AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (37.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Layer-dependent modulation of optical anisotropy in MoS2/ReS2 van der Waals heterostructures

Xian Zhang1,2Xing Xie1,2Shaofei Li1Junying Chen1,2Jun He1Zongwen Liu3,4Jian-Tao Wang5,6,7Yanping Liu1,2,8 ( )
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Shenzhen Research Institute of Central South University, Shenzhen 518000, China
Show Author Information

Graphical Abstract

This work investigates the layer-dependent modulation of optical anisotropy in MoS2/ReS2 van der Waals heterostructures, revealing tunable excitonic polarization and robust anisotropic behavior influenced by ReS2 thickness, lattice reconstruction, and external magnetic fields,with potential implications for advanced optical device design.

Abstract

van der Waals (vdW) heterostructures, composed of stacked materials with varying symmetries, offer exceptional opportunities in electronics and optics due to their unique anisotropic properties. However, the influence of low-symmetry layer thickness on modulating anisotropic optical responses remains elusive. Here, we fabricate heterostructures by combining monolayer (1L) MoS2 with ReS2 layers of varying thickness, uncovering tunable optical anisotropy. The degree of excitonic line polarization increases with ReS2 thickness, reaching saturation due to lattice relaxation at the heterostructure interface. Density functional (DFT) theory calculations confirm that the lattice reconstruction of MoS2 is influenced by the number of low-symmetry ReS2 layers, providing direct evidence of interlayer coupling effects. Remarkably, we observe anisotropy ratios as high as 2.01 and 2.12 for charged and neutral excitons, respectively, underscoring robust anisotropic optical behavior. Additionally, we demonstrate that external magnetic fields can effectively modulate this anisotropy, whereas temperature variations have a negligible impact on line polarization. These findings advance our understanding of the interplay between thickness, symmetry, and external stimuli in heterostructures, paving the way for designing advanced optical devices with precise polarization control.

Electronic Supplementary Material

Download File(s)
7365_ESM.pdf (4 MB)

References

[1]

Li, L.; Han, W.; Pi, L. A.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

[2]

Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

[3]

Sinha, S. S.; Yadgarov, L.; Aliev, S. B.; Feldman, Y.; Pinkas, I.; Chithaiah, P.; Ghosh, S.; Idelevich, A.; Zak, A.; Tenne, R. MoS2 and WS2 nanotubes: Synthesis, structural elucidation, and optical characterization. J. Phys. Chem. C 2021, 125, 6324–6340.

[4]

Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

[5]

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709–713.

[6]

Kim, H. C.; Kim, H.; Lee, J. U.; Lee, H. B.; Choi, D. H.; Lee, J. H.; Lee, W. H.; Jhang, S. H.; Park, B. H.; Cheong, H. et al. Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 2015, 9, 6854–6860.

[7]

Wu, D.; Mo, Z. H.; Li, X.; Ren, X. Y.; Shi, Z. F.; Li, X. J.; Zhang, L.; Yu, X. C.; Peng, H. X.; Zeng, L. H. et al. Integrated mid-infrared sensing and ultrashort lasers based on wafer-level Td-WTe2 weyl semimetal. Appl. Phys. Rev. 2024, 11, 041401.

[8]

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

[9]

Liang, J.; Yang, D. Y.; Wu, J. D.; Dadap, J. I.; Watanabe, K.; Taniguchi, T.; Ye, Z. L. Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. X 2022, 12, 041005.

[10]

Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

[11]

Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in Trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

[12]

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

[13]

Shanmugam, V.; Mensah, R. A.; Babu, K.; Gawusu, S.; Chanda, A.; Tu, Y. M.; Neisiany, R. E.; Försth, M.; Sas, G.; Das, O. A review of the synthesis, properties, and applications of 2D materials. Part. Part. Syst. Charact. 2022, 39, 2200031.

