin1Xinlin Wang1Bingxue Cheng1Ruiheng Zhou1Yuhang Li2Tamao Ishida3Guangli Xiu1Toru Murayama4 ( )Mingyue Lin1,5 ( )
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
Institute for Catalysis, Hokkaido University, Hokkaido 001-0021, Japan
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
Show Author Information

Graphical Abstract

Fe doping inhibited the electrochemical reconfiguration of Co2+–O bonds in cobalt phosphate (CoPO) to Co4+–O bonds while promoting the formation of Co2+/3+–O bonds. This modification significantly enhances the methanol electro-oxidation reaction.

Abstract

Converting methanol to high-value formate through electrochemical methods can significantly reduce the energy consumption associated with conventional production processes. In this study, we directly synthesized iron-doped cobalt phosphate (Fe-CoPO) on nickel foam (NF) to achieve excellent activity for the methanol electro-oxidation reaction (MOR). Our results demonstrated that Fe-CoPO produced a current density of 100 mA·cm−2 at a significantly low operating potential of 1.436 V (vs. reversible hydrogen electrode (RHE)) and operated steadily for 16 h at this current density with a Faradaic efficiency (FE) of 97%. Furthermore, Fe-CoPO maintained a high FE of 100% even at an extremely high current density of 300 mA·cm−2 for 8 h. We found that the high MOR activity of Fe-CoPO results from electrochemical reconstruction to generate the Co2+/3+–O bond. The heterogeneous interface between Fe and Co inhibits the formation of Co4+, which significantly enhances the MOR activity. Thus, this work not only provides insights into the mechanism of MOR over Co-based catalysts but also offers a novel direction for developing highly active MOR catalysts.

Electronic Supplementary Material

Download File(s)
7389_ESM.pdf (3.6 MB)

References

[1]

Ren, X.; Wu, T. Z.; Sun, Y. M.; Li, Y.; Xian, G. Y.; Liu, X. H.; Shen, C. M.; Gracia, J.; Gao, H. J.; Yang, H. T. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 2021, 12, 2608.

[2]

Wen, Y. Z.; Liu, C.; Huang, R.; Zhang, H.; Li, X. B.; de Arquer, F. P. G.; Liu, Z.; Li, Y. Y.; Zhang, B. Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 2022, 13, 4871.

[3]

Jiang, H.; Sun, M. Z.; Wu, S. L.; Huang, B. L.; Lee, C. S.; Zhang, W. J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv. Funct. Mater. 2021, 31, 2104951.

[4]

Guo, Y.; Yang, X. B.; Liu, X. C.; Tong, X. L.; Yang, N. J. Coupling methanol oxidation with hydrogen evolution on bifunctional Co-doped rh electrocatalyst for efficient hydrogen generation. Adv. Funct. Mater. 2023, 33, 2209134.

[5]

Qi, Y. B.; Zhang, Y.; Yang, L.; Zhao, Y. H.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 2022, 13, 4602.

[6]

Duan, Z. Y.; Ren, T. L.; Mao, Q. Q.; Yu, H. J.; Deng, K.; Xu, Y.; Wang, Z. Q.; Wang, L.; Wang, H. L. Metal–organic framework derived Os-doped NixP/N-doped carbon composite nanosheet arrays toward boosting methanol oxidation into value-added chemicals coupled with hydrogen production. J. Mater. Chem. A 2022, 10, 18126–18131.

[7]

Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B: Environ. 2021, 281, 119510.

[8]

Yang, Q. F.; Zhang, C. J.; Dong, B.; Cui, Y. C.; Wang, F.; Cai, J. H.; Jin, P.; Feng, L. Synergistic modulation of nanostructure and active sites: Ternary Ru&Fe–WOx electrocatalyst for boosting concurrent generations of hydrogen and formate over 500 mA·cm−2. Appl. Catal. B: Environ. 2021, 296, 120359.

[9]

Bin, L.; Xiao, T. Y.; Sun, X. L.; Peng, H. Q.; Wang, X.; Zhao, Y. F.; Zhang, W. J.; Song, Y. F. Hierarchical trace copper incorporation activated cobalt layered double hydroxide as a highly selective methanol conversion electrocatalyst to realize energy-matched photovoltaic-electrocatalytic formate and hydrogen co-production. J. Mater. Chem. A 2022, 10, 19649–19661.

