AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hyaluronidase nanogel-armed CAR-T cell for synergistically reducing tumor extracellular matrix and improving efficacy against solid tumors

Hanqin Zhao1,2Yuxi Gao1,5Sheng Ma1,3Xinghui Si1,3Jiaxuan Li6Yibo Qi1,2Zichao Huang1,2Yu Zhang1,2Tianmeng Sun6Lingyu Li4 ( )Wantong Song1,2,3 ( )Xuesi Chen1,2,3 ( )
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Changchun 130022, China
Cancer Center, The First Hospital, Jilin University, Changchun 130021, China
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130021, China
Show Author Information

Graphical Abstract

The work reports intelligent-responsive nanogels modified on the surface of Chimeric antigen receptor T (CAR-T) cells for enhanced efficacy of CAR-T cell therapy against solid tumors.

Abstract

The application of chimeric antigen receptor T (CAR-T) cell therapy against solid tumors is often hindered by the dense and rigid tumor extracellular matrix (ECM). While combining CAR-T with hyaluronidase (HAase) to reduce ECM is apparent, the efficacy is limited because of low accumulation and penetration efficiency of HAase inside the tumor tissue. Herein, we report a stimuli-responsive HAase-loaded nanogels (H-NGs) which are conjugated on the surface of CAR-T cells for synergistically improving HAase accumulation, ECM degradation and CAR-T cell efficacy. The conjugation of H-NGs on the T cell surface was achieved through metabolic oligosaccharide engineering (MOE) in a semi-quantitatively controlled manner. Intravenous injection of H-NGs armed CAR-T cells resulted in more ECM degradation than co-injection of CAR-T cells and free H-NGs, leading to an 83.2% tumor inhibition rate and relieving tumor suppressive microenvironment in the Raji solid tumor model. Proteomic analysis of the harvested tumor tissues indicated that the combining of H-NGs and CAR-T cell collaboratively reduces cell adhesion and enhanced leukocyte transendothelial migration. Overall, this work simultaneously boosts the efficacy of hyaluronidase and CAR-T cells in combating solid tumor, which has broad application potential in cancer combination therapy.

Electronic Supplementary Material

Download File(s)
7359_ESM.pdf (1.8 MB)

References

[1]

Sterner, R. C.; Sterner, R. M. CAR–t cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69

[2]

Rafiq, S.; Hackett, C. S.; Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167.

[3]

Ying, Z. T.; Huang, X. F.; Xiang, X. Y.; Liu, Y. L.; Kang, X.; Song, Y. Q.; Guo, X. K.; Liu, H. Z.; Ding, N.; Zhang, T. T. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 2019, 25, 947–953.

[4]

Brown, C. E.; Mackall, C. L. CAR T cell therapy: Inroads to response and resistance. Nat. Rev. Immunol. 2019, 19, 73–74.

[5]

Jin, C. A.; Ma, J.; Ramachandran, M.; Yu, D.; Essand, M. CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nat. Biomed. Eng. 2022, 6, 830–841.

[6]

Herzog, B. H.; Baer, J. M.; Borcherding, N.; Kingston, N. L.; Belle, J. I.; Knolhoff, B. L.; Hogg, G. D.; Ahmad, F.; Kang, L. I.; Petrone, J. et al. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer. Sci. Transl. Med. 2023, 15, eadh8005.

[7]

Sutherland, T. E.; Dyer, D. P.; Allen, J. E. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023, 379, eabp8964.

[8]

Stylianopoulos, T.; Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637.

[9]

Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D. G.; Egeblad, M.; Evans, R. M.; Fearon, D.; Greten, F. R.; Hingorani, S. R.; Hunter, T. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186.

[10]

Chattopadhyay, S.; Liao, Y. P.; Wang, X.; Nel, A. E. Use of stromal intervention and exogenous neoantigen vaccination to boost pancreatic cancer chemo-immunotherapy by nanocarriers. Bioengineering 2023, 10, 1205.

[11]

Nia, H. T.; Munn, L. L.; Jain, R. K. Physical traits of cancer. Science 2020, 370, eaaz0868.

[12]

Chakravarthy, A.; Khan, L.; Bensler, N. P.; Bose, P.; De Carvalho, D. D. TGF–β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 2018, 9, 4692.

[13]

Mhaidly, R.; Mechta-Grigoriou, F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin. Immunol. 2020, 48, 101417.