[14]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[15]

Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

[16]

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

[17]

Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in‐plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

[18]

Chenet, D. A.; Aslan, B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono-and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

[19]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[20]

Zhang, X. Y.; Zou, J. R.; Zhang, X. K.; Wei, A. X.; Luo, N. Q.; Liu, Z.; Xu, J. X.; Zhao, Y. Controllable growth of 2D ReS2 flakes and their surface Raman enhancement effects. J. Alloys Compd. 2023, 963, 171207.

[21]

Tian, H.; Tice, J.; Fei, R. X.; Tran, V.; Yan, X. D.; Yang, L.; Wang, H. Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today 2016, 11, 763–777.

[22]

Li, X.; Liu, H. Y.; Ke, C. M.; Tang, W. Q.; Liu, M. Y.; Huang, F. H.; Wu, Y. P.; Wu, Z. M.; Kang, J. Y. Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev. 2021, 15, 2100322.

[23]

Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

[24]

Chen, J. Y.; Xie, X.; Oyang, X. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Giant optical anisotropy induced by magnetic order in FePS3/WSe2 heterostructures. Small 2024, 20, 2404346.

[25]

Zhu, W. K.; Wei, X.; Yan, F. G.; Lv, Q. S.; Hu, C.; Wang, K. Y. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond. 2019, 40, 092001.

[26]

Li, X. R.; Xie, X.; Wu, B.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Observation of robust anisotropy in WS2/BP heterostructures. Nano Res. 2024, 17, 6749–6756.

[27]

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

[28]

Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D. Y.; Onga, M.; Nakagawa, Y.; Watanabe, K. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 2021, 372, 68–72.

[29]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Anisotropic optical characteristics of WS2/ReS2 heterostructures with broken rotational symmetry. Appl. Phys. Lett. 2023, 123, 222101.

[30]

Xie, X.; Wu, B.; Ding, J. N.; Li, S. F.; Chen, J. Y.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Emergence of optical anisotropy in moiré superlattice via heterointerface engineering. Nano Lett. 2024, 24, 9186–9194.

[31]

Zhu, M. L.; Liu, K. X.; Wu, D.; Jiang, Y. R.; Li, X.; Lin, P.; Shi, Z. F.; Li, X. J.; Ding, R.; Tang, Y. L. et al. In-situ fabrication of on-chip 1T’-MoTe2/Ge Schottky junction photodetector for self-powered broadband infrared imaging and position sensing. Nano Res. 2024, 17, 5587–5594.

[32]

Li, Z. Y.; Huang, J. W.; Zhou, L.; Xu, Z. A.; Qin, F.; Chen, P.; Sun, X. J.; Liu, G.; Sui, C.; Qiu, C. Y. et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Commun. 2023, 14, 5568.

[33]

Wadhwa, R.; Agrawal, A. V.; Kushavah, D.; Mushtaq, A.; Pal, S. K.; Kumar, M. Investigation of charge transport and band alignment of MoS2–ReS2 heterointerface for high performance and self-driven broadband photodetection. Appl. Surf. Sci. 2021, 569, 150949.

[34]

Wang, Y. W.; Zhou, L.; Zhong, M. Z.; Liu, Y. P.; Xiao, S.; He, J. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res. 2022, 15, 3675–3694.

[35]

Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A.; Liu, Y. P. Moiré enhanced potentials in twisted transition metal dichalcogenide trilayers homostructures. Small 2023, 19, 2207988.

[36]

Cao, X. L.; Liu, K. X.; Wu, D.; Zhou, Z. M.; Lin, P.; Zhuo, R. R.; Shi, Z. F.; Hu, X.; Zeng, L. H.; Li, X. J. Highly sensitive full solar-blind ultraviolet spectrum detection and imaging based on PdSe2/Ga2O3 vdW heterojunction. Opt. Lett. 2024, 49, 5324–5327.

[37]

Kadantsev, E. S.; Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 2012, 152, 909–913.

[38]

Choi, J. H.; Jhi, S. H. Origin of distorted 1T-phase ReS2: First-principles study. J. Phys.: Condens. Matter 2018, 30, 105403.