[10]

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

[11]

Zhu, Y. P.; Chen, H. C.; Hsu, C. S.; Lin, T. S.; Chang, C. J.; Chang, S. C.; Tsai, L. D.; Chen, H. M. Operando unraveling of the structural and chemical stability of P-substituted CoSe2 electrocatalysts toward hydrogen and oxygen evolution reactions in alkaline electrolyte. ACS Energy Lett. 2019, 4, 987–994.

[12]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[13]

Wang, P.; Qi, J.; Li, C.; Chen, X.; Wang, T. H.; Liang, C. H. N-doped carbon nanotubes encapsulating Ni/MoN heterostructures grown on carbon cloth for overall water splitting. Chemelectrochem 2020, 7, 745–752.

[14]

Wu, B. Q.; Yang, Z. H.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Nie, F.; Ren, Z. T.; Cao, Y. H.; Li, Z.; Zhang, X. Hierarchical sheet-on-sheet heterojunction array of a β-Ni(OH)2/Fe(OH)3 self-supporting anode for effective overall alkaline water splitting. Dalton Trans. 2021, 50, 12547–12554.

[15]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2–FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[16]

Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p–p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B: Environ. 2021, 299, 120638.

[17]

Dai, T. Y.; Zhang, X.; Sun, M. Z.; Huang, B. L.; Zhang, N.; Da, P. F.; Yang, R.; He, Z. D.; Wang, W.; Xi, P. X. et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction. Adv. Mater. 2021, 33, 2102593.

[18]

Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

[19]

Li, H. G.; Di, S. L.; Niu, P.; Wang, S. L.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601–1610.

[20]

Mu, X. Q.; Yuan, H. M.; Jing, H. Y.; Xia, F. J.; Wu, J. S.; Gu, X. Y.; Chen, C. Y.; Bao, J. C.; Liu, S. L.; Mu, S. C. Superior electrochemical water oxidation in vacancy defect-rich 1.5 nm ultrathin trimetal-organic framework nanosheets. Appl. Catal. B: Environ. 2021, 296, 120095.

[21]

Callejas, J. F.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 2016, 28, 6017–6044.

[22]

Theerthagiri, J.; Murthy, A. P.; Lee, S. J.; Karuppasamy, K.; Arumugam, S. R.; Yu, Y.; Hanafiah, M. M.; Kim, H. S.; Mittal, V.; Choi, M. Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425.

[23]

Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P. Evaluating the Stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018, 3, 1360–1365.

[24]

Miao, J. J.; Teng, X.; Zhang, R.; Guo, P. F.; Chen, Y.; Zhou, X. H.; Wang, H. Q.; Sun, X. N.; Zhang, L. B. “Carbohydrate-universal” electrolyzer for energy-saving hydrogen production with Co3FePx@NF as bifunctional electrocatalysts. Appl. Catal. B: Environ. 2020, 263, 118109.

[25]

Li, J. M.; Kang, Y. M.; Lei, Z. Q.; Liu, P. Well-controlled 3D flower-like CoP3/CeO2/C heterostructures as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Appl. Catal. B: Environ. 2023, 321, 122029.

[26]

Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal–organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

[27]

Huang, H. L.; Li, J. R.; Wang, K. K.; Han, T. T.; Tong, M. M.; Li, L. S.; Xie, Y. B.; Yang, Q. Y.; Liu, D. H.; Zhong, C. L. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal–organic frameworks. Nat. Commun. 2015, 6, 8847.

[28]

Zhang, C.; Huang, Y.; Yu, Y. F.; Zhang, J. F.; Zhuo, S. F.; Zhang, B. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 2017, 8, 2769–2775.

[29]

Xiao, X. F.; He, C. T.; Zhao, S. L.; Li, J.; Lin, W. S.; Yuan, Z. K.; Zhang, Q.; Wang, S. Y.; Dai, L. M.; Yu, D. S. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 2017, 10, 893–899.

[30]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[31]

Wu, T. L.; Pi, M. Y.; Wang, X. D.; Zhang, D. K.; Chen, S. J. Three-dimensional metal–organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Phys. Chem. Chem. Phys. 2017, 19, 2104–2110.

[32]

Li, Y. J.; Zhang, H. C.; Jiang, M.; Zhang, Q.; He, P. L.; Sun, X. M. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1702513.

[33]

Li, Y. B.; Zhao, C. Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability. ACS Catal. 2017, 7, 2535–2541.

[34]

Zhao, S. H.; Wang, T. Q.; Ji, Z. J.; Song, Y. J.; Li, Y.; Liu, J.; Hu, W. P. Spatial decoupling of dehydrogenation and CO oxidation by Ni–Co–Ti hierarchical trimetallic catalyst for electrocatalytic oxidation of methanol. Appl. Catal. B: Environ. 2023, 320, 122024.

