AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhanced Li+ transport across the organic–inorganic interface in composite solid electrolytes via a confined solvation strategy

Kai Chen1Mingjia Lu1Xiaoxiao Li1Feili Lai4Chao Zhang1Hiang Kwee Lee3Yue-E Miao1 ( )Tianxi Liu1,2 ( )
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

The organic–inorganic interface is nanowetted by a confined solvation layer, enhancing the Li+ transport across the interface and thereby improving the overall ionic conductivity of the composite solid electrolyte.

Abstract

Polymer-based composite solid electrolytes (CSEs), incorporating fast Li+-conducting ceramic phases, leverage the advantages of both components to become one of the most promising next-generation solid electrolyte configurations. However, the interfacial incompatibility between the organic and inorganic components inevitably creates significant barriers to the interfacial Li+ transport, representing a key challenge in further enhancing the ionic conductivity of CSEs. Herein, we pioneered a confined solvation strategy by growing a metal-organic framework (MOF) layer impregnated with ionic liquid (IL) on the surface of Li0.33La0.557TiO3 (LLTO) fibers, and subsequently incorporating the composite fibers into a polyethylene oxide (PEO) matrix to fabricate a novel CSE (signed as LLTO/ZIF-8@IL/PEO). Benefiting from the unique porous structure and attraction of the metal centers toward anions of MOF, IL is tightly confined within the MOF framework, while retaining its liquid-like high ionic conductivity and interfacial wetting ability at the nano scale. As a result, the Li+ transport efficiency is substantially improved across the PEO-LLTO fiber interface to enable a high ionic conductivity of 1.07 × 10−3 S·cm−1 at 60 °C for LLTO/ZIF-8@IL/PEO. The corresponding pouch cell with a LiFePO4 (LFP) cathode (22 mg loading) and a lithium metal anode can successfully charge a mobile phone and deliver a stable capacity of 135.02 mAh·g−1 at 0.2 C over 100 cycles. This confined solvation strategy offers a universal and efficient approach for improving the Li+ transport across the polymer-ceramic interface in CSEs.

Electronic Supplementary Material

Download File(s)
7388_ESM.pdf (1.2 MB)

References

[1]

Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

[2]

Utomo, N. W.; Hong, S. F.; Sinha, R.; Kim, K. I.; Deng, Y.; Ochonma, P.; Kitahata, M. G.; Garcia-Mendez, R.; Joo, Y. L.; Archer, L. A. Solid-state polymer-particle hybrid electrolytes: Structure and electrochemical properties. Sci. Adv. 2024, 10, eado4719.

[3]

Zhao, W. J.; Yi, J.; He, P.; Zhou, H. S. Solid-state electrolytes for lithium-ion batteries: Fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2019, 2, 574–605.

[4]

Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.

[5]

Wang, Z. X.; Liu, R.; Ba, Z. H.; Xu, K.; Li, X. T.; Dong, J.; Zhang, Q. H.; Zhao, X. Built-in garnet-rich composite solid electrolyte towards fast ion transport and dendrite-free for high-energy lithium batteries. Compos. Commun. 2024, 47, 101871.

[6]

Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. Solid-state lithium batteries: Safety and prospects. eScience 2022, 2, 138–163.

[7]

Wang, J. H.; Han, X. J.; Feng, Y. F.; Chen, S.; Yuan, H.; Yang, R. X.; Du, W.; Hou, C. X.; Liu, X.; Tong, T. et al. In-situ construction of a composite interlayer for dendrite-free Li6.75La3Zr1.75Ta0.25O12 solid-state batteries. Compos. Commun. 2024, 46, 101851.

[8]

Song, X.; Ma, K.; Wang, H.; Wang, J.; Chen, J. W.; Zheng, Z. M.; Zhang, J. M. Enhancing Li+ transfer efficiency and strength of PEO-based composite solid electrolyte for long stable cycling of all-solid-state lithium metal batteries. Compos. Commun. 2024, 50, 102013.

[9]

Wang, M. X.; Lv, S. W.; Li, M. X.; Li, X.; Li, C. P.; Li, Z. L.; Chen, X. C.; Wu, J. X.; Li, X. Y.; Chen, Y. M. et al. A heterogeneous quasi-solid-state hybrid electrolyte constructed from electrospun nanofibers enables robust electrode/electrolyte interfaces for stable lithium metal batteries. Adv. Fiber Mater. 2024, 6, 727–738.

[10]

Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791.

[11]

Zhu, L.; Zhu, P. H.; Fang, Q. X.; Jing, M. X.; Shen, X. Q.; Yang, L. Z. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726.