[39]

Tornatzky, H.; Gillen, R.; Uchiyama, H.; Maultzsch, J. Phonon dispersion in MoS2. Phys. Rev. B 2019, 99, 144309.

[40]

Nagler, P.; Plechinger, G.; Schüller, C.; Korn, T. Observation of anisotropic interlayer Raman modes in few-layer ReS2. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 185–189.

[41]

Sheremetyeva, N.; Tristant, D.; Yoshimura, A.; Gray, J.; Liang, L. B.; Meunier, V. First-principles study of the thermodynamic and vibrational properties of ReS2 under pressure. Phys. Rev. B 2019, 100, 214101.

[42]

Liang, L. B.; Zhang, J.; Sumpter, B. G.; Tan, Q. H.; Tan, P. H.; Meunier, V. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano 2017, 11, 11777–11802.

[43]

Yu, J.; Li, Z. L.; Jiang, J.; Liu, W. J.; Guo, S.; Liang, Y.; Zhong, B.; Wang, Y. Y.; Zou, M. Q. Anisotropy study of phonon modes in ReS2 flakes by polarized temperature-dependent Raman spectroscopy. Chem. Phys. Lett. 2023, 810, 140132.

[44]

Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

[45]

He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

[46]

Halbertal, D.; Klebl, L.; Hsieh, V.; Cook, J.; Carr, S.; Bian, G.; Dean, C. R.; Kennes, D. M.; Basov, D. N. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. X 2023, 13, 011026.

[47]

Li, W.; Brumme, T.; Heine, T. Relaxation effects in transition metal dichalcogenide bilayer heterostructures. npj 2D Mater. Appl. 2024, 8, 43.

[48]

Hu, B. Q.; Xie, X.; Ouyang, X. Y.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures. Nano Res. 2024, 17, 8585–8591.

[49]

Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; He, J.; Liu, Z. W.; Wang, J. T.; Duan, J. A. et al. Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide. Nanoscale 2023, 15, 12388–12397.

[50]

Pershan, P. S.; Van Der Ziel, J. P.; Malmstrom, L. D. Theoretical discussion of the inverse faraday effect, Raman scattering, and related phenomena. Phys. Rev. 1966, 143, 574–583.

[51]

Hogan, C. L. The ferromagnetic faraday effect at microwave frequencies and its applications. Rev. Mod. Phys. 1953, 25, 253–262.

[52]

Carey, B.; Wessling, N. K.; Steeger, P.; Schmidt, R.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; Arora, A. Giant faraday rotation in atomically thin semiconductors. Nat. Commun. 2024, 15, 3082.

[53]

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

[54]

Mitioglu, A.; Anghel, S.; Ballottin, M. V.; Sushkevich, K.; Kulyuk, L.; Christianen, P. C. M. Anomalous rotation of the linearly polarized emission of bright excitons in strained WSe2 monolayers under high magnetic fields. Phys. Rev. B 2019, 99, 155414.

[55]

Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 2016, 117, 187401.

[56]

Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diamond Relat. Mater. 2017, 74, 119–124.

[57]

Bellus, M. Z.; Li, M.; Lane, S. D.; Ceballos, F.; Cui, Q. N.; Zeng, X. C.; Zhao, H. Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2017, 2, 31–36.

[58]

Zomer, P. J.; Guimarães, M. H. D.; Brant, J. C.; Tombros, N.; Van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 2014, 105, 013101.

[59]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[60]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[61]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[62]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

Nano Research
Article number: 94907365
Cite this article:
Zhang X, Xie X, Li S, et al. Layer-dependent modulation of optical anisotropy in MoS2/ReS2 van der Waals heterostructures. Nano Research, 2025, 18(5): 94907365. https://doi.org/10.26599/NR.2025.94907365
Topics:

391

Views

129

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 18 December 2024
Revised: 06 February 2025
Accepted: 12 March 2025
Published: 18 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return