[35]

Zhao, B.; Liu, J. W.; Yin, Y. R.; Wu, D.; Luo, J. L.; Fu, X. Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886.

[36]

Zhang, X. F.; Li, X. C.; Li, R. C.; Lu, Y.; Song, S. Q.; Wang, Y. Highly active core–shell carbon/NiCo2O4 double microtubes for efficient oxygen evolution reaction: Ultralow overpotential and superior cycling stability. Small 2019, 15, 1903297.

[37]

Xin, Y.; Sun, L. P.; Huo, L. H.; Zhao, H. Co–Ni–P nanoneedle array heterostructures with built-in potential for selective methanol oxidation coupled with H2 evolution. ACS Appl. Nano Mater. 2023, 6, 10312–10321.

[38]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[39]

Li, J. S.; Luo, Z. S.; He, F.; Zuo, Y.; Zhang, C. Q.; Liu, J. F.; Yu, X. T.; Du, R. F.; Zhang, T.; Infante-Carrió, M. F. et al. Colloidal Ni–Co–Sn nanoparticles as efficient electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2018, 6, 22915–22924.

[40]

Siahroudi, M. G.; Daryakenari, A. A.; Molamahaleh, Y. B.; Cao, Q.; Daryakenari, M. A.; Delaunay, J. J.; Siavoshi, H.; Molaei, F. Ethylene glycol assisted solvo-hydrothermal synthesis of NGr–Co3O4 nanostructures for ethanol electrooxidation. Int. J. Hydrogen Energy 2020, 45, 30357–30366.

[41]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[42]

Mushiana, T.; Khan, M.; Abdullah, M. I.; Zhang, N.; Ma, M. M. Facile sol–gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022, 15, 5014–5023.

[43]

Hao, S. J.; Cong, M. Y.; Xu, H. W.; Ding, X.; Gao, Y. Bismuth-based electrocatalysts for identical value-added formic acid through coupling CO2 reduction and methanol oxidation. Small 2024, 20, 2307741.

[44]

Jiang, S.; Xiao, T. Y.; Xu, C.; Wang, S. W.; Peng, H. Q.; Zhang, W. J.; Liu, B.; Song, Y. F. Passivating oxygen evolution activity of NiFe-LDH through heterostructure engineering to realize high-efficiency electrocatalytic formate and hydrogen Co-production. Small 2023, 19, 2208027.

[45]

Huang, Y. K.; Li, T.; Feng, H.; Lv, L. T.; Tang, T. X.; Lin, Z.; Ye, K. H.; Wang, Y. Q. High-valence co stabilized by in-situ growth of ZIF-67 on NiCo-LDH for enhanced performance in oxygen evolution reaction. Small 2025, 21, 2407443.

[46]

Ren, X.; Li, M. G.; Qiu, L. Y.; Guo, X.; Tian, F. Y.; Han, G. H.; Yang, W. W.; Yu, Y. S. Cationic vacancies and interface engineering on crystalline-amorphous gamma-phase Ni–Co oxyhydroxides achieve ultrahigh mass/areal/volumetric energy density flexible all-solid-state asymmetric supercapacitor. J. Mater. Chem. A 2023, 11, 5754–5765.

[47]

Jiang, N.; Yu, J. T.; Wu, Z. H.; Zhao, J. H.; Zeng, Y. Y.; Li, H. X.; Meng, M.; He, Y. T.; Jiao, P. X.; Pan, H. C. et al. Surface gradient desodiation chemistry in layered oxide cathode materials. Angew. Chem., Int. Ed. 2024, 63, e202410080.

[48]

Zhong, J. Y.; Chen, Q. M.; Guo, C. X.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Al3+ leaching induced Co4+ on CoFeAl layered double hydroxide for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 23530–23539.

[49]

Chen, Z.; Kronawitter, C. X.; Yeh, Y. W.; Yang, X. F.; Zhao, P.; Yao, N.; Koel, B. E. Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. J. Mater. Chem. A 2017, 5, 842–850.

[50]

Huang, Y. C.; Wu, Y. J.; Lu, Y. R.; Chen, J. L.; Lin, H. J.; Chen, C. T.; Chen, C. L.; Jing, C.; Zhou, J.; Zhang, L. J. et al. Direct identification of O–O bond formation through three-step oxidation during water splitting by operando soft X-ray absorption spectroscopy. Adv. Sci. 2024, 11, 2470244.

