AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (48.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Microneedle electrodes for collecting bioelectrical signals: From a materials science perspective

Xianghong LiTingkai Zhao ( )
NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

This article focuses on summarizing microneedle electrodes for measuring bioelectrical signals from a materials perspective. It also reviews the fabrication methods and performance evaluation of microneedle electrodes and, finally, discusses the opportunities and challenges in their application for bioelectrical signal measurement.

Abstract

Microneedle electrodes acquire bioelectrical signals by measuring the potential difference generated through active cells. The common bioelectrical signals include electroencephalographic, electromyographic, and electrocardiographic signals, which have been extensively utilized across medical, neuroscience, and bioengineering domains. Microneedle electrodes, as invasive dry electrodes minimal penetrating the stratum corneum without reaching the dermis, effectively mitigate the impedance of the electrode-skin interface without requiring conductive gel, thus accommodating the requirements of long-term and high-precision measurements. This review provides a comprehensive summary of the electrode materials, fabrication methods, performance evaluation, and applications of microneedle electrodes for bioelectrical signal acquisition. Special emphasis is placed on the development of materials used in the fabrication of microneedle electrodes. Additionally, we discuss the challenges related to material selection and performance testing, offering insights into future trends in this field.

References

[1]

Fu, Y. L.; Zhao, J. J.; Dong, Y.; Wang, X. H. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020, 20, 3651.

[2]

Hardenacke, K.; Shubina, E.; Bührle, C. P.; Zapf, A.; Lenartz, D.; Klosterkötter, J.; Visser-Vandewalle, V.; Kuhn, J. Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: A systematic review. Front. Psychiatry 2013, 4, 159.

[3]

Vance, C. G. T.; Dailey, D. L.; Rakel, B. A.; Sluka, K. A. Using TENS for pain control: The state of the evidence. Pain Manag. 2014, 4, 197–209.

[4]

Wang, J. J.; Wang, T. J.; Liu, H. Y.; Wang, K.; Moses, K.; Feng, Z. Y.; Li, P.; Huang, W. Flexible electrodes for brain-computer interface system. Adv. Mater. 2023, 35, 2211012.

[5]
Nunez, P. L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford University Press: Oxford, 2006.
[6]

Ma, Y. X.; Gong, A. M.; Nan, W. Y.; Ding, P.; Wang, F.; Fu, Y. F. Personalized brain-computer interface and its applications. J. Pers. Med. 2023, 13, 46.

[7]

Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.

[8]

Mirvis, D. M.; Goldberger, A. L. Electrocardiography. Heart Dis. 2001, 1, 82–128.

[9]
De Luca, C. J. Electromyography Encyclopedia of Medical Devices and Instrumentation; Wiley-Interscience: Hoboken, 2006; pp 98–109.
[10]

Song, M. Y.; Kim, U. S. Current usage of electrophysiological tests in a secondary referral hospital in Korea. Doc. Ophthalmol. 2022, 145, 127–131.

[11]

Zhang, B. L.; Xie, R. J.; Jiang, J. M.; Hao, S. P.; Fang, B.; Zhang, J. X.; Bai, H.; Peng, B.; Li, L.; Liu, Z. Y. et al. Implantable neural electrodes: From preparation optimization to application. J. Mater. Chem. C 2023, 11, 6550–6572.

[12]

Huang, Z. B.; Zhou, Z. N.; Zeng, J. S.; Lin, S.; Wu, H. Flexible electrodes for non-invasive brain-computer interfaces: A perspective. APL Mater. 2022, 10, 090901.

[13]

Parvizi, J.; Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 2018, 21, 474–483.

[14]

Wang, S.; Zhao, M. M.; Yan, Y. B.; Li, P.; Huang, W. Flexible monitoring, diagnosis, and therapy by microneedles with versatile materials and devices toward multifunction scope. Research 2023, 6, 0128.

[15]

Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG Electrodes. ACS Nano 2016, 10, 4770–4778.

[16]

Pan, K. G.; Hagiwara, T.; Tso, K. C.; Siwadamrongpong, R.; Akbar, L.; Nakano, Y.; Kono, T.; Terasawa, Y.; Haruta, M.; Takehara, H. A flexible retinal device with CMOS smart electrodes fabricated on parylene C thin-film and bioceramic substrate. Jpn. J. Appl. Phys. 2023, 62, SC1022.

[17]

Nigusse, A. B.; Malengier, B.; Mengistie, D. A.; Tseghai, G. B.; Van Langenhove, L. Development of washable silver printed textile electrodes for long-term ECG monitoring. Sensors 2020, 20, 6233.

[18]

Ferrari, L. M.; Ismailov, U.; Badier, J. M.; Greco, F.; Ismailova, E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. NPJ Flex. Electron. 2020, 4, 4.

[19]

Baek, H. J.; Lee, H. J.; Lim, Y. G.; Park, K. S. Conductive polymer foam surface improves the performance of a capacitive EEG electrode. IEEE Trans. Biomed. Eng. 2012, 59, 3422–3431.

[20]

Li, L. J.; Li, G. L.; Cao, Y. L.; Duan, Y. Y. A novel highly durable carbon/silver/silver chloride composite electrode for high-definition transcranial direct current stimulation. Nanomaterials 2021, 11, 1962.

[21]

Rossetti, N.; Hagler, J.; Kateb, P.; Cicoira, F. Neural and electromyography PEDOT electrodes for invasive stimulation and recording. J. Mater. Chem. C 2021, 9, 7243–7263.

[22]

Chatterjee, S.; Sakorikar, T.; Bs, A.; Joshi, R. K.; Sikaria, A.; Jayachandra, M.; V, V.; Pandya, H. J. A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Biomed. Microdevices 2022, 24, 31.

[23]

Chen, S. T.; Chu, C. Y. Fabrication and testing of a novel biopotential electrode array. J. Mater. Process. Technol. 2017, 250, 345–356.

[24]

Ruffini, G.; Dunne, S.; Fuentemilla, L.; Grau, C.; Farrés, E.; Marco-Pallarés, J.; Watts, P. C. P.; Silva, S. R. P. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens. Actuators A: Phys. 2008, 144, 275–279.

[25]

Niu, X.; Gao, X. H.; Liu, Y. F.; Liu, H. Surface bioelectric dry Electrodes: A review. Measurement 2021, 183, 109774.

[26]

Luo, Y. F.; Li, W. L.; Lin, Q. Y.; Zhang, F. L.; He, K.; Yang, D. P.; Loh, X. J.; Chen, X. D. A morphable ionic electrode based on thermogel for non-invasive hairy plant electrophysiology. Adv. Mater. 2021, 33, 2007848.

[27]

Won, S. M.; Song, E. M.; Zhao, J. N.; Li, J. H.; Rivnay, J.; Rogers, J. A. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 2018, 30, 1800534.

[28]

Niu, X.; Gao, X. H.; Wang, T. Y.; Wang, W.; Liu, H. Ordered nanopillar arrays of low dynamic noise dry bioelectrodes for electrocardiogram surface monitoring. ACS Appl. Mater. Interfaces 2022, 14, 33861–33870.

[29]

Fang, Y.; Prominski, A.; Rotenberg, M. Y.; Meng, L. Y.; Acarón Ledesma, H.; Lv, Y. Y.; Yue, J. P.; Schaumann, E.; Jeong, J.; Yamamoto, N. et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nat. Nanotechnol. 2021, 16, 206–213.

[30]

Park, T.; Jeong, J.; Kim, Y. J.; Yoo, H. Weak molecular interactions in organic composite dry film lead to degradable, robust wireless electrophysiological signal sensing. Adv. Mater. Interfaces 2022, 9, 2200594.

[31]

Spanu, A.; Taki, M.; Baldazzi, G.; Mascia, A.; Cosseddu, P.; Pani, D.; Bonfiglio, A. Epidermal electrodes with ferrimagnetic/conductive properties for biopotential recordings. Bioengineering 2022, 9, 205.

[32]

Acar, G.; Ozturk, O.; Golparvar, A. J.; Elboshra, T. A.; Böhringer, K.; Yapici, M. K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479.

[33]

Nigusse, A. B.; Mengistie, D. A.; Malengier, B.; Tseghai, G. B.; van Langenhove, L. Wearable smart textiles for long-term electrocardiography monitoring-A review. Sensors 2021, 21, 4174.

[34]

Barrera, C. S.; Pina-Martinez, E.; Roberts, R.; Rodriguez-Leal, E. Impact of size and shape for textile surface electromyography electrodes: A study of the biceps brachii muscle. Text. Res. J. 2022, 92, 3097–3110.

