Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The application of chimeric antigen receptor T (CAR-T) cell therapy against solid tumors is often hindered by the dense and rigid tumor extracellular matrix (ECM). While combining CAR-T with hyaluronidase (HAase) to reduce ECM is apparent, the efficacy is limited because of low accumulation and penetration efficiency of HAase inside the tumor tissue. Herein, we report a stimuli-responsive HAase-loaded nanogels (H-NGs) which are conjugated on the surface of CAR-T cells for synergistically improving HAase accumulation, ECM degradation and CAR-T cell efficacy. The conjugation of H-NGs on the T cell surface was achieved through metabolic oligosaccharide engineering (MOE) in a semi-quantitatively controlled manner. Intravenous injection of H-NGs armed CAR-T cells resulted in more ECM degradation than co-injection of CAR-T cells and free H-NGs, leading to an 83.2% tumor inhibition rate and relieving tumor suppressive microenvironment in the Raji solid tumor model. Proteomic analysis of the harvested tumor tissues indicated that the combining of H-NGs and CAR-T cell collaboratively reduces cell adhesion and enhanced leukocyte transendothelial migration. Overall, this work simultaneously boosts the efficacy of hyaluronidase and CAR-T cells in combating solid tumor, which has broad application potential in cancer combination therapy.
Sterner, R. C.; Sterner, R. M. CAR–t cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69
Rafiq, S.; Hackett, C. S.; Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167.
Ying, Z. T.; Huang, X. F.; Xiang, X. Y.; Liu, Y. L.; Kang, X.; Song, Y. Q.; Guo, X. K.; Liu, H. Z.; Ding, N.; Zhang, T. T. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 2019, 25, 947–953.
Brown, C. E.; Mackall, C. L. CAR T cell therapy: Inroads to response and resistance. Nat. Rev. Immunol. 2019, 19, 73–74.
Jin, C. A.; Ma, J.; Ramachandran, M.; Yu, D.; Essand, M. CAR T cells expressing a bacterial virulence factor trigger potent bystander antitumour responses in solid cancers. Nat. Biomed. Eng. 2022, 6, 830–841.
Herzog, B. H.; Baer, J. M.; Borcherding, N.; Kingston, N. L.; Belle, J. I.; Knolhoff, B. L.; Hogg, G. D.; Ahmad, F.; Kang, L. I.; Petrone, J. et al. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer. Sci. Transl. Med. 2023, 15, eadh8005.
Sutherland, T. E.; Dyer, D. P.; Allen, J. E. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023, 379, eabp8964.
Stylianopoulos, T.; Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637.
Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D. G.; Egeblad, M.; Evans, R. M.; Fearon, D.; Greten, F. R.; Hingorani, S. R.; Hunter, T. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186.
Chattopadhyay, S.; Liao, Y. P.; Wang, X.; Nel, A. E. Use of stromal intervention and exogenous neoantigen vaccination to boost pancreatic cancer chemo-immunotherapy by nanocarriers. Bioengineering 2023, 10, 1205.
Nia, H. T.; Munn, L. L.; Jain, R. K. Physical traits of cancer. Science 2020, 370, eaaz0868.
Chakravarthy, A.; Khan, L.; Bensler, N. P.; Bose, P.; De Carvalho, D. D. TGF–β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 2018, 9, 4692.
Mhaidly, R.; Mechta-Grigoriou, F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin. Immunol. 2020, 48, 101417.
Huang, Z. C.; Zhuang, X. Y.; Liu, L. P.; Zhao, J. Y.; Ma, S.; Si, X. H.; Zhu, Z. Y.; Wu, F.; Jin, N. Y.; Tian, M. Y. et al. Modularized viromimetic polymer nanoparticle vaccines (VPNVaxs) to elicit durable and effective humoral immune responses. Natl. Sci. Rev. 2024, 11, nwad310.
Kiesgen, S.; Messinger, J. C.; Chintala, N. K.; Tano, Z.; Adusumilli, P. S. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat. Protoc. 2021, 16, 1331–1342.
