Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polymer-based composite solid electrolytes (CSEs), incorporating fast Li+-conducting ceramic phases, leverage the advantages of both components to become one of the most promising next-generation solid electrolyte configurations. However, the interfacial incompatibility between the organic and inorganic components inevitably creates significant barriers to the interfacial Li+ transport, representing a key challenge in further enhancing the ionic conductivity of CSEs. Herein, we pioneered a confined solvation strategy by growing a metal-organic framework (MOF) layer impregnated with ionic liquid (IL) on the surface of Li0.33La0.557TiO3 (LLTO) fibers, and subsequently incorporating the composite fibers into a polyethylene oxide (PEO) matrix to fabricate a novel CSE (signed as LLTO/ZIF-8@IL/PEO). Benefiting from the unique porous structure and attraction of the metal centers toward anions of MOF, IL is tightly confined within the MOF framework, while retaining its liquid-like high ionic conductivity and interfacial wetting ability at the nano scale. As a result, the Li+ transport efficiency is substantially improved across the PEO-LLTO fiber interface to enable a high ionic conductivity of 1.07 × 10−3 S·cm−1 at 60 °C for LLTO/ZIF-8@IL/PEO. The corresponding pouch cell with a LiFePO4 (LFP) cathode (22 mg loading) and a lithium metal anode can successfully charge a mobile phone and deliver a stable capacity of 135.02 mAh·g−1 at 0.2 C over 100 cycles. This confined solvation strategy offers a universal and efficient approach for improving the Li+ transport across the polymer-ceramic interface in CSEs.
Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.
Utomo, N. W.; Hong, S. F.; Sinha, R.; Kim, K. I.; Deng, Y.; Ochonma, P.; Kitahata, M. G.; Garcia-Mendez, R.; Joo, Y. L.; Archer, L. A. Solid-state polymer-particle hybrid electrolytes: Structure and electrochemical properties. Sci. Adv. 2024, 10, eado4719.
Zhao, W. J.; Yi, J.; He, P.; Zhou, H. S. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2019, 2, 574–605.
Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.
Wang, Z. X.; Liu, R.; Ba, Z. H.; Xu, K.; Li, X. T.; Dong, J.; Zhang, Q. H.; Zhao, X. Built-in garnet-rich composite solid electrolyte towards fast ion transport and dendrite-free for high-energy lithium batteries. Compos. Commun. 2024, 47, 101871.
Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.
Wang, J. H.; Han, X. J.; Feng, Y. F.; Chen, S.; Yuan, H.; Yang, R. X.; Du, W.; Hou, C. X.; Liu, X.; Tong, T. et al. In-situ construction of a composite interlayer for dendrite-free Li6.75La3Zr1.75Ta0.25O12 solid-state batteries. Compos. Commun. 2024, 46, 101851.
Song, X.; Ma, K.; Wang, H.; Wang, J.; Chen, J. W.; Zheng, Z. M.; Zhang, J. M. Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries. Compos. Commun. 2024, 50, 102013.
Wang, M. X.; Lv, S. W.; Li, M. X.; Li, X.; Li, C. P.; Li, Z. L.; Chen, X. C.; Wu, J. X.; Li, X. Y.; Chen, Y. M. et al. A heterogeneous quasi-solid-state hybrid electrolyte constructed from electrospun nanofibers enables robust electrode/electrolyte interfaces for stable lithium metal batteries. Adv. Fiber Mater. 2024, 6, 727–738.
Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791.
Zhu, L.; Zhu, P. H.; Fang, Q. X.; Jing, M. X.; Shen, X. Q.; Yang, L. Z. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726.
Cao, X. W.; Ma, C.; Luo, L.; Chen, L.; Cheng, H.; Orenstein, R. S.; Zhang, X. W. Nanofiber materials for lithium-ion batteries. Adv. Fiber Mater. 2023, 5, 1141–1197.
Yu, Y.; Liu, M.; Chen, Z. Y.; Zhang, Z. H.; Qiu, T.; Hu, Z. X.; Xiang, H. X.; Zhu, L. P.; Xu, G. Y.; Zhu, M. F. Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber Mater. 2023, 5, 1827–1851.
Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.
Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018, 18, 3829–3838.
Shi, P. R.; Ma, J. B.; Liu, M.; Guo, S. K.; Huang, Y. F.; Wang, S. W.; Zhang, L. H.; Chen, L. K.; Yang, K.; Liu, X. T. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 2023, 18, 602–610.
Huo, H. Y.; Zhao, N.; Sun, J. Y.; Du, F. M.; Li, Y. Q.; Guo, X. X. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 2017, 372, 1–7.
Xu, Y. N.; Wang, K.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X. Z. et al. Improved li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 2023, 13, 2204377.
Chen, L. K.; Shi, P. R.; Gu, T.; Mi, J. S.; Yang, K.; Zhao, L.; Lv, J. S.; Liu, M.; He, Y. B.; Kang, F. Y. Strategies of constructing highly stable interfaces with low resistance in inorganic oxide-based solid-state lithium batteries. eScience 2025, 5, 100277.
Huo, H. Y.; Li, X. N.; Sun, Y. P.; Lin, X. T.; Doyle-Davis, K.; Liang, J. W.; Gao, X. J.; Li, R. Y.; Huang, H.; Guo, X. X. et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 2020, 73, 104836.
Simon, F. J.; Hanauer, M.; Richter, F. H.; Janek, J. Interphase formation of PEO20: LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 2020, 12, 11713–11723.
Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.
Jia, M. Y.; Bi, Z. J.; Shi, C.; Zhao, N.; Guo, X. X. Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes. J. Power Sources 2021, 486, 229363.