[35]

Xu, X. W.; Luo, M.; He, P.; Yang, J. L. Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. J. Phys. D: Appl. Phys. 2020, 53, 125402.

[36]

Kubicek, J.; Fiedorova, K.; Vilimek, D.; Cerny, M.; Penhaker, M.; Janura, M.; Rosicky, J. Recent trends, construction, and applications of smart textiles and clothing for monitoring of health activity: A comprehensive multidisciplinary review. IEEE Rev. Biomed. Eng. 2022, 15, 36–60.

[37]

Xu, X. W.; Luo, M.; He, P.; Guo, X. J.; Yang, J. L. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl. Phys. A 2019, 125, 714.

[38]

Bihar, E.; Roberts, T.; Ismailova, E.; Saadaoui, M.; Isik, M.; Sanchez-Sanchez, A.; Mecerreyes, D.; Hervé, T.; De Graaf, J. B.; Malliaras, G. G. Fully printed electrodes on stretchable textiles for long-term electrophysiology. Adv. Mater. Technol. 2017, 2, 1600251.

[39]
Baldazzi, G.; Spanu, A.; Mascia, A.; Viola, G.; Bonfiglio, A.; Cosseddu, P.; Pani, D. Validation of a novel tattoo electrode for ECG monitoring. In Proceedings of 2021 Computing in Cardiology, Brno, Czech Republic, 2021, pp 1–4.
[40]

Su, P. C.; Hsueh, Y. H.; Ke, M. T.; Chen, J. J.; Lai, P. C. Noncontact ECG monitoring by capacitive coupling of textiles in a chair. J. Healthc. Eng. 2021, 2021, 6698567.

[41]

Sun, Y.; Yu, X. B. Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sens. J. 2016, 16, 2832–2853.

[42]

Umar, A. H.; Othman, M. A.; Harun, F. K. C.; Yusof, Y. Dielectrics for non-contact ECG bioelectrodes: A review. IEEE Sens. J. 2021, 21, 18353–18367.

[43]

Shay, T.; Velev, O. D.; Dickey, M. D. Soft electrodes combining hydrogel and liquid metal. Soft Matter. 2018, 14, 3296–3303.

[44]

Wang, L. F.; Liu, J. Q.; Peng, H. L.; Yang, B.; Zhu, H. Y.; Yang, C. S. MEMS-based flexible capacitive electrode for ECG measurement. Electron. Lett. 2013, 49, 739–740.

[45]

Inácio, P. M. C.; Mestre, A. L. G.; De Medeiros, M. D. C. R.; Asgarifar, S.; Elamine, Y.; Canudo, J.; Santos, J. M. A.; Bragança, J.; Morgado, J.; Biscarini, F. et al. Bioelectrical signal detection using conducting polymer electrodes and the displacement current method. IEEE Sens. J. 2017, 17, 3961–3966.

[46]

Ueno, A.; Yamaguchi, T.; Iida, T.; Fukuoka, Y.; Uchikawa, Y.; Noshiro, M. Feasibility of capacitive sensing of surface electromyographic potential through cloth. Sens. Mater. 2012, 24, 335–346.

[47]

Wang, T. W.; Zhang, H.; Lin, S. F. Influence of capacitive coupling on high-fidelity non-contact ecg measurement. IEEE Sens. J. 2020, 20, 9265–9273.

[48]

Chen, C. C.; Chen, C. W.; Hsieh, C. W. Noise-resistant CECG using novel capacitive electrodes. Sensors 2020, 20, 2577.

[49]

Ullah, H.; Wahab, A.; Will, G.; Karim, M. R.; Pan, T. S.; Gao, M.; Lai, D. K.; Lin, Y.; Miraz, M. H. Recent advances in stretchable and wearable capacitive electrophysiological sensors for long-term health monitoring. Biosensors 2022, 12, 630.

[50]

Liu, H.; Chen, X. D.; Wang, Z. H.; Liu, Y.; Liang, C. Y.; Zhu, M.; Qi, D. P. Development of soft dry electrodes: From materials to structure design. Soft Sci. 2023, 3, 27.

[51]

Yang, L. T.; Liu, Q.; Zhang, Z. L.; Gan, L.; Zhang, Y.; Wu, J. L. Materials for dry electrodes for the electroencephalography: Advances, challenges, perspectives. Adv. Mater. Technol. 2022, 7, 2100612.

[52]

Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. P. Dry EEG electrodes. Sensors 2014, 14, 12847–12870.

[53]

Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11.

[54]

Gargiulo, G.; Calvo, R. A.; Bifulco, P.; Cesarelli, M.; Jin, C.; Mohamed, A.; Van Schaik, A. A new EEG recording system for passive dry electrodes. Clin. Neurophysiol. 2010, 121, 686–693.

[55]

Yan, D. X.; Jiman, A. A.; Bottorff, E. C.; Patel, P. R.; Meli, D.; Welle, E. J.; Ratze, D. C.; Havton, L. A.; Chestek, C. A.; Kemp, S. W. P. et al. Ultraflexible and stretchable intrafascicular peripheral nerve recording device with axon-dimension, cuff-less microneedle electrode array. Small 2022, 18, 2200311.

[56]

Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

[57]

Xi, Y.; Ji, B. W.; Guo, Z. J.; Li, W.; Liu, J. Q. Fabrication and characterization of micro-nano electrodes for implantable BCI. Micromachines 2019, 10, 242.

[58]

Nam, D.; Cha, J. M.; Park, K. Next-generation wearable biosensors developed with flexible bio-chips. Micromachines 2021, 12, 64.

[59]

Liu, Q.; Yang, L. T.; Zhang, Z. L.; Yang, H.; Zhang, Y.; Wu, J. L. The feature, performance, and prospect of advanced electrodes for electroencephalogram. Biosensors 2023, 13, 101.

[60]

Ren, L.; Liu, B.; Zhou, W.; Jiang, L. L. A mini review of microneedle array electrode for bio-signal recording: A review. IEEE Sens. J. 2020, 20, 577–590.

[61]
Arai, M.; Nishinaka, Y.; Miki, N. Long-term electroencephalogram measurement using polymer-based dry microneedle electrode. In Proceedings of the 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems, Anchorage, 2015, pp 81–84.
[62]

Rad, Z. F.; Prewett, P. D.; Davies, G. J. An overview of microneedle applications, materials, and fabrication methods. Beilstein J. Nanotechnol. 2021, 12, 1034–1046.

[63]

Yang, J. B.; Zhang, H. X.; Hu, T. L.; Xu, C. J.; Jiang, L. L.; Shrike Zhang, Y.; Xie, M. B. Recent advances of microneedles used towards stimuli-responsive drug delivery, disease theranostics, and bioinspired applications. Chem. Eng. J. 2021, 426, 130561.

[64]

Qin, J.; Yin, L. J.; Hao, Y. N.; Zhong, S. L.; Zhang, D. L.; Bi, K.; Zhang, Y. X.; Zhao, Y.; Dang, Z. M. Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 2021, 33, 2008267.

[65]

Vora, L. K.; Sabri, A. H.; McKenna, P. E.; Himawan, A.; Hutton, A. R. J.; Detamornrat, U.; Paredes, A. J.; Larrañeta, E.; Donnelly, R. F. Microneedle-based biosensing. Nat. Rev. Bioeng. 2024, 2, 64–81.

[66]

Miller, P. R.; Skoog, S. A.; Edwards, T. L.; Wheeler, D. R.; Xiao, X. Y.; Brozik, S. M.; Polsky, R.; Narayan, R. J. Hollow microneedle-based sensor for multiplexed transdermal electrochemical sensing. J. Vis. Exp. 2012, 64, e4067.

[67]

Miller, P. R.; Xiao, X. Y.; Brener, I.; Burckel, D. B.; Narayan, R.; Polsky, R. Microneedle-based transdermal sensor for on-chip potentiometric determination of K+. Adv. Healthc. Mater. 2014, 3, 876–881.

[68]

Goud, K. Y.; Moonla, C.; Mishra, R. K.; Yu, C. M.; Narayan, R.; Litvan, I.; Wang, J. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: Toward parkinson management. ACS Sens. 2019, 4, 2196–2204.

[69]

Chu, H. Q.; Zhang, Y. Y.; Yang, Y.; Xue, J. T.; Li, C.; Zhang, W.; Li, Z.; Zheng, H. Flurbiprofen microneedle patches for the management of acute postoperative pain. Nano Res. 2024, 17, 7493–7503.

