AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nitrogen-free charge-asymmetric indium cluster catalyst for efficient CO2 electroreduction to formate

Xi Li1Yuanting Lei2Yan Gao3( )Huishan Shang2( )Fan Yang1( )Yongfeng Li1( )
College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
AnHui Provincial Engineering Research Center of Silicon-Based Materials, Bengbu University, Bengbu 233030, China
Show Author Information

Graphical Abstract

We discover that an indium clusters with charge-asymmetry structure anchored on nitrogenfree carbon matrix derived from transformation of metal-organic frameworks can serve as a electrochemical CO2 reduction reaction (CO2RR) catalyst to produce formate with high efficiency.

Abstract

Electrochemical CO2 reduction reaction (CO2RR) into high-value chemicals and fuels is recognized as a promising strategy for mitigating energy and environmental challenges. However, this process frequently faces limitations due to inadequate selectivity towards specific products and insufficient electrochemical stability. Main group indium (In) catalysts have emerged as promising materials for CO2RR to highly valued formate. In this study, we constructed an indium cluster material with charge-asymmetric atomic structure anchored on nitrogen-free carbon nanoframeworks (designated as In Clu/C), which exhibits exceptional efficiency as a CO2RR catalyst for formate production. Notably, the In Clu/C achieves a remarkable formate Faradaic efficiency of 98.7% at −0.70 V. Furthermore, in-situ X-ray absorption spectroscopy (XAS) measurements reveal that the superior catalytic performance can be attributed to partially positively charged Inδ+ (0 < δ < 3) active sites. This discovery may provide new insights into the precise synthesis of metal cluster catalysts for environmental and energy applications.

Electronic Supplementary Material

Download File(s)
7370_ESM.pdf (1.7 MB)

References

[1]

Chu, S.; Majumdar. A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Chu, S.; Cui, Y.; Liu. N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[3]

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic. N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

[4]

Zhan, Z. H.; Sun, Z. Y.; Wei, Z. H.; Li, Y. Q.; Chen, W. X.; Li, S. H.; Pang, S. P. Atomic interface regulation of rare-marth metal single atom catalysts for energy conversion. Nano Res. 2024, 17, 3493–3515.

[5]

Deng, Z. W.; Liu, Y.; Lin, J.; Chen, W. X. Rational design and energy catalytic application of high-loading single-atom catalysts. Rare Met. 2024, 43, 4844–4866.

[6]

Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

[7]

Gu, H. L.; Wu, J.; Zhang, L. M. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763.

[8]

Li, Q.; Wang, Y. C.; Zeng, J.; Zhao, X.; Chen, C.; Wu, Q. M.; Chen, L. M.; Chen, Z. Y.; Lei, Y. P. Bimetallic chalcogenides for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 3442–3453.

[9]

Zhang, W.; Jia, B. H.; Liu, X.; Ma, T. Y. Surface and interface chemistry in metal-free electrocatalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 5–34.

[10]

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

[11]

Zhou, X. L.; Liu, H.; Xia, B.; Ostrikov, K. Zheng, Y. ; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

[12]

Pei, J. J.; Yang, L.; Lin, J.; Zhang, Z. D.; Sun, Z. Y.; Wang, D. S.; Chen, W. X. Integrating host design and tailored electronic effects of yolk–shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2024, 63, e202316123.

[13]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, 9120015.

[14]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

[15]

Sun, Z. Y.; Li, C.; Wei, Z. H.; Zhang, F.; Deng, Z. W.; Zhou, K. J.; Wang, Y.; Guo, J. H.; Yang, J. Y.; Xiang, Z. Q. et al. Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 2024, 36, 2404665.

[16]

Sun, Z. Y.; Luo, X.; Shang, H. S.; Wang, Z. D.; Zhang, L.; Chen, W. X. Atomic printing strategy achieves precise anchoring of dual-copper atoms on C2N structure for efficient CO2 reduction to ethylene. Angew. Chem., Int. Ed. 2024, 63, e202405778.

[17]

Yang, J. R.; Li, W. H.; Wang, D. S.; Li. Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

[18]

Li, W. H.; Yang, J. R.; Wang. D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. 2022, 134, e202213318.

[19]

Wang, S. W.; Gao, Q.; Xu, C.; Jiang, S.; Zhang, M. Y.; Yin, X. J.; Peng, H. Q.; Liu, B.; Song, Y. F. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Res. 2024, 17, 1242–1250.

[20]

Zhang, W. H.; Ding, S. J.; Zhang, Q. S.; Yi, H.; Liu, Z. X.; Shi, M. L.; Guan, R. D.; Yue, L. Rare earth element-doped porous In2O3 nanosheets for enhanced gas-sensing performance. Rare Met. 2021, 40, 1662–1668.