[51]

Lee, W. H.; Han, M. H.; Ko, Y. J.; Min, B. K.; Chae, K. H.; Oh, H. S. Electrode reconstruction strategy for oxygen evolution reaction: Maintaining Fe–CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 2022, 13, 605.

[52]

Rajan, A. P. S.; Senthil, R. A.; Moon, C. J.; Kumar, A.; Min, A.; Ubaidullah, M.; Choi, M. Y. Insights into dual-functional catalytic activity of laser-driven CoGaIr-LDH nanosheets in water electrolysis for green hydrogen production via in-situ Raman and theoretical analyses. Chem. Eng. J. 2024, 502, 157848.

[53]

Qi, Y. B.; Zhu, Y. H.; Jiang, H. L.; Li, C. Z. Promoting electrocatalytic oxidation of methanol to formate through interfacial interaction in NiMo oxide-CoMo oxide mixture-derived catalysts. Chin. J. Catal. 2024, 56, 139–149.

[54]

Han, J. R.; Wang, H. B.; Wang, Y. T.; Zhang, H.; Li, J.; Xia, Y. J.; Zhou, J. S.; Wang, Z. Y.; Luo, M. C.; Wang, Y. H. et al. Lattice oxygen activation through deep oxidation of Co4N by Jahn–Teller-active dopants for improved electrocatalytic oxygen evolution. Angew. Chem., Int. Ed. 2024, 63, e202405839.

[55]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[56]

Zhao, X.; Li, Y. Y.; Cui, Y.; Saqib, M.; Zhang, X. Y.; Hao, R.; Zheng, Z. P. Spatiotemporally and chemically resolved imaging of electrocatalytic oxygen evolution on single nanoplates of cobalt-layered hydroxide. J. Am. Chem. Soc. 2023, 145, 20897–20906.

[57]

Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W. et al. Non-covalent ligand-oxide interaction promotes oxygen evolution. Nat. Commun. 2023, 14, 997.

[58]

Yang, H.; Li, F. S.; Zhan, S. Q.; Liu, Y. W.; Li, W. L.; Meng, Q. J.; Kravchenko, A.; Liu, T. Q.; Yang, Y.; Fang, Y. et al. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites. Nat. Catal. 2022, 5, 414–429.

[59]

Li, D. Y.; Xiang, R.; Yu, F.; Zeng, J. S.; Zhang, Y.; Zhou, W. C.; Liao, L. L.; Zhang, Y.; Tang, D. S.; Zhou, H. Q. In situ regulating cobalt/iron oxide–oxyhydroxide exchange by dynamic iron incorporation for robust oxygen evolution at large current density. Adv. Mater. 2024, 36, 2305685.

[60]

Li, D. R.; Wan, W. J.; Wang, Z. W.; Wu, H. Y.; Wu, S. X.; Jiang, T.; Cai, G. X.; Jiang, C. Z.; Ren, F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv. Energy Mater. 2022, 12, 2201913.

[61]

Ye, S. H.; Wang, J. P.; Hu, J.; Chen, Z. D.; Zheng, L. R.; Fu, Y. H.; Lei, Y. Q.; Ren, X. Z.; He, C. X.; Zhang, Q. L. et al. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal. 2021, 11, 6104–6112.

[62]

Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. Escience 2022, 2, 87–94.

[63]

Zhu, B. T.; Dong, B.; Wang, F.; Yang, Q. F.; He, Y. P.; Zhang, C. J.; Jin, P.; Feng, L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 2023, 14, 1686.

[64]

Fu, S. Q.; Ma, Y. R.; Yang, X. C.; Yao, X.; Jiao, Z.; Cheng, L. L.; Zhao, P. D. Defect and interface engineering of hexagonal Fe2O3/ZnCo2O4 n–n heterojunction for efficient oxygen evolution reaction. Appl. Catal. B: Environ. 2023, 333, 122813.

[65]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

[66]

Lu, Y. X.; Liu, T. Y.; Huang, Y. C.; Zhou, L.; Li, Y. Y.; Chen, W.; Yang, L.; Zhou, B.; Wu, Y. D.; Kong, Z. J. et al. Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 2022, 12, 4242–4251.

Nano Research
Article number: 94907389
Cite this article:
Lin J, Wang X, Cheng B, et al. Boosting methanol electro-oxidation to formate by trace iron induced suppression of cobalt(IV) formation. Nano Research, 2025, 18(5): 94907389. https://doi.org/10.26599/NR.2025.94907389
Topics:

584

Views

84

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 31 December 2024
Revised: 14 March 2025
Accepted: 17 March 2025
Published: 06 May 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return