[70]

Yang, Y.; Chu, H. Q.; Zhang, Y.; Xu, L. L.; Luo, R. Z.; Zheng, H.; Yin, T. L.; Li, Z. Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Res. 2022, 15, 8336–8344.

[71]

Chu, H. Q.; Xue, J. T.; Yang, Y.; Zheng, H.; Luo, D.; Li, Z. Advances of smart stimulus-responsive microneedles in cancer treatment. Small Methods 2024, 8, 2301455.

[72]

Berger, H. Über das elektrenkephalogramm des menschen. Dtsch. Med. Wochenschr. 1934, 60, 1947–1949.

[73]
Gerstel, M. S.; Place, V. A. Drug delivery device. U.S. Patent 3964482A, June 22, 1976.
[74]

Griss, P.; Enoksson, P.; Tolvanen-Laakso, H. K.; Merilainen, P.; Ollmar, S.; Stemme, G. Micromachined electrodes for biopotential measurements. J. Microelectromech. Syst. 2001, 10, 10–16.

[75]

Charvet, G.; Rousseau, L.; Billoint, O.; Gharbi, S.; Rostaing, J. P.; Joucla, S.; Trevisiol, M.; Bourgerette, A.; Chauvet, P.; Moulin, C. et al. BioMEA™: A versatile high-density 3D microelectrode array system using integrated electronics. Biosens. Bioelectron. 2010, 25, 1889–1896.

[76]

Xiang, Z. L.; Liu, J. Q.; Lee, C. A flexible three-dimensional electrode mesh: An enabling technology for wireless brain-computer interface prostheses. Microsyst. Nanoeng. 2016, 2, 16012.

[77]

Luo, X. J.; Yu, Q.; Yang, L.; Cui, Y. Wearable, sensing-controlled, ultrasound-based microneedle smart system for diabetes management. ACS Sens. 2023, 8, 1710–1722.

[78]

Griss, P.; Tolvanen-Laakso, H. K.; Merilainen, P.; Stemme, G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans. Biomed. Eng. 2002, 49, 597–604.

[79]

Lu, H. H.; Shao, W. Y.; Gao, B. B.; Zheng, S. Y.; He, B. F. Intestine-inspired wrinkled MXene microneedle dressings for smart wound management. Acta Biomater. 2023, 159, 201–210.

[80]

Sun, L. Y.; Fan, L.; Bian, F. K.; Chen, G. P.; Wang, Y. T.; Zhao, Y. J. MXene-integrated microneedle patches with innate molecule encapsulation for wound healing. Research 2021, 2021, 9838490.

[81]

Shao, Y.; Dong, K. Y.; Lu, X. Y.; Gao, B. B.; He, B. F. Bioinspired 3D-printed mxene and spidroin-based near-infrared light-responsive microneedle scaffolds for efficient wound management. ACS Appl. Mater. Interfaces 2022, 14, 56525–56534.

[82]

Guo, M. Z.; Wang, Y. Q.; Gao, B. B.; He, B. F. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano 2021, 15, 15316–15327.

[83]

Wang, Y. Q.; Gao, B. B.; He, B. F. Toward efficient wound management: Bioinspired microfluidic and microneedle patch. Small 2023, 19, 2206270.

[84]

Miller, P.; Moorman, M.; Manginell, R.; Ashlee, C.; Brener, I.; Wheeler, D.; Narayan, R.; Polsky, R. Towards an integrated microneedle total analysis chip for protein detection. Electroanalysis 2016, 28, 1305–1310.

[85]

Gao, J.; Huang, W. Z.; Chen, Z. P.; Yi, C. Q.; Jiang, L. L. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sens. Actuators B Chem. 2019, 287, 102–110.

[86]

Rezali, F. A. M.; Soin, N.; Hatta, S. F. W. M.; Daut, M. H. M.; Nouxman, M. H. A. H.; Hussin, H. Design strategies and prospects in developing wearable glucose monitoring system using printable organic transistor and microneedle: A review. IEEE Sens. J. 2022, 22, 13785–13799.

[87]

Dervisevic, M.; Alba, M.; Yan, L.; Senel, M.; Gengenbach, T. R.; Prieto-Simon, B.; Voelcker, N. H. Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 2022, 32, 2009850 .

[88]
Lijnse, T. M.; Haider, K.; Dalton, C. High throughput fabrication of robust solid microneedles. In Proceedings of SPIE 11955, Microfluidics, BioMEMS, and Medical Microsystems XX, San Francisco, 2022, pp 80–88.
[89]

Wu, D.; Shou, X.; Yu, Y. R.; Wang, X. C.; Chen, G. P.; Zhao, Y. J.; Sun, L. Y. Biologics-loaded photothermally dissolvable hyaluronic acid microneedle patch for psoriasis treatment. Adv. Funct. Mater. 2022, 32, 2205847.

[90]

Feng, X. Q.; Xian, D. Y.; Fu, J. T.; Luo, R.; Wang, W. H.; Zheng, Y. W.; He, Q.; Ouyang, Z.; Fang, S. B.; Zhang, W. C. et al. Four-armed host-defense peptidomimetics-augmented vanadium carbide MXene-based microneedle array for efficient photo-excited bacteria-killing. Chem. Eng. J. 2023, 456, 141121.

[91]

Lin, S. Y.; Lin, H.; Yang, M.; Ge, M.; Chen, Y.; Zhu, Y. F. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale 2020, 12, 10265–10276.

[92]

Huang, S.; He, M. Y.; Yao, C. J.; Huang, X. S.; Ma, D. Y.; Huang, Q. Q.; Yang, J. B.; Liu, F. M.; Wen, X. Q.; Wang, J. et al. Petromyzontidae-biomimetic multimodal microneedles-integrated bioelectronic catheters for theranostic endoscopic surgery. Adv. Funct. Mater. 2023, 33, 2214485.

[93]

Shi, Z. Y.; Jiang, B.; Liang, S. C.; Zhang, J. T.; Suo, D. J.; Wu, J. L.; Chen, D. D.; Pei, G. Y.; Yan, T. Y. Claw-shaped flexible and low-impedance conductive polymer electrodes for EEG recordings: Anemone dry electrode. Sci. China Technol. Sci. 2023, 66, 255–266.

[94]

Lee, S. H.; Thunemann, M.; Lee, K.; Cleary, D. R.; Tonsfeldt, K. J.; Oh, H.; Azzazy, F.; Tchoe, Y.; Bourhis, A. M.; Hossain, L. et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces. Adv. Funct. Mater. 2022, 32, 2112045.

[95]

Ibayashi, K.; Kunii, N.; Matsuo, T.; Ishishita, Y.; Shimada, S.; Kawai, K.; Saito, N. Decoding speech with integrated hybrid signals recorded from the human ventral motor cortex. Front. Neurosci. 2018, 12, 221.

[96]

Zhang, X. X.; Lu, M. H.; Cao, X. Y.; Zhao, Y. J. Functional microneedles for wearable electronics. Smart Med. 2023, 2, e20220023.

[97]

Kil, H. J.; Kim, S. R.; Park, J. W. A self-charging supercapacitor for a patch-type glucose sensor. ACS Appl. Mater. Interfaces 2022, 14, 3838–3848.

[98]

Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

[99]

Mahmood, M.; Kwon, S.; Kim, H.; Kim, Y. S.; Siriaraya, P.; Choi, J.; Otkhmezuri, B.; Kang, K.; Yu, K. J.; Jang, Y. C. et al. Wireless soft scalp electronics and virtual reality system for motor imagery-based brain-machine interfaces. Adv. Sci. 2021, 8, 2101129.

[100]

Kim, M.; Gu, G. Y.; Cha, K. J.; Kim, D. S.; Chung, W. K. Wireless sEMG system with a microneedle-based high-density electrode array on a flexible substrate. Sensors 2017, 18, 92.

[101]

Kim, Y. J.; Chinnadayyala, S. R.; Le, H. T. N.; Cho, S. Sensitive electrochemical non-enzymatic detection of glucose based on wireless data transmission. Sensors 2022, 22, 2787.

[102]

Liu, Y. Q.; Yu, Q.; Ye, L.; Yang, L.; Cui, Y. A wearable, minimally-invasive, fully electrochemically-controlled feedback minisystem for diabetes management. Lab Chip 2023, 23, 421–436.

[103]

Wang, R. X.; Zhao, W.; Wang, W.; Li, Z. H. A flexible microneedle electrode array with solid silicon needles. J. Microelectromech. Syst. 2012, 21, 1084–1089.