Zhan, X.; Pang, X. K.; Mao, F. Q.; Lin, J. D.; Li, M.; Zhao, Y. H.; Xu, P.; Xu, Z. M.; Liao, K. M.; Zhang, Q. B. et al. Interfacial reconstruction unlocks inherent ionic conductivity of Li-La-Zr-Ta-O garnet in organic polymer electrolyte for durable room‐temperature all‐solid‐state batteries. Adv. Energy Mater. 2024, 14, 2402509.
Yılmazoğlu, M.; Okkay, H.; Abaci, U.; Coban, O. High-performance PVdF-HFP/PEG-IL composites: The combined effects of PEG and ionic liquid on proton conductivity and dielectric characteristics. Compos. Commun. 2025, 53, 102175.
Forsyth, M.; Porcarelli, L.; Wang, X. E.; Goujon, N.; Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 2019, 52, 686–694.
Wang, Y. Y.; Pan, T.; Yuan, G. Q.; Li, Q.; Pang, H. MOF and MOF-derived composites for flexible energy storage devices. Compos. Commun. 2024, 52, 102144.
Wang, Z. T.; Zhou, H.; Meng, C. F.; Xiong, W. W.; Cai, Y. J.; Hu, P. F.; Pang, H.; Yuan, A. H. Enhancing ion transport: Function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries. ACS Appl. Energy Mater. 2020, 3, 4265–4274.
Yu, X. W.; Grundish, N. S.; Goodenough, J. B.; Manthiram, A. Ionic liquid (IL) laden metal-organic framework (IL-MOF) electrolyte for quasi-solid-state sodium batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669.
Wang, Z. Q.; Tan, R.; Wang, H. B.; Yang, L. Y.; Hu, J. T.; Chen, H. B.; Pan, F. A Metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.
Wang, Z. Y.; Du, Z. J.; Liu, Y. Y.; Knapp, C. E.; Dai, Y. H.; Li, J. W.; Zhang, W.; Chen, R. W.; Guo, F.; Zong, W. et al. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes. eScience 2024, 4, 100189.
Yang, Y.; Wu, Q.; Wang, D.; Ma, C. C.; Chen, Z.; Su, Q. T.; Zhu, C. Z.; Li, C. H. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J. Membr. Sci. 2020, 612, 118424.
Fujie, K.; Yamada, T.; Ikeda, R.; Kitagawa, H. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angew. Chem., Int. Ed. 2014, 53, 11302–11305.
Zhang, Y. X.; Yu, X. H.; Li, X. X.; Ren, J. G.; He, P.; Zhang, C.; Teng, C. Q.; Miao, Y. E.; Liu, T. X. LLZTO crosslinks form a highly stretchable self-healing network for fast healable all-solid lithium metal batteries. Chem. Eng. J. 2024, 497, 154397.
Zhang, X. R.; Liu, S. Y.; Sun, Y. X.; Gao, L. J.; Chen, K.; Dong, F. L.; Sun, H.; Xie, H. M.; Liu, J. Surface coordination of garnet fillers improves the organic-inorganic interfacial compatibility of composite solid electrolyte. Small 2024, 20, 2405909.
Wei, L. Y.; Feng, Y.; Ge, S. H.; Liu, S. J.; Ma, Y. Y.; Yan, J. H. Three-dimensionally printed ionogel-coated ceramic electrolytes for solid-state lithium batteries. ACS Nano 2025, 19, 5789–5800.
Jiang, Y.; Chen, K.; He, J. P.; Sun, Y. X.; Zhang, X. R.; Yang, X. X.; Xie, H. M.; Liu, J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J. Colloid Interface Sci. 2025, 678, 200–209.
Chen, W. P.; Duan, H.; Shi, J. L.; Qian, Y. M.; Wan, J.; Zhang, X. D.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y. X. et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 2021, 143, 5717–5726.
Lang, Z. Q.; Wang, X. X.; Jabeen, S.; Cheng, Y. Y.; Liu, N. Y.; Liu, Z. H.; Gan, T.; Zhuang, Z. C.; Li, H. T.; Wang, D. S. Destabilization of single-atom catalysts: Characterization, mechanisms, and regeneration strategies. Adv. Mater. 2025, 37, 2418942.
Hao, J. C.; Wang, T. D.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Yu, R. H.; Wu, J. S.; Wu, G. M.; Lu, S. L.; Wang, X. F. et al. Suppression of structural heterogeneity in high-entropy intermetallics for electrocatalytic upgrading of waste plastics. Angew. Chem., Int. Ed. 2025, 64, e202419369.
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.
Xiao, X. F.; Zhuang, Z. C.; Yin, S. H.; Zhu, J. X.; Gan, T.; Yu, R. H.; Wu, J. S.; Tian, X. C.; Jiang, Y. X.; Wang, D. S. et al. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat. Commun. 2024, 15, 10758.
Sun, Q.; Zeng, G. F.; Xu, X.; Li, J.; Biendicho, J. J.; Wang, S.; Tian, Y. H.; Ci, L. J.; Cabot, A. Are sulfide-based solid-state electrolytes the best pair for Si anodes in Li-ion batteries. Adv. Energy Mater. 2024, 14, 2402048.
Zhang, S. N.; Sun, Q.; Martínez-Alanis, P. R.; Chen, G. W.; Li, J. W.; Zeng, G. F.; Biendicho, J. J.; Ci, L. J.; Cabot, A. Towards flame retardant high-performance solid-state lithium metal batteries: Poly(ionic liquid)-based lithiophilic ion-conductive interfaces and humidity tolerant binders. Nano Energy 2025, 133, 110424.
533
Views
130
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).