[21]

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

[22]

Jiang, Z. L.; Wang, T.; Pei, J. P.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

[23]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[24]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li. Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[25]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li. Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[26]

Li, L.; Zhang, Z. C. Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022, 41, 3943–3945.

[27]

Yan, J. X.; Ye, F. H.; Dai, Q. B.; Ma, X. Y.; Fang, Z. H.; Dai, L. M.; Hu, C. G. Recent progress in carbon-based electrochemical catalysts: From structure design to potential applications. Nano Res. Energy 2023, 2, e9120047.

[28]

Liu, J. B.; Gong, H. S.; Ye, G. L.; Fei, H. L. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022, 41, 1703–1726.

[29]

Liu, K. Y.; Chen, P. W.; Sun, Z. Y.; Chen, W. X.; Zhou, Q.; Gao, X. The atomic interface effect of single atom catalysts for electrochemical hydrogen peroxide production. Nano Res. 2023, 16, 10724–10741.

[30]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[31]

Geng, H. L.; Wei, Z. H.; Li, Y. Q.; Deng, Z. W.; Li, L.; Wang, Y.; Zhai, H. Z.; Li, S. H.; Chen, W. X. Controlling the electron spin states of single-atom catalysts for enhanced electrocatalytic performances. JES 2024, 1, 3630.

[32]

Iqbal, M. S.; Yao, Z. B.; Ruan, Y. K.; Iftikhar, R.; Hao, L. D.; Robertson, A. W.; Imran, S. M.; Sun, Z. Y. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023, 42, 1075–1097.

[33]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, 9120017.

[34]

Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon 2018, 132, 104–140.

[35]

Mamtani, K.; Jain, D.; Zemlyanov, D.; Celik, G.; Luthman, J.; Renkes, G.; Co, A. C.; Ozkan, U. S. Probing the oxygen reduction reaction active sites over nitrogen-doped carbon nanostructures (CNx) in acidic media using phosphate anion. ACS Catal. 2016, 6, 7249–7259.

[36]

Wang, S. C.; Zhang, M. Y.; Mu, X. Q.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Atomically dispersed multi-site catalysts: Bifunctional oxygen electrocatalysts boost flexible zinc-air battery performance. Energy Environ. Sci. 2024, 17, 4847–4870.

[37]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched RuxFe3–xO4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[38]

Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu–Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.

[39]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[40]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-Ox catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[41]

Chen, S. H.; Zheng, X. B.; Zhu, P.; Li, Y. P.; Zhuang, Z. C.; Wu, H. J.; Zhu, J. X.; Xiao, C. H.; Chen, M. Z.; Wang, P. S. et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem., Int. Ed. 2024, 63, e202411591.

[42]

Gu, X. Y.; Yu, M.; Chen, S. Q.; Mu, X. Q.; Xu, Z. H.; Shao, W. Q.; Zhu, J. J.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 2022, 102, 107656.

[43]

Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 1997, 30, 1–152.

[44]

Chen, P. Z.; Zhang, N.; Wang, S. B.; Zhou, T. P.; Tong, Y.; Ao, C. C.; Yan, W. S.; Zhang, L. D.; Chu, W. S.; Wu, C. Z. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635–6640.

[45]

Li, Y.; Wang, X.; Wang, Y.; Shi, Z. P.; Yang, Y. Q.; Zhao, T.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. The decisive role of adsorbed OH* in low-potential CO electro-oxidation on single-atom catalytic sites. Carbon Energy 2023, 5, e310.

[46]

Liu, M. H.; Liu, S. J.; Xu, Q.; Miao, Q. Y.; Yang, S.; Hanson, S.; Chen, G. Z.; He, J.; Jiang, Z.; Zeng, G. F. Dual atomic catalysts from COF-derived carbon for CO2RR by suppressing HER through synergistic effects. Carbon Energy 2023, 5, e300.

[47]

Gates, B. C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev. 1995, 95, 511–522.

[48]

Li, X. N.; Yang, X. F.; Zhang, J. M.; Huang, Y. Q.; Liu. B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521–2531.

[49]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[50]

Gandionco, K. A.; Kim, J.; Bekaert, L.; Hubin, A.; Lim, J. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon Energy 2024, 6, e410.

[51]

Fang, L. Z.; Seifert, S.; Winans, R. E.; Li, T. Operando XAS/SAXS: Guiding design of single-atom and subnanocluster catalysts. Small Methods 2021, 5, 2001194.

Nano Research
Article number: 94907370
Cite this article:
Li X, Lei Y, Gao Y, et al. Nitrogen-free charge-asymmetric indium cluster catalyst for efficient CO2 electroreduction to formate. Nano Research, 2025, 18(5): 94907370. https://doi.org/10.26599/NR.2025.94907370
Topics:

423

Views

59

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 27 January 2025
Revised: 05 March 2025
Accepted: 14 March 2025
Published: 30 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return