[104]

Stavrinidis, G.; Michelakis, K.; Kontomitrou, V.; Giannakakis, G.; Sevrisarianos, M.; Sevrisarianos, G.; Chaniotakis, N.; Alifragis, Y.; Konstantinidis, G. SU-8 microneedles based dry electrodes for electroencephalogram. Microelectron. Eng. 2016, 159, 114–120.

[105]

Nishinaka, Y.; Jun, R.; Prihandana, G. S.; Miki, N. Fabrication of polymer microneedle electrodes coated with nanoporous parylene. Jpn. J. Appl. Phys. 2013, 52, 06GL10.

[106]

Omatsu, T.; Chujo, K.; Miyamoto, K.; Okida, M.; Nakamura, K.; Aoki, N.; Morita, R. Metal microneedle fabrication using twisted light with spin. Opt. Express 2010, 18, 17967–17973.

[107]

Yu, L. M.; Tay, F. E. H.; Guo, D. G.; Xu, L.; Yap, K. L. A microfabricated electrode with hollow microneedles for ECG measurement. Sens. Actuators A phys. 2009, 151, 17–22.

[108]

Rodriguez, A.; Molinero, D.; Valera, E.; Trifonov, T.; Marsal, L. F.; Pallarès, J.; Alcubilla, R. Fabrication of silicon oxide microneedles from macroporous silicon. Sens. Actuators B Chem. 2005, 109, 135–140.

[109]

Zhou, H. B.; Li, G.; Sun, X. N.; Zhu, Z. H.; Xu, B. J.; Jin, Q. H.; Zhao, J. L.; Ren, Q. S. A new process for fabricating tip-shaped polymer microstructure array with patterned metallic coatings. Sens. Actuators A Phys. 2009, 150, 296–301.

[110]

Dabbagh, S. R.; Sarabi, M. R.; Rahbarghazi, R.; Sokullu, E.; Yetisen, A. K.; Tasoglu, S. 3D-printed microneedles in biomedical applications. iScience 2021, 24, 102012.

[111]

Wang, R. X.; Wang, W.; Li, Z. H. An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio. Sensors 2016, 16, 1628.

[112]

Kudo, Y.; Arai, M.; Miki, N. Fatigue assessment by electroencephalogram measured with candle-like dry microneedle electrodes. Micro Nano Lett. 2017, 12, 545–549.

[113]

Ren, L.; Jiang, Q.; Chen, K. Y.; Chen, Z. P.; Pan, C. F.; Jiang, L. L. Fabrication of a micro-needle array electrode by thermal drawing for bio-signals monitoring. Sensors 2016, 16, 908.

[114]

Han, D.; Morde, R. S.; Mariani, S.; La Mattina, A. A.; Vignali, E.; Yang, C.; Barillaro, G.; Lee, H. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv. Funct. Mater. 2020, 30, 1909197.

[115]

Wang, L. F.; Liu, J. Q.; Yan, X. X.; Yang, B.; Yang, C. S. A MEMS-based pyramid micro-needle electrode for long-term EEG measurement. Microsyst. Technol. 2013, 19, 269–276.

[116]

Liu, B.; Yang, Z. L.; Zheng, Y.; Yin, Z.; Fu, T.; Ren, L.; Jiang, L. L. Fabrication of metal microneedle array electrode for bio-signals monitoring. J. Mech. Eng. 2021, 57, 61–68.

[117]

Kawana, T.; Yoshida, Y.; Kudo, Y.; Iwatani, C.; Miki, N. Design and characterization of an EEG-hat for reliable EEG measurements. Micromachines 2020, 11, 635.

[118]

Chen, Z. P.; Lin, Y. Y.; Lee, W.; Ren, L.; Liu, B.; Liang, L.; Wang, Z.; Jiang, L. L. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 2018, 10, 29338–29346.

[119]

Resnik, D.; Možek, M.; Pečar, B.; Dolžan, T.; Janež, A.; Urbančič, V.; Vrtačnik, D. Characterization of skin penetration efficacy by Au-coated Si microneedle array electrode. Sens. Actuators A Phys. 2015, 232, 299–309.

[120]

Arai, M.; Kudo, Y.; Miki, N. Polymer-based candle-shaped microneedle electrodes for electroencephalography on hairy skin. Jpn. J. Appl. Phys. 2016, 55, 06GP16.

[121]

Chen, K. Y.; Ren, L.; Chen, Z. P.; Pan, C. F.; Zhou, W.; Jiang, L. L. Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method. Sensors 2016, 16, 1533.

[122]

Hsu, L. S.; Tung, S. W.; Kuo, C. H.; Yang, Y. J. Developing barbed microtip-based electrode arrays for biopotential measurement. Sensors 2014, 14, 12370–12386.

[123]

Dong, C. W.; Lee, C. J.; Lee, D. H.; Moon, S. H.; Park, W. T. Fabrication of barbed-microneedle array for bio-signal measurement. Sens. Actuators A Phys. 2024, 367, 115040.

[124]

Yao, H. C.; Yang, W. D.; Cheng, W.; Tan, Y. J.; See, H. H.; Li, S.; Ali, H. P. A.; Lim, B. Z. H.; Liu, Z. J.; Tee, B. C. K. Near-hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc. Natl. Acad. Sci. USA 2020, 117, 25352–25359.

[125]

Yang, J. C.; Kim, J. O.; Oh, J.; Kwon, S. Y.; Sim, J. Y.; Kim, D. W.; Choi, H. B.; Park, S. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 2019, 11, 19472–19480.

[126]

Abdullah, H.; Phairatana, T.; Jeerapan, I. Tackling the challenges of developing microneedle-based electrochemical sensors. Microchim. Acta. 2022, 189, 440.

[127]

Najafi, K.; Wise, K. D.; Mochizuki, T. A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron Devices 1985, 32, 1206–1211.

[128]

Sun, W. B.; Guo, Z. L.; Yang, Z. Q.; Wu, Y. Z.; Lan, W. X.; Liao, Y. J.; Wu, X.; Liu, Y. Y. A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors. Sensors 2022, 22, 7784.

[129]

O'Mahony, C.; Pini, F.; Blake, A.; Webster, C.; O'Brien, J.; McCarthy, K. G. Microneedle-based electrodes with integrated through-silicon via for biopotential recording. Sens. Actuators A Phys. 2012, 186, 130–136.

[130]

Wang, Y.; Pei, W. H.; Guo, K.; Gui, Q.; Li, X. Q.; Chen, H. D.; Yang, J. H. Dry electrode for the measurement of biopotential signals. Sci. China Inf. Sci. 2011, 54, 2435–2442.

[131]

Wang, Y.; Guo, K.; Pei, W. H.; Gui, Q.; Li, X. Q.; Chen, H. D.; Yang, J. H. Fabrication of dry electrode for recording bio-potentials. Chin. Phys. Lett. 2011, 28, 010701.

[132]

Pei, W. H.; Zhang, H.; Wang, Y. J.; Guo, X. H.; Xing, X.; Huang, Y.; Xie, Y. X.; Yang, X. W.; Chen, H. D. Skin-potential variation insensitive dry electrodes for ECG recording. IEEE Trans. Biomed. Eng. 2017, 64, 463–470.

[133]

Li, Z.; Li, Y.; Liu, M. S.; Cui, L. Y.; Yu, Y. D. Microneedle electrode array for electrical impedance myography to characterize neurogenic myopathy. Ann. Biomed. Eng. 2016, 44, 1566–1575.

[134]

Wang, R. X.; Jiang, X. M.; Wang, W.; Li, Z. H. A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 2017, 244, 750–758.

[135]

Ji, H. W.; Wang, M. Y.; Wang, Y. T.; Wang, Z. H.; Ma, Y. J.; Liu, L. L.; Zhou, H. L.; Xu, Z.; Wang, X.; Chen, Y. et al. Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario. npj Flex. Electron. 2023, 7, 46.

[136]
Huang, D.; Wang, H. C.; Li, J. S.; Chen, Y. F.; Li, Z. H. A wireless flexible wearable biopotential acquisition system utilizing parylene based microneedle array. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 2019, pp 298–301.
[137]

Kim, H.; Lee, J.; Heo, U.; Jayashankar, D. K.; Agno, K. C.; Kim, Y.; Kim, C. Y.; Oh, Y.; Byun, S. H.; Choi, B. et al. Skin preparation-free, stretchable microneedle adhesive patches for reliable electrophysiological sensing and exoskeleton robot control. Sci. Adv. 2024, 10, eadk5260.

