Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
CO2-assisted oxidative dehydrogenation of ethane (CO2-ODHE) and dry reforming of ethane (DRE) have provided a promising way to simultaneously upgrade CO2 and ethane to produce value-added industrial feedstocks, such as syngas (CO and H2) or ethylene. CeO2-supported Pd bimetallic catalysts have been demonstrated to be efficient catalysts for these reactions. In particular, the Pd–O–Ce and Pd–O–Fe (or Pd–O–In) interfaces were verified as the key active sites for producing syngas and ethylene, respectively. However, how to regulate the amount of interface to further enhance the product yield is still a major challenge in this area. In this study, we show that the ratio of the Pd–O–Ce interface can be optimized through the CeO2 nano-island strategy. CeO2 nano-islands with different loadings and sizes are grafted onto the high-surface-area SiO2 and are then used for anchoring PdFen bi-metals, thus leading to the formation of interfaces with different amounts of Pd–O–Ce. The results show that when the Ce loading reaches 15 wt.%, the supported PdFen catalyst has the highest ratio at the Pd–O–Ce interface, resulting in a significant increase in the syngas yield (879.1 μmol·g−1·min−1 for CO and 508.1 μmol·g−1·min−1 for H2 respectively), which is the best among all the reported state-of-the-art catalysts in the literature. At the same time, the ethylene production rate can be maintained at a high level of 172.5 μmol·g−1·min−1.
Francey, R. J.; Trudinger, C. M.; Van Der Schoot, M.; Law, R. M.; Krummel, P. B.; Langenfelds, R. L.; Steele, L. P.; Allison, C. E.; Stavert, A. R.; Andres, R. J. et al. Atmospheric verification of anthropogenic CO2 emission trends. Nat. Clim. Change 2013, 3, 520–524.
Seneviratne, S. I.; Donat, M. G.; Pitman, A. J.; Knutti, R.; Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 2016, 529, 477–483.
Rekker, S. A. C.; O’Brien, K. R.; Humphrey, J. E.; Pascale, A. C. Comparing extraction rates of fossil fuel producers against global climate goals. Nat. Climate Change 2018, 8, 489–492.
Rogelj, J.; Forster, P. M.; Kriegler, E.; Smith, C. J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 2019, 571, 335–342.
Zhang, F.; Wu, R. X.; Yue, Y. H.; Yang, W. M.; Gu, S. Y.; Miao, C. X.; Hua, W. M.; Gao, Z. Chromium oxide supported on ZSM-5 as a novel efficient catalyst for dehydrogenation of propane with CO2. Microporous Mesoporous Mater. 2011, 145, 194–199.
Wu, R. X.; Xie, P. F.; Cheng, Y. H.; Yue, Y. H.; Gu, S. Y.; Yang, W. M.; Miao, C. X.; Hua, W. M.; Gao, Z. Hydrothermally prepared Cr2O3–ZrO2 as a novel efficient catalyst for dehydrogenation of propane with CO2. Catal. Commun. 2013, 39, 20–23.
Zhou, Y. L.; Wei, F. F.; Lin, J.; Li, L.; Li, X. Y.; Qi, H. F.; Pan, X. L.; Liu, X. Y.; Huang, C. D.; Lin, S. et al. Sulfate-modified NiAl mixed oxides as effective C–H bond-breaking agents for the sole production of ethylene from ethane. ACS Catal. 2020, 10, 7619–7629.
Liao, X. B.; Long, Y. H.; Chen, Y.; Zangiabadi, A.; Wang, H.; Liu, Q. G.; Li, K. Z.; Chen, X. Self-generated Ni nanoparticles/LaFeO3 heterogeneous oxygen carrier for robust CO2 utilization under a cyclic redox scheme. Nano Energy 2021, 89, 106379.
Lu, Y. B.; Zhang, Z. H.; Wang, H. M.; Wang, Y. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl. Catal. B: Environ. 2021, 292, 120162.
Li, M. J.; Sun, Z. X.; Hu, Y. H. Catalysts for CO2 reforming of CH4: A review. J. Mater. Chem. A 2021, 9, 12495–12520.
Li, Y. C.; Li, L. Y.; Sun, W. J.; Chen, C. M.; Luo, S. Z.; Shen, J.; Jiang, C. F.; Jing, F. L. Porous silica coated ceria as a switch in tandem oxidative dehydrogenation and dry reforming of ethane with CO2. ChemCatChem 2021, 13, 3501–3509.
Wan, T. Y.; Jin, F.; Cheng, X. J.; Gong, J. H.; Wang, C. Y.; Wu, G. Y.; Liu, A. L. Influence of hydrophilicity and titanium species on activity and stability of Cr/MWW zeolite catalysts for dehydrogenation of ethane with CO2. Appl. Catal. A: Gen. 2022, 637, 118542.
Zheng, Y. B.; Zhang, X. B.; Li, J. J.; An, J.; Zhu, X. X.; Li, X. J. Role of active oxygen species in Fe-doped ZrO2 catalyst during CO2 assisted ethane dehydrogenation reaction. J. Catal. 2023, 428, 115130.
Zheng, Y. B.; Li, J. J.; Zhang, X. B.; Li, S. G.; An, J.; Chen, F. C.; Li, X. J.; Zhu, X. X. Evolution of co species in CO2-assisted ethane dehydrogenation: Competing cleavage of C–H and C–C bonds. ACS Catal. 2024, 14, 4749–4759.
Gomez, E.; Yan, B. H.; Kattel, S.; Chen, J. G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem. 2019, 3, 638–649.
Al-Mamoori, A.; Lawson, S.; Rownaghi, A. A.; Rezaei, F. Oxidative dehydrogenation of ethane to ethylene in an integrated CO2 capture-utilization process. Appl. Catal. B: Environ. 2020, 278, 119329.
Liu, J. X.; He, N.; Zhang, Z. M.; Yang, J. P.; Jiang, X.; Zhang, Z. L.; Su, J.; Shu, M.; Si, R