Mestermann, K.; Giavridis, T.; Weber, J.; Rydzek, J.; Frenz, S.; Nerreter, T.; Mades, A.; Sadelain, M.; Einsele, H.; Hudecek, M. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl. Med. 2019, 11, eaau5907.
Gao, Y. X.; Zhao, H. Q.; Zhao, J. Y.; Ma, S.; Si, X. H.; Liu, L. P.; Qiao, R. R.; Song, W. T.; Chen, X. S. Polymer-based synthetic oncolytic virus-like nanoparticles for cancer immunotherapy. Sci. China Chem. 2023, 66, 3576–3586.
Yang, W. J.; Zhu, G. Z.; Wang, S.; Yu, G. C.; Yang, Z.; Lin, L. S.; Zhou, Z. J.; Liu, Y. J.; Dai, Y. L.; Zhang, F. W. et al. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019, 13, 3083–3094
Sun, Q. W.; Li, Y. L.; Shen, W.; Shang, W. C.; Xu, Y. J.; Yang, J. M.; Chen, J.; Gao, W. H.; Wu, Q. H.; Xu, F. et al. Breaking-down tumoral physical barrier by remotely unwrapping metal-polyphenol-packaged hyaluronidase for optimizing photothermal/photodynamic therapy-induced immune response. Adv. Mater. 2024, 36, 2310673.
Zhou, H.; Fan, Z. Y.; Deng, J. J.; Lemons, P. K.; Arhontoulis, D. C.; Bowne, W. B.; Cheng, H. Hyaluronidase embedded in nanocarrier PEG shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016, 16, 3268–3277.
Liu, Y. Q.; Xu, D. L.; Liu, Y.; Zheng, X.; Zang, J.; Ye, W. L.; Zhao, Y. G.; He, R. Q.; Ruan, S. R.; Zhang, T. T. et al. Remotely boosting hyaluronidase activity to normalize the hypoxic immunosuppressive tumor microenvironment for photothermal immunotherapy. Biomaterials 2022, 284, 121516.
Zhao, Y. Y.; Dong, Y. S.; Yang, S. H.; Tu, Y. L.; Wang, C. B.; Li, J.; Yuan, Y. Y.; Lian, Z. X. Bioorthogonal equipping CAR–T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent. Sci. 2022, 8, 603–614.
Chen, Q.; Hu, Q. Y.; Dukhovlinova, E.; Chen, G. J.; Ahn, S.; Wang, C.; Ogunnaike, E. A.; Ligler, F. S.; Dotti, G.; Gu, Z. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 2019, 31, 1900192.
Marangon, I.; Silva, A. A. K.; Guilbert, T.; Kolosnjaj-Tabi, J.; Marchiol, C.; Natkhunarajah, S.; Chamming's, F.; Ménard-Moyon, C.; Bianco, A.; Gennisson, J. L. et al. Tumor stiffening, a key determinant of tumor progression, is reversed by nanomaterial-induced photothermal therapy. Theranostics 2017, 7, 329–343.
Albelda, S. M. CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 2024, 21, 47–66.
Si, X. H.; Ma, S.; Xu, Y. D.; Zhang, D. W.; Shen, N.; Yu, H. Y.; Zhang, Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. J. Controlled Release 2020, 320, 83–95.
Lv, S. X.; Wu, Y. C.; Dang, J. Q.; Tang, Z. H.; Song, Z. Y.; Ma, S.; Wang, X.; Chen, X. S.; Cheng, J. J.; Yin, L. C. Investigation on the controlled synthesis and post-modification of poly-[(N–2-hydroxyethyl)-aspartamide]-based polymers. Polym. Chem. 2017, 8, 1872–1877.
Chen, H. Y.; Huang, Z. C.; Li, J. X.; Dong, S.; Xu, Y. D.; Ma, S.; Zhao, J. Y.; Liu, L. P.; Sun, T. M.; Song, W. T. et al. Hit-and-run vaccine system that overcomes limited neoantigen epitopes for efficient broad antitumor response. Sci. Bull. 2024, 69, 922–932.