[138]
Hermawan, H.; Ramdan, D.; Djuansjah, J. R. P. Metals for biomedical applications. In Biomedical Engineering-from Theory to Applications. Fazel-Rezai, R., Ed.; InTech: Rijeka, 2011; pp 411–430.
[139]

Ali, S.; Abdul Rani, A. M.; Baig, Z.; Ahmed, S. W.; Hussain, G.; Subramaniam, K.; Hastuty, S.; Rao, T. V. V. L. N. Biocompatibility and corrosion resistance of metallic biomaterials. Corros. Rev. 2020, 38, 381–402.

[140]

Krieger, K. J.; Liegey, J.; Cahill, E. M.; Bertollo, N.; Lowery, M. M.; O'Cearbhaill, E. D. Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv. Mater. Technol. 2020, 5, 2000518.

[141]

Lo, L. W.; Zhao, J. Y.; Aono, K.; Li, W. L.; Wen, Z. C.; Pizzella, S.; Wang, Y.; Chakrabartty, S.; Wang, C. Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 2022, 16, 11792–11801.

[142]

Wang, Y. Y.; Jiang, L. L.; Ren, L.; Huang, P. A.; Yu, M.; Tian, L.; Li, X. X.; Xie, J.; Fang, P.; Li, G. L. Towards improving the quality of electrophysiological signal recordings by using microneedle electrode arrays. IEEE Trans. Biomed. Eng. 2021, 68, 3327–3335.

[143]
Li, J. S.; Huang, D.; Chen, Y. F.; Li, Z. H. Low-cost, metal-based micro-needle electrode array (M-MNEA): A three-dimensional intracortical neural interface. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 2019, pp 1635–1638.
[144]

Gwak, H.; Cho, S.; Song, Y. J.; Park, J. H.; Seo, S. A study on the fabrication of metal microneedle array electrodes for ECG detection based on low melting point Bi–In–Sn alloys. Sci. Rep. 2023, 13, 22931.

[145]

Ren, L.; Xu, S. J.; Gao, J.; Lin, Z.; Chen, Z. P.; Liu, B.; Liang, L.; Jiang, L. L. Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors 2018, 18, 1191.

[146]

Yuan, C.; Ji, K. J.; Zhang, Q.; Yuan, P.; Xu, Y. L.; Liu, J.; Huo, T. W.; Zhao, J. H.; Chen, J.; Song, Y. et al. Bionic design and performance of electrode for bioelectrical signal monitoring. Adv. Mater. Interfaces 2022, 9, 2200532.

[147]

Guvanasen, G. S.; Guo, L.; Aguilar, R. J.; Cheek, A. L.; Shafor, C. S.; Rajaraman, S.; Nichols, T. R.; DeWeerth, S. P. A stretchable microneedle electrode array for stimulating and measuring intramuscular electromyographic activity. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1440–1452.

[148]

Satti, A. T.; Park, J.; Park, J.; Kim, H.; Cho, S. Fabrication of parylene-coated microneedle array electrode for wearable ECG device. Sensors 2020, 20, 5183.

[149]

Kim, C.; Jang, A.; Kim, S.; Cho, S.; Lee, D.; Kim, Y. J. A wearable ECG monitoring system using microneedle electrodes for small animals. IEEE Sens. J. 2023, 23, 21873–21881.

[150]

Ren, L.; Jiang, Q.; Chen, Z. P.; Chen, K. Y.; Xu, S. J.; Gao, J.; Jiang, L. L. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sens. Actuators A Phys. 2017, 268, 38–45.

[151]

Muskovich, M.; Bettinger, C. J. Biomaterials-based electronics: Polymers and interfaces for biology and medicine. Adv. Healthc. Mater. 2012, 1, 248–266.

[152]

Chen, Z. W.; Li, H. J.; Bian, Y. J.; Wang, Z. J.; Chen, G. J.; Zhang, X. D.; Miao, Y. M.; Wen, D.; Wang, J. Q.; Wan, G. et al. Bioorthogonal catalytic patch. Nat. Nanotechnol. 2021, 16, 933–941.

[153]

Nemani, K. V.; Moodie, K. L.; Brennick, J. B.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8 biocompatibility. Mater. Sci. Eng. C 2013, 33, 4453–4459.

[154]

Wolf, M. P.; Salieb-Beugelaar, G. B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134.

[155]

Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

[156]

Elmowafy, E. M.; Tiboni, M.; Soliman, M. E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019, 49, 347–380.

[157]

Teodorescu, M.; Bercea, M.; Morariu, S. Biomaterials of Poly(vinyl alcohol) and Natural Polymers. Polym. Rev. 2018, 58, 247–287.

[158]

Atiqah, A.; Mastura, M. T.; Ali, B. A. A.; Jawaid, M.; Sapuan, S. M. A review on polyurethane and its polymer composites. Curr. Org. Synth. 2017, 14, 233–248.

[159]

Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.

[160]

Liu, Z. Y.; Wang, H.; Huang, P. A.; Huang, J. P.; Zhang, Y.; Wang, Y. Y.; Yu, M.; Chen, S. X.; Qi, D. P.; Wang, T. et al. Highly stable and stretchable conductive films through thermal-radiation-assisted metal encapsulation. Adv. Mater. 2019, 31, 1901360.

[161]

Ohm, Y.; Pan, C. F.; Ford, M. J.; Huang, X. N.; Liao, J. H.; Majidi, C. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nat. Electron. 2021, 4, 185–192.

[162]

Cordill, M. J.; Kreiml, P.; Mitterer, C. Materials engineering for flexible metallic thin film applications. Materials 2022, 15, 926.

[163]

Lozano, J.; Stoeber, B. Fabrication and characterization of a microneedle array electrode with flexible backing for biosignal monitoring. Biomed. Microdevices 2021, 23, 53.

[164]

Hou, Y.; Li, Z. Y.; Wang, Z. Y.; Yu, H. Y. Miura-ori structured flexible microneedle array electrode for biosignal recording. Microsyst. Nanoeng. 2021, 7, 53.

[165]

O’Mahony, C.; Grygoryev, K.; Ciarlone, A.; Giannoni, G.; Kenthao, A.; Galvin, P. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes. J. Micromech. Microeng. 2016, 26, 084005.

[166]

Ren, L.; Chen, Z. P.; Wang, H. J.; Dou, Z. L.; Liu, B.; Jiang, L. L. Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording. IEEE Trans. Instrum. Meas. 2020, 69, 8328–8334.

[167]

Wang, R. X.; Bai, J. X.; Zhu, X. H.; Li, Z. D.; Cheng, L. X.; Zhang, G. J.; Zhang, W. D. A PDMS-based microneedle array electrode for long-term ECG recording. Biomed. Microdevices 2022, 24, 27.

[168]

Kim, M.; Kim, T.; Kim, D. S.; Chung, W. K. Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity. Sensors 2015, 15, 16265–16280.

[169]

Xu, J. H.; Fan, Y.; Wang, M. H.; Ji, B. W.; Li, L.; Jin, M. Y.; Shang, S. Y.; Ni, C. E.; Cheng, Y. H.; Dong, L. X. et al. Microneedle array electrode with Ag-PPS modification for superior bio-signal recording on skin. IEEE Sens. J. 2023, 23, 24196–24204.

[170]

Yoshida, Y.; Kawana, T.; Hoshino, E.; Minagawa, Y.; Miki, N. Capturing human perceptual and cognitive activities via event-related potentials measured with candle-like dry microneedle electrodes. Micromachines 2020, 11, 556.

[171]

Li, J. S.; Ma, Y. D.; Huang, D.; Wang, Z. Y.; Zhang, Z. T.; Ren, Y. J.; Hong, M. Y.; Chen, Y. F.; Li, T. Y.; Shi, X. Y. et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography. Nano-Micro Lett. 2022, 14, 132.

[172]
Yoshida, Y.; Kudo, Y.; Hoshino, E.; Minagawa, Y.; Miki, N. Preparation-free measurement of event-related potential in oddball tasks from hairy parts using candle-like dry microneedle electrodes. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, USA, 2018, pp 4685–4688.
[173]
Kawana, T.; Yoshida, Y.; Kudo, Y.; Miki, N. Eeg-hat with candle-like microneedle electrode. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 2019, pp 1111–1114.
[174]

Srivastava, A. K.; Bhartia, B.; Mukhopadhyay, K.; Sharma, A. Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays. Sens. Actuators A Phys. 2015, 236, 164–172.

[175]

Rasmussen, S. C. The early history of polyaniline: Discovery and origins. Substantia 2017, 1, 99–109.

[176]

Rasmussen, S. C. Early history of polypyrrole: The first conducting organic polymer. Bull. Hist. Chem. Div. Hist. Chem. Am. Chem. Soc. 2015, 40, 45–55.