[12]

Cao, X. W.; Ma, C.; Luo, L.; Chen, L.; Cheng, H.; Orenstein, R. S.; Zhang, X. W. Nanofiber materials for lithium-ion batteries. Adv. Fiber Mater. 2023, 5, 1141–1197.

[13]

Yu, Y.; Liu, M.; Chen, Z. Y.; Zhang, Z. H.; Qiu, T.; Hu, Z. X.; Xiang, H. X.; Zhu, L. P.; Xu, G. Y.; Zhu, M. F. Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber Mater. 2023, 5, 1827–1851.

[14]

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

[15]

Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018, 18, 3829–3838.

[16]

Shi, P. R.; Ma, J. B.; Liu, M.; Guo, S. K.; Huang, Y. F.; Wang, S. W.; Zhang, L. H.; Chen, L. K.; Yang, K.; Liu, X. T. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 2023, 18, 602–610.

[17]

Huo, H. Y.; Zhao, N.; Sun, J. Y.; Du, F. M.; Li, Y. Q.; Guo, X. X. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. J. Power Sources 2017, 372, 1–7.

[18]

Xu, Y. N.; Wang, K.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X. Z. et al. Improved li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 2023, 13, 2204377.

[19]

Chen, L. K.; Shi, P. R.; Gu, T.; Mi, J. S.; Yang, K.; Zhao, L.; Lv, J. S.; Liu, M.; He, Y. B.; Kang, F. Y. Strategies of constructing highly stable interfaces with low resistance in inorganic oxide-based solid-state lithium batteries. eScience 2025, 5, 100277.

[20]

Huo, H. Y.; Li, X. N.; Sun, Y. P.; Lin, X. T.; Doyle-Davis, K.; Liang, J. W.; Gao, X. J.; Li, R. Y.; Huang, H.; Guo, X. X. et al. Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy 2020, 73, 104836.

[21]

Simon, F. J.; Hanauer, M.; Richter, F. H.; Janek, J. Interphase formation of PEO20: LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl. Mater. Interfaces 2020, 12, 11713–11723.

[22]

Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[23]

Jia, M. Y.; Bi, Z. J.; Shi, C.; Zhao, N.; Guo, X. X. Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes. J. Power Sources 2021, 486, 229363.

[24]

Zhan, X.; Pang, X. K.; Mao, F. Q.; Lin, J. D.; Li, M.; Zhao, Y. H.; Xu, P.; Xu, Z. M.; Liao, K. M.; Zhang, Q. B. et al. Interfacial reconstruction unlocks inherent ionic conductivity of Li-La-Zr-Ta-O garnet in organic polymer electrolyte for durable room‐temperature all‐solid‐state batteries. Adv. Energy Mater. 2024, 14, 2402509.

[25]

Yılmazoğlu, M.; Okkay, H.; Abaci, U.; Coban, O. High-performance PVdF-HFP/PEG-IL composites: The combined effects of PEG and ionic liquid on proton conductivity and dielectric characteristics. Compos. Commun. 2025, 53, 102175.

[26]

Forsyth, M.; Porcarelli, L.; Wang, X. E.; Goujon, N.; Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 2019, 52, 686–694.

[27]

Wang, Y. Y.; Pan, T.; Yuan, G. Q.; Li, Q.; Pang, H. MOF and MOF-derived composites for flexible energy storage devices. Compos. Commun. 2024, 52, 102144.

[28]

Wang, Z. T.; Zhou, H.; Meng, C. F.; Xiong, W. W.; Cai, Y. J.; Hu, P. F.; Pang, H.; Yuan, A. H. Enhancing ion transport: Function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries. ACS Appl. Energy Mater. 2020, 3, 4265–4274.

[29]

Yu, X. W.; Grundish, N. S.; Goodenough, J. B.; Manthiram, A. Ionic liquid (IL) laden metal-organic framework (IL-MOF) electrolyte for quasi-solid-state sodium batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669.

[30]

Wang, Z. Q.; Tan, R.; Wang, H. B.; Yang, L. Y.; Hu, J. T.; Chen, H. B.; Pan, F. A Metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.

[31]

Wang, Z. Y.; Du, Z. J.; Liu, Y. Y.; Knapp, C. E.; Dai, Y. H.; Li, J. W.; Zhang, W.; Chen, R. W.; Guo, F.; Zong, W. et al. Metal-organic frameworks and their derivatives for optimizing lithium metal anodes. eScience 2024, 4, 100189.