Huang, Z. C.; Liu, L. P.; Zhu, Z. Y.; Wang, S. N.; Zhao, J. Y.; Ma, S.; Si, X. H.; Xu, Y. D.; Wu, F.; Song, W. T. et al. Tuning surface valences of nanoengagers to enhance their structural advantages for efficiently redirecting T cells against solid tumors. ACS Nano 2025, 19, 381–395.
Li, Z. Y.; Luo, B.; Yu, L. Z.; Lan, F.; Wu, Y. Intermolecular B–N coordination and multi-interaction synergism induced selective glycoprotein adsorption by phenylboronic acid-functionalized magnetic composites under acidic and neutral conditions. J. Mater. Chem. B 2021, 9, 453–463.
Mohamadhoseini, M.; Mohamadnia, Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord. Chem. Rev. 2021, 432, 213711.
Chen, H.; Cui, L. Y.; Li, Y. F.; Liu, Y.; Ma, R. J.; Shi, L. Q. Phenylboronic acid functionalized polymer nanocarriers for intracellular delivery of protein drugs. Acta Poly. Sin. 2023, 54, 451–466.
Zhang, Y.; Ma, S.; Liu, X. M.; Xu, Y. D.; Zhao, J. Y.; Si, X. H.; Li, H. X.; Huang, Z. C.; Wang, Z. X.; Tang, Z. H. et al. Supramolecular assembled programmable nanomedicine As in situ cancer vaccine for cancer immunotherapy. Adv. Mater. 2021, 33, 2007293.
Wang, D. Q.; Wang, S.; Xia, Y. C.; Liu, S. M.; Jia, R. X.; Xu, G. G.; Zhan, J. J.; Lu, Y. B. Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf. B: Biointerfaces 2020, 195, 111276.
Zhang, X. N.; Zhang, P.; Xiao, C. S.; Chen, X. S. ROS-responsive self-degradable DNA nanogels for targeted anticancer drug delivery. ACS Macro Lett. 2023, 12, 1317–1323.
Duan, T. R.; Meng, C. C.; Tang, Z. X.; Ding, C. Role of reactive oxygen species in tumor development and therapy. Chin. J. Cell Biol. 2016, 38, 1295–1301.
Saxon, E.; Bertozzi, C. R. Cell surface engineering by a modified staudinger reaction. Science 2000, 287, 2007–2010.
Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046–15047.
Speers, A. E.; Adam, G. C.; Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 4686–4687.
Hanson, S. R.; Hsu, T. L.; Weerapana, E.; Kishikawa, K.; Simon, G. M.; Cravatt, B. F.; Wong, C. H. Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J. Am. Chem. Soc. 2007, 129, 7266–7267.
Laughlin, S. T.; Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via staudinger ligation. Nat. Protoc. 2007, 2, 2930–2944.
Wang, H.; Wang, R. B.; Cai, K. M.; He, H.; Liu, Y.; Yen, J.; Wang, Z. Y.; Xu, M.; Sun, Y. W.; Zhou, X. et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 2017, 13, 415–424.
Schmid, I.; Ferbas, J.; Uittenbogaart, C. H.; Giorgi, J. V. Flow cytometric analysis of live cell proliferation and phenotype in populations with low viability. Cytometry 1999, 35, 64–74.
Wang, H. R.; Han, X.; Dong, Z. L.; Xu, J.; Wang, J.; Liu, Z. Hyaluronidase with pH-responsive dextran modification as an adjuvant nanomedicine for enhanced photodynamic-immunotherapy of cancer. Adv. Funct. Mater. 2019, 29, 1902440.
Numbenjapon, T.; Serrano, L. M.; Chang, W. C.; Forman, S. J.; Jensen, M. C.; Cooper, L. J. N. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp. Hematol. 2007, 35, 1083–1090.
Chmielewski, M.; Hombach, A. A.; Abken, H. Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T cells. Front. Immunol. 2013, 4, 371–1090.
456
Views
64
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).