[14]

Huang, Z. C.; Zhuang, X. Y.; Liu, L. P.; Zhao, J. Y.; Ma, S.; Si, X. H.; Zhu, Z. Y.; Wu, F.; Jin, N. Y.; Tian, M. Y. et al. Modularized viromimetic polymer nanoparticle vaccines (VPNVaxs) to elicit durable and effective humoral immune responses. Natl. Sci. Rev. 2024, 11, nwad310.

[15]

Kiesgen, S.; Messinger, J. C.; Chintala, N. K.; Tano, Z.; Adusumilli, P. S. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat. Protoc. 2021, 16, 1331–1342.

[16]

Mestermann, K.; Giavridis, T.; Weber, J.; Rydzek, J.; Frenz, S.; Nerreter, T.; Mades, A.; Sadelain, M.; Einsele, H.; Hudecek, M. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 2019, 11, eaau5907.

[17]

Gao, Y. X.; Zhao, H. Q.; Zhao, J. Y.; Ma, S.; Si, X. H.; Liu, L. P.; Qiao, R. R.; Song, W. T.; Chen, X. S. Polymer-based synthetic oncolytic virus-like nanoparticles for cancer immunotherapy. Sci. China Chem. 2023, 66, 3576–3586.

[18]

Yang, W. J.; Zhu, G. Z.; Wang, S.; Yu, G. C.; Yang, Z.; Lin, L. S.; Zhou, Z. J.; Liu, Y. J.; Dai, Y. L.; Zhang, F. W. et al. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019, 13, 3083–3094

[19]

Sun, Q. W.; Li, Y. L.; Shen, W.; Shang, W. C.; Xu, Y. J.; Yang, J. M.; Chen, J.; Gao, W. H.; Wu, Q. H.; Xu, F. et al. Breaking-down tumoral physical barrier by remotely unwrapping metal-polyphenol-packaged hyaluronidase for optimizing photothermal/photodynamic therapy-induced immune response. Adv. Mater. 2024, 36, 2310673.

[20]

Zhou, H.; Fan, Z. Y.; Deng, J. J.; Lemons, P. K.; Arhontoulis, D. C.; Bowne, W. B.; Cheng, H. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016, 16, 3268–3277.

[21]

Liu, Y. Q.; Xu, D. L.; Liu, Y.; Zheng, X.; Zang, J.; Ye, W. L.; Zhao, Y. G.; He, R. Q.; Ruan, S. R.; Zhang, T. T. et al. Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 2022, 284, 121516.

[22]

Zhao, Y. Y.; Dong, Y. S.; Yang, S. H.; Tu, Y. L.; Wang, C. B.; Li, J.; Yuan, Y. Y.; Lian, Z. X. Bioorthogonal equipping CAR–T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent. Sci. 2022, 8, 603–614.

[23]

Chen, Q.; Hu, Q. Y.; Dukhovlinova, E.; Chen, G. J.; Ahn, S.; Wang, C.; Ogunnaike, E. A.; Ligler, F. S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, 1900192.

[24]

Marangon, I.; Silva, A. A. K.; Guilbert, T.; Kolosnjaj-Tabi, J.; Marchiol, C.; Natkhunarajah, S.; Chamming's, F.; Ménard-Moyon, C.; Bianco, A.; Gennisson, J. L. et al. Tumor stiffening, a key determinant of tumor progression, is reversed by nanomaterial-induced photothermal therapy. Theranostics 2017, 7, 329–343.

[25]

Albelda, S. M. CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 2024, 21, 47–66.

[26]

Si, X. H.; Ma, S.; Xu, Y. D.; Zhang, D. W.; Shen, N.; Yu, H. Y.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. J. Controlled Release 2020, 320, 83–95.

[27]

Lv, S. X.; Wu, Y. C.; Dang, J. Q.; Tang, Z. H.; Song, Z. Y.; Ma, S.; Wang, X.; Chen, X. S.; Cheng, J. J.; Yin, L. C. Investigation on the controlled synthesis and post-modification of poly-[(N–2-hydroxyethyl)-aspartamide]-based polymers. Polym. Chem. 2017, 8, 1872–1877.

[28]

Chen, H. Y.; Huang, Z. C.; Li, J. X.; Dong, S.; Xu, Y. D.; Ma, S.; Zhao, J. Y.; Liu, L. P.; Sun, T. M.; Song, W. T. et al. Hit-and-run vaccine system that overcomes limited neoantigen epitopes for efficient broad antitumor response. Sci. Bull. 2024, 69, 922–932.