[32]

Yang, Y.; Wu, Q.; Wang, D.; Ma, C. C.; Chen, Z.; Su, Q. T.; Zhu, C. Z.; Li, C. H. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J. Membr. Sci. 2020, 612, 118424.

[33]

Fujie, K.; Yamada, T.; Ikeda, R.; Kitagawa, H. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angew. Chem., Int. Ed. 2014, 53, 11302–11305.

[34]

Zhang, Y. X.; Yu, X. H.; Li, X. X.; Ren, J. G.; He, P.; Zhang, C.; Teng, C. Q.; Miao, Y. E.; Liu, T. X. LLZTO crosslinks form a highly stretchable self-healing network for fast healable all-solid lithium metal batteries. Chem. Eng. J. 2024, 497, 154397.

[35]

Zhang, X. R.; Liu, S. Y.; Sun, Y. X.; Gao, L. J.; Chen, K.; Dong, F. L.; Sun, H.; Xie, H. M.; Liu, J. Surface coordination of garnet fillers improves the organic-inorganic interfacial compatibility of composite solid electrolyte. Small 2024, 20, 2405909.

[36]

Wei, L. Y.; Feng, Y.; Ge, S. H.; Liu, S. J.; Ma, Y. Y.; Yan, J. H. Three-dimensionally printed ionogel-coated ceramic electrolytes for solid-state lithium batteries. ACS Nano 2025, 19, 5789–5800.

[37]

Jiang, Y.; Chen, K.; He, J. P.; Sun, Y. X.; Zhang, X. R.; Yang, X. X.; Xie, H. M.; Liu, J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J. Colloid Interface Sci. 2025, 678, 200–209.

[38]

Chen, W. P.; Duan, H.; Shi, J. L.; Qian, Y. M.; Wan, J.; Zhang, X. D.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y. X. et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 2021, 143, 5717–5726.

[39]

Lang, Z. Q.; Wang, X. X.; Jabeen, S.; Cheng, Y. Y.; Liu, N. Y.; Liu, Z. H.; Gan, T.; Zhuang, Z. C.; Li, H. T.; Wang, D. S. Destabilization of single-atom catalysts: Characterization, mechanisms, and regeneration strategies. Adv. Mater. 2025, 37, 2418942.

[40]

Hao, J. C.; Wang, T. D.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Yu, R. H.; Wu, J. S.; Wu, G. M.; Lu, S. L.; Wang, X. F. et al. Suppression of structural heterogeneity in high-entropy intermetallics for electrocatalytic upgrading of waste plastics. Angew. Chem., Int. Ed. 2025, 64, e202419369.

[41]
Meng, G.; Huang, Z. M.; Tao, L.; Zhuang, Z. C.; Zhang, Q. C.; Chen, Q. L.; Yang, H.; Zhao, H. P.; Ye, C. L.; Wang, Y. et al. Atomic symbiotic-catalyst for low-temperature zinc-air battery. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202501649.
[42]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[43]

Xiao, X. F.; Zhuang, Z. C.; Yin, S. H.; Zhu, J. X.; Gan, T.; Yu, R. H.; Wu, J. S.; Tian, X. C.; Jiang, Y. X.; Wang, D. S. et al. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat. Commun. 2024, 15, 10758.

[44]

Sun, Q.; Zeng, G. F.; Xu, X.; Li, J.; Biendicho, J. J.; Wang, S.; Tian, Y. H.; Ci, L. J.; Cabot, A. Are sulfide-based solid-state electrolytes the best pair for Si anodes in Li-ion batteries. Adv. Energy Mater. 2024, 14, 2402048.

[45]

Zhang, S. N.; Sun, Q.; Martínez-Alanis, P. R.; Chen, G. W.; Li, J. W.; Zeng, G. F.; Biendicho, J. J.; Ci, L. J.; Cabot, A. Towards flame retardant high-performance solid-state lithium metal batteries: Poly(ionic liquid)-based lithiophilic ion-conductive interfaces and humidity tolerant binders. Nano Energy 2025, 133, 110424.

Nano Research
Article number: 94907388
Cite this article:
Chen K, Lu M, Li X, et al. Enhanced Li+ transport across the organic–inorganic interface in composite solid electrolytes via a confined solvation strategy. Nano Research, 2025, 18(6): 94907388. https://doi.org/10.26599/NR.2025.94907388
Topics:

533

Views

130

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 March 2025
Revised: 17 March 2025
Accepted: 18 March 2025
Published: 12 May 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return