[177]

Elsenbaumer, R. L.; Jen, K. Y.; Miller, G. G.; Shacklette, L. W. Processible, environmentally stable, highly conductive forms of polythiophene. Synth. Met. 1987, 18, 277–282.

[178]

Nie, S. S.; Li, Z. F.; Yao, Y. Y.; Jin, Y. Z. Progress in synthesis of conductive polymer poly (3,4-ethylenedioxythiophene). Front. Chem. 2021, 9, 803509.

[179]

Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive polymers: Opportunities and challenges in biomedical applications. Chem. Rev. 2018, 118, 6766–6843.

[180]

Chen, Y. F.; Pei, W. H.; Chen, S. Y.; Wu, X.; Zhao, S. S.; Wang, H.; Chen, H. D. Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material for improving electrochemical performance of microneedles array-based dry electrode. Sens. Actuators B Chem. 2013, 188, 747–756.

[181]

Keirouz, A.; Mustafa, Y. L.; Turner, J. G.; Lay, E.; Jungwirth, U.; Marken, F.; Leese, H. S. Conductive polymer-coated 3D printed microneedles: Biocompatible platforms for minimally invasive biosensing interfaces. Small 2023, 19, 2206301.

[182]

Zhou, W. J. L.; Wang, Z. Y.; Xu, Q.; Liu, X. X.; Li, J. S.; Yu, H. Q.; Qiao, H.; Yang, L. R.; Chen, L. P.; Zhang, Y. et al. Wireless facial biosensing system for monitoring facial palsy with flexible microneedle electrode arrays. npj Digital Med. 2024, 7, 13.

[183]

Gencoglu, M. F.; Spurri, A.; Franko, M.; Chen, J. H.; Hensley, D. K.; Heldt, C. L.; Saha, D. Biocompatibility of soft-templated mesoporous carbons. ACS Appl. Mater. Interfaces 2014, 6, 15068–15077.

[184]

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

[185]

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

[186]

Vomero, M.; Castagnola, E.; Ciarpella, F.; Maggiolini, E.; Goshi, N.; Zucchini, E.; Carli, S.; Fadiga, L.; Kassegne, S.; Ricci, D. Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 2017, 7, 40332.

[187]

Negishi, M.; Abildgaard, M.; Laufer, I.; Nixon, T.; Constable, R. T. An EEG (electroencephalogram) recording system with carbon wire electrodes for simultaneous EEG-fMRI (functional magnetic resonance imaging) recording. J. Neurosci. Methods 2008, 173, 99–107.

[188]

Apollo, N. V.; Maturana, M. I.; Tong, W.; Nayagam, D. A. X.; Shivdasani, M. N.; Foroughi, J.; Wallace, G. G.; Prawer, S.; Ibbotson, M. R.; Garrett, D. J. Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Adv. Funct. Mater. 2015, 25, 3551–3559.

[189]

Garcia-Cortadella, R.; Masvidal-Codina, E.; De La Cruz, J. M.; Schäfer, N.; Schwesig, G.; Jeschke, C.; Martinez-Aguilar, J.; Sanchez-Vives, M. V.; Villa, R.; Illa, X. et al. Distortion-free sensing of neural activity using graphene transistors. Small 2020, 16, 1906640.

[190]

Zhang, Y.; Bai, Y. H.; Yan, B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 2010, 15, 428–435.

[191]

Smart, S. K.; Cassady, A. I.; Lu, G. Q.; Martin, D. J. The biocompatibility of carbon nanotubes. Carbon 2006, 44, 1034–1047.

[192]

Mitskene, V.; Miliuskas, R. Carbon electrodes for prolonged human EEG recording. Zh. Vyssh. Nervn. Deyat. Im. I. P. Pavlova 1976, 26, 218–219.

[193]

Opdam, H. I.; Federico, P.; Jackson, G. D.; Buchanan, J.; Abbott, D. F.; Fabinyi, G. C. A.; Syngeniotis, A.; Vosmansky, M.; Archer, J. S.; Wellard, R. M. et al. A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia 2002, 43, 779–787.

[194]

Ruffini, G.; Dunne, S.; Farrés, E.; Marco-Pallarés, J.; Ray, C.; Mendoza, E.; Silva, R.; Grau, C. A dry electrophysiology electrode using CNT arrays. Sens. Actuators A Phys. 2006, 132, 34–41.

[195]

Ng, W. C.; Seet, H. L.; Lee, K. S.; Ning, N.; Tai, W. X.; Sutedja, M.; Fuh, J. Y. H.; Li, X. P. Micro-spike EEG electrode and the vacuum-casting technology for mass production. J. Mater. Process. Technol. 2009, 209, 4434–4438.

[196]

Zips, S.; Grob, L.; Rinklin, P.; Terkan, K.; Adly, N. Y.; Weiß, L. J. K.; Mayer, D.; Wolfrum, B. Fully printed μ-needle electrode array from conductive polymer ink for bioelectronic applications. ACS Appl. Mater. Interfaces 2019, 11, 32778–32786.

[197]

Xiang, Z. L.; Yen, S. C.; Xue, N.; Sun, T.; Tsang, W. M.; Zhang, S. S.; Liao, L. D.; Thakor, N. V.; Lee, C. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Microeng. 2014, 24, 065015.

[198]
Lozano, J.; Stoeber, B. Microspike array electrode with flexible backing for biosignal monitoring. In Proceedings of 2019 IEEE SENSORS, Montreal, Canada, 2019, pp 1–4.
[199]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[200]

Liu, H. D.; Du, C. F.; Liao, L. L.; Zhang, H. J.; Zhou, H. Q.; Zhou, W. C.; Ren, T. N.; Sun, Z. C.; Lu, Y. F.; Nie, Z. T. et al. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat. Commun. 2022, 13, 3420.

[201]

Song, Y. Y.; Ren, W. J.; Zhang, Y. Q.; Liu, Q.; Peng, Z.; Wu, X. D.; Wang, Z. Q. Synergetic monitoring of both physiological pressure and epidermal biopotential based on a simplified on-skin-printed sensor modality. Small 2023, 19, 2303301.

[202]

Hao, Y. N.; Yan, Q. Y.; Liu, H. J.; He, X. Y.; Zhang, P. H.; Qin, X. H.; Wang, R. R.; Sun, J.; Wang, L. M.; Cheng, Y. A Stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare. Adv. Funct. Mater. 2023, 33, 2303881.

[203]

Yang, Y. C.; Lin, Y. T.; Yu, J. S.; Chang, H. T.; Lu, T. Y.; Huang, T. Y.; Preet, A.; Hsu, Y. J.; Wang, L. G.; Lin, T. E. MXene nanosheet-based microneedles for monitoring muscle contraction and electrostimulation treatment. ACS Appl. Nano Mater. 2021, 4, 7917–7924.

[204]

Jung, J. H.; Jin, S. G. Microneedle for transdermal drug delivery: Current trends and fabrication. J. Pharm. Investig. 2021, 51, 503–517.

[205]

Howells, O.; Blayney, G. J.; Gualeni, B.; Birchall, J. C.; Eng, P. F.; Ashraf, H.; Sharma, S.; Guy, O. J. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process. Eur. J. Pharm. Biopharm. 2022, 171, 19–28.

[206]

Eş, I.; Kafadenk, A.; Inci, F. A high-precision method for manufacturing tunable solid microneedles using dicing saw and xenon difluoride-induced dry etching. J. Mater. Process. Technol. 2024, 325, 118268.

[207]

Donnelly, V. M.; Kornblit, A. Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 2013, 31, 050825.

[208]
Bodhale, D. W.; Nisar, A.; Afzulpurkar, N. Design, fabrication and analysis of silicon microneedles for transdermal drug delivery applications. In Proceedings of the 3rd International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh City, Vietnam, 2010, pp 84–89.
[209]

Ji, J.; Tay, F. E. H.; Miao, J. M.; Iliescu, C. Microfabricated microneedle with porous tip for drug delivery. J. Micromech. Microeng. 2006, 16, 958–964.

[210]

Li, Y.; Zhang, H.; Yang, R. F.; Laffitte, Y.; Schmill, U.; Hu, W. H.; Kaddoura, M.; Blondeel, E. J. M.; Cui, B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst. Nanoeng. 2019, 5, 41.