[29]

Huang, Z. C.; Liu, L. P.; Zhu, Z. Y.; Wang, S. N.; Zhao, J. Y.; Ma, S.; Si, X. H.; Xu, Y. D.; Wu, F.; Song, W. T. et al. Tuning surface valences of nanoengagers to enhance their structural advantages for efficiently redirecting T cells against solid tumors. ACS Nano 2025, 19, 381–395.

[30]

Li, Z. Y.; Luo, B.; Yu, L. Z.; Lan, F.; Wu, Y. Intermolecular B–N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. J. Mater. Chem. B 2021, 9, 453–463.

[31]

Mohamadhoseini, M.; Mohamadnia, Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord. Chem. Rev. 2021, 432, 213711.

[32]

Chen, H.; Cui, L. Y.; Li, Y. F.; Liu, Y.; Ma, R. J.; Shi, L. Q. Phenylboronic acid functionalized polymer nanocarriers for intracellular delivery of protein drugs. Acta Poly. Sin. 2023, 54, 451–466.

[33]

Zhang, Y.; Ma, S.; Liu, X. M.; Xu, Y. D.; Zhao, J. Y.; Si, X. H.; Li, H. X.; Huang, Z. C.; Wang, Z. X.; Tang, Z. H. et al. Supramolecular assembled programmable nanomedicine As in situ cancer vaccine for cancer immunotherapy. Adv. Mater. 2021, 33, 2007293.

[34]

Wang, D. Q.; Wang, S.; Xia, Y. C.; Liu, S. M.; Jia, R. X.; Xu, G. G.; Zhan, J. J.; Lu, Y. B. Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf. B: Biointerfaces 2020, 195, 111276.

[35]

Zhang, X. N.; Zhang, P.; Xiao, C. S.; Chen, X. S. ROS-responsive self-degradable DNA nanogels for targeted anticancer drug delivery. ACS Macro Lett. 2023, 12, 1317–1323.

[36]

Duan, T. R.; Meng, C. C.; Tang, Z. X.; Ding, C. Role of reactive oxygen species in tumor development and therapy. Chin. J. Cell Biol. 2016, 38, 1295–1301.

[37]

Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 2000, 287, 2007–2010.

[38]

Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046–15047.

[39]

Speers, A. E.; Adam, G. C.; Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 4686–4687.

[40]

Hanson, S. R.; Hsu, T. L.; Weerapana, E.; Kishikawa, K.; Simon, G. M.; Cravatt, B. F.; Wong, C. H. Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J. Am. Chem. Soc. 2007, 129, 7266–7267.

[41]

Laughlin, S. T.; Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat. Protoc. 2007, 2, 2930–2944.

[42]

Wang, H.; Wang, R. B.; Cai, K. M.; He, H.; Liu, Y.; Yen, J.; Wang, Z. Y.; Xu, M.; Sun, Y. W.; Zhou, X. et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 2017, 13, 415–424.

[43]

Schmid, I.; Ferbas, J.; Uittenbogaart, C. H.; Giorgi, J. V. Flow cytometric analysis of live cell proliferation and phenotype in populations with low viability. Cytometry 1999, 35, 64–74.

[44]

Wang, H. R.; Han, X.; Dong, Z. L.; Xu, J.; Wang, J.; Liu, Z. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv. Funct. Mater. 2019, 29, 1902440.

[45]

Numbenjapon, T.; Serrano, L. M.; Chang, W. C.; Forman, S. J.; Jensen, M. C.; Cooper, L. J. N. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp. Hematol. 2007, 35, 1083–1090.

[46]

Chmielewski, M.; Hombach, A. A.; Abken, H. Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T cells. Front. Immunol. 2013, 4, 371–1090.

Nano Research
Article number: 94907359
Cite this article:
Zhao H, Gao Y, Ma S, et al. Hyaluronidase nanogel-armed CAR-T cell for synergistically reducing tumor extracellular matrix and improving efficacy against solid tumors. Nano Research, 2025, 18(5): 94907359. https://doi.org/10.26599/NR.2025.94907359
Topics:

456

Views

64

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 December 2024
Revised: 07 March 2025
Accepted: 10 March 2025
Published: 15 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return