[211]
Laermer, F.; Franssila, S.; Sainiemi, L.; Kolari, K. Chapter 16—Deep reactive ion etching. In Handbook of Silicon Based MEMS Materials and Technologies; 3rd ed. Tilli, M.; Paulasto-Krockel, M.; Petzold, M.; Theuss, H.; Motooka, T.; Lindroos, V., Eds.; Elsevier: Amsterdam, 2020; pp 417–446.
[212]

Zheng, M. J.; Sheng, T.; Yu, J. C.; Gu, Z.; Xu, C. J. Microneedle biomedical devices. Nat. Rev. Bioeng. 2024, 2, 324–342.

[213]

Maldonado, J. R.; Peckerar, M. X-ray lithography: Some history, current status and future prospects. Microelectron. Eng. 2016, 161, 87–93.

[214]

Chen, Z. P.; Ren, L.; Li, J. Y.; Yao, L. B.; Chen, Y.; Liu, B.; Jiang, L. L. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018, 65, 283–291.

[215]

Lee, K.; Lee, H. C.; Lee, D. S.; Jung, H. Drawing lithography: Three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 2010, 22, 483–486.

[216]

Li, Y. G.; Wu, W. Y.; Wang, H.; Cai, J. D.; Lü, T. Fabrication, testing and simulation of microneedle array based on X-ray lithography. Opt. Precis. Eng. 2018, 26, 1156–1164.

[217]

Lee, K.; Jung, H. Drawing lithography for microneedles: A review of fundamentals and biomedical applications. Biomaterials 2012, 33, 7309–7326.

[218]

Baek, J. Y.; Kang, K. M.; Kim, H. J.; Kim, J. H.; Lee, J. H.; Shin, G.; Jeon, J. G.; Lee, J.; Han, Y. S.; So, B. J. et al. Manufacturing process of polymeric microneedle sensors for mass production. Micromachines 2021, 12, 1364.

[219]

Anbazhagan, G.; Suseela, S. B.; Sankararajan, R. Design, analysis and fabrication of solid polymer microneedle patch using CO2 laser and polymer molding. Drug Deliv. Transl. Res. 2023, 13, 1813–1827.

[220]

Juster, H.; Van Der Aar, B.; de Brouwer, H. A review on microfabrication of thermoplastic polymer-based microneedle arrays. Polym. Eng. Sci. 2019, 59, 877–890.

[221]

Abubaker, S. S.; Zhang, Y. J. Optimization design and fabrication of polymer micro needle by hot embossing method. Int. J. Precis. Eng. Manuf. 2019, 20, 631–640.

[222]

Li, J. Y.; Zhou, Y. Y.; Yang, J. B.; Ye, R.; Gao, J.; Ren, L.; Liu, B.; Liang, L.; Jiang, L. L. Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Mater. Sci. Eng. C 2019, 96, 576–582.

[223]

Kang, T. T.; Zhuang, J.; Lin, L.; Zhao, Z. W.; Zhu, L.; Sun, J. Y.; Yang, Z. Z.; Wu, D. M. Simulation analysis of injection speed in micro injection molding of PLA cosmetic microneedle. Plastics 2022, 51, 23–28.

[224]

Gülçür, M.; Romano, J. M.; Penchev, P.; Gough, T.; Brown, E.; Dimov, S.; Whiteside, B. A cost-effective process chain for thermoplastic microneedle manufacture combining laser micro-machining and micro-injection moulding. CIRP J. Manuf. Sci. Technol. 2021, 32, 311–321.

[225]

Evens, T.; Malek, O.; Castagne, S.; Seveno, D.; van Bael, A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf. Lett. 2020, 24, 29–32.

[226]

Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.

[227]

Cho, Y. H.; Park, Y. G.; Kim, S.; Park, J. U. 3D electrodes for bioelectronics. Adv. Mater. 2021, 33, 2005805.

[228]

Choo, S.; Jin, S.; Jung, J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics 2022, 14, 766.

[229]

Jeong, J.; Park, J.; Lee, S. 3D printing fabrication process for fine control of microneedle shape. Micro Nano Syst. Lett. 2023, 11, 1.

[230]

Mckee, S.; Lutey, A.; Sciancalepore, C.; Poli, F.; Selleri, S.; Cucinotta, A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J. Photochem. Photobiol. B Biol. 2022, 229, 112424.

[231]

Rad, Z. F.; Prewett, P. D.; Davies, G. J. Parametric optimization of two-photon direct laser writing process for manufacturing polymeric microneedles. Addit. Manuf. 2022, 56, 102953.

[232]

Tsegay, F.; Elsherif, M.; Butt, H. Smart 3D printed hydrogel skin wound bandages: A review. Polymers 2022, 14, 1012.

[233]

Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A. et al. Continuous liquid interface production of 3D objects. Science 2015, 347, 1349–1352.

[234]

Lipkowitz, G.; Samuelsen, T.; Hsiao, K.; Lee, B.; Dulay, M. T.; Coates, I.; Lin, H.; Pan, W.; Toth, G.; Tate, L. et al. Injection continuous liquid interface production of 3D objects. Sci. Adv. 2022, 8, eabq3917.

[235]

Wu, L. B.; Park, J.; Kamaki, Y.; Kim, B. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsyst. Nanoeng. 2021, 7, 58.

[236]

Khosraviboroujeni, A.; Mirdamadian, S. Z.; Minaiyan, M.; Taheri, A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv. Transl. Res. 2022, 12, 1195–1208.

[237]

Choi, C. K.; Lee, K. J.; Youn, Y. N.; Jang, E. H.; Kim, W.; Min, B. K.; Ryu, W. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur. J. Pharm. Biopharm. 2013, 83, 224–233.

[238]

Lee, J.; Park, S. H.; Seo, I. H.; Lee, K. J.; Ryu, W. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur. J. Pharm. Biopharm. 2015, 94, 11–19.

[239]

Lee, K.; Park, S. H.; Lee, J.; Ryu, S.; Joo, C.; Ryu, W. Three-step thermal drawing for rapid prototyping of highly customizable microneedles for vascular tissue insertion. Pharmaceutics 2019, 11, 100.

[240]

Goyal, K.; Borkholder, D. A.; Day, S. W. Dependence of skin-electrode contact impedance on material and skin hydration. Sensors 2022, 22, 8510.

[241]

Zhou, W.; Song, R.; Pan, X. L.; Peng, Y. J.; Qi, X. Y.; Peng, J. H.; Hui, K. S.; Hui, K. N. Fabrication and impedance measurement of novel metal dry bioelectrode. Sens. Actuators A Phys. 2013, 201, 127–133.

[242]

Yang, L. T.; Gan, L.; Zhang, Z. G.; Zhang, Z. L.; Yang, H.; Zhang, Y.; Wu, J. L. Insight into the contact impedance between the electrode and the skin surface for electrophysical recordings. ACS Omega 2022, 7, 13906–13912.

[243]

Liu, J. T.; Liu, X. Y.; He, E. H.; Gao, F.; Li, Z. Y.; Xiao, G. H.; Xu, S. W.; Cai, X. X. A novel dry-contact electrode for measuring electroencephalography signals. Sens. Actuators A Phys. 2019, 294, 73–80.

[244]

Leleux, P.; Johnson, C.; Strakosas, X.; Rivnay, J.; Hervé, T.; Owens, R. M.; Malliaras, G. G. Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv. Healthc. Mater. 2014, 3, 1377–1380.

[245]

Murphy, B. B.; Mulcahey, P. J.; Driscoll, N.; Richardson, A. G.; Robbins, G. T.; Apollo, N. V.; Maleski, K.; Lucas, T. H.; Gogotsi, Y.; Dillingham, T. et al. A gel-free Ti3C2Tx-based electrode array for high-density, high-resolution surface electromyography. Adv. Mater. Technol. 2020, 5, 2000325.

[246]

Stauffer, F.; Thielen, M.; Sauter, C.; Chardonnens, S.; Bachmann, S.; Tybrandt, K.; Peters, C.; Hierold, C.; Vörös, J. Skin conformal polymer electrodes for clinical ECG and EEG recordings. Adv. Healthc. Mater. 2018, 7, 1700994.

[247]
Simić, M. Realization of digital LCR meter. In Proceedings of 2014 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 2014, pp 769–773.
[248]

Zhang, C. C.; Li, M. J.; Xuan, X. W.; Zhou, B. Z.; Li, P. H.; Li, H. J. Nitrogen-doped multilayer graphene microtubes for high-density recording of occipital EEG signals. Adv. Mater. Technol. 2023, 8, 2201734.

[249]

Roberts, T.; De Graaf, J. B.; Nicol, C.; Hervé, T.; Fiocchi, M.; Sanaur, S. Flexible inkjet-printed multielectrode arrays for neuromuscular cartography. Adv. Healthc. Mater. 2016, 5, 1462–1470.

[250]
Theerthagiri, P. Chapter 1 - Genomics and neural networks in electrical load forecasting with computational intelligence. In Data Science for Genomics; Tyagi, A. K.; Abraham, A., Eds.; Academic Press: London, 2023; pp 1–10.
[251]

Roubert Martinez, S.; Le Floch, P.; Liu, J.; Howe, R. D. Pure conducting polymer hydrogels increase signal-to-noise of cutaneous electrodes by lowering skin interface impedance. Adv. Healthc. Mater. 2023, 12, 2202661.

[252]

Lundheim, L. On shannon and" shannon's formula". Telektronikk 2002, 98, 20–29.

[253]
Singh, O. P.; Bocchino, A.; Guillerm, T.; O'Mahony, C. Design, fabrication and performance assessment of flexible, microneedle-based electrodes For ECG signal monitoring. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow, UK, 2022, pp 846–849.
[254]

Kai, H.; Kumatani, A. A porous microneedle electrochemical glucose sensor fabricated on a scaffold of a polymer monolith. J. Phys. Energy 2021, 3, 024006.

[255]

Zhang, B. L.; Yang, Y.; Zhao, Z. Q.; Guo, X. D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 2020, 358, 136917.

[256]

Sharma, S.; Huang, Z. Y.; Rogers, M.; Boutelle, M.; Cass, A. E. G. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bioanal. Chem. 2016, 408, 8427–8435.

[257]

Yang, Y.; Chen, B. Z.; Zhang, X. P.; Zheng, H.; Li, Z.; Zhang, C. Y.; Guo, X. D. Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 2022, 14, 31645–31654.

[258]

Jin, Q. C.; Chen, H. J.; Li, X. L.; Huang, X. S.; Wu, Q. N.; He, G.; Hang, T.; Yang, C. D.; Jiang, Z.; Li, E. L. et al. Reduced graphene oxide nanohybrid-assembled microneedles as mini-invasive electrodes for real-time transdermal biosensing. Small 2019, 15, 1804298.

[259]

Hegarty, C.; McKillop, S.; McGlynn, R. J.; Smith, R. B.; Mathur, A.; Davis, J. Microneedle array sensors based on carbon nanoparticle composites: Interfacial chemistry and electroanalytical properties. J. Mater. Sci. 2019, 54, 10705–10714.

[260]

Chatterjee, S.; Saxena, M.; Padmanabhan, D.; Jayachandra, M.; Pandya, H. J. Futuristic medical implants using bioresorbable materials and devices. Biosens. Bioelectron. 2019, 142, 111489.

[261]

Bhattacharjee, S.; de Haan, L. H. J.; Evers, N. M.; Jiang, X.; Marcelis, A. T. M.; Zuilhof, H.; Rietjens, I. M. C. M.; Alink, G. M. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol. 2010, 7, 25.

[262]

Al-Shalawi, F. D.; Mohamed Ariff, A. H.; Jung, D. W.; Mohd Ariffin, M. K. A.; Seng Kim, C. L.; Brabazon, D.; Al-Osaimi, M. O. Biomaterials as implants in the orthopedic field for regenerative medicine: Metal versus synthetic polymers. Polymers 2023, 15, 2601.

[263]

Kligman, S.; Ren, Z.; Chung, C. H.; Perillo, M. A.; Chang, Y. C.; Koo, H.; Zheng, Z.; Li, C. S. The impact of dental implant surface modifications on osseointegration and biofilm formation. J. Clin. Med. 2021, 10, 1641.

[264]

Alcantar, N. A.; Aydil, E. S.; Israelachvili, J. N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000, 51, 343–351.

[265]

Zheng, X. X.; Wang, Y. J.; Lan, Z. Y.; Lyu, Y. N.; Feng, G. K.; Zhang, Y. P.; Tagusari, S.; Kislauskis, E.; Robich, M. P.; McCarthy, S. et al. Improved biocompatibility of poly (lactic-co-glycolic acid) and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications. J. Biomed. Nanotechnol. 2014, 10, 900–910.

[266]
Marois, Y.; Guidoin, R. Biocompatibility of polyurethanes. In Madame Curie Bioscience Database. Bull, L., Ed.; Landes Bioscience: Austin, 2013.
[267]

Alexandre, N.; Ribeiro, J.; Gärtner, A.; Pereira, T.; Amorim, I.; Fragoso, J.; Lopes, A.; Fernandes, J.; Costa, E.; Santos-Silva, A. et al. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—In vitro and In vivo studies. J. Biomed. Mater. Res. Part A 2014, 102, 4262–4275.

[268]

Masmur, I.; Perangin-Angin, S.; Sembiring, H.; Tarigan, A. H.; Ginting, J.; Barus, D. A.; Ginting, M. Effect of different composition of polyethylene oxide-polypyrrole (PEO-PPy) nanofiber mats on antibacterial and biocompatibility properties. ChemistrySelect 2022, 7, e202201346.

[269]

Amerian, M.; Amerian, M.; Sameti, M.; Seyedjafari, E. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. J. Biomed. Mater. Res. Part A 2019, 107, 2806–2813.

[270]

Sultana, N.; Chang, H. C.; Jefferson, S.; Daniels, D. E. Application of conductive poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate)(PEDOT:PSS) polymers in potential biomedical engineering. J. Pharm. Investig. 2020, 50, 437–444.

[271]

Peterson, R. C.; Wolffsohn, J. S.; Nick, J.; Winterton, L.; Lally, J. Clinical performance of daily disposable soft contact lenses using sustained release technology. Cont. Lens Anterior Eye 2006, 29, 127–134.

[272]

Lü, J. M.; Wang, X. W.; Marin-Muller, C.; Wang, H.; Lin, P. H.; Yao, Q. Z.; Chen, C. Y. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 2009, 9, 325–341.

[273]

Zare, M.; Ghomi, E. R.; Venkatraman, P. D.; Ramakrishna, S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021, 138, 50969.

[274]

Khan, S.; Ul-Islam, M.; Ullah, M. W.; Israr, M.; Jang, J. H.; Park, J. K. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int. J. Biol. Macromol. 2018, 107, 865–873.

[275]

Ren, X. N.; Yang, M.; Yang, T. T.; Xu, C.; Ye, Y. Q.; Wu, X. N.; Zheng, X.; Wang, B.; Wan, Y.; Luo, Z. Q. Highly conductive PPY-PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl. Mater. Interfaces 2021, 13, 25374–25382.

[276]

Yang, T. T.; Yang, M.; Xu, C.; Yang, K.; Su, Y. M.; Ye, Y. Q.; Dou, L. Y.; Yang, Q.; Ke, W. B.; Wang, B. et al. PEDOT:PSS hydrogels with high conductivity and biocompatibility for in situ cell sensing. J. Mater. Chem. B 2023, 11, 3226–3235.

[277]

Lu, F.; Wang, C. S.; Zhao, R. J.; Du, L. D.; Fang, Z.; Guo, X. H.; Zhao, Z. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors 2018, 8, 31.

[278]

Yan, X. X.; Liu, J. Q.; Wang, L. F.; Yang, C. S.; Li, Y. G. Silicon-based microneedle array electrodes for biopotential measurement. Key Eng. Mater. 2011, 483, 443–446.

[279]
Abu-Saude, M.; Consul-Pacareu, S.; Morshed, B. I. Feasibility of patterned vertical CNT for dry electrode sensing of physiological parameters. In Proceedings of 2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, San Diego, USA, 2015, pp 1–4.
[280]

Peng, H. L.; Liu, J. Q.; Tian, H. C.; Xu, B.; Dong, Y. Z.; Yang, B.; Chen, X.; Yang, C. S. Flexible dry electrode based on carbon nanotube/polymer hybrid micropillars for biopotential recording. Sens. Actuators A Phys. 2015, 235, 48–56.

[281]
Abu-Saude, M.; Morshed, B. I. Polypyrrole (PPy) conductive polymer coating of dry patterned vertical CNT (pvCNT) electrode to improve mechanical stability. In Proceedings of 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, USA, 2016, pp 84–87.
Nano Research
Article number: 94907377
Cite this article:
Li X, Zhao T. Microneedle electrodes for collecting bioelectrical signals: From a materials science perspective. Nano Research, 2025, 18(5): 94907377. https://doi.org/10.26599/NR.2025.94907377
Topics:

307

Views

47

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 December 2024
Revised: 22 February 2025
Accepted: 17 March 2025
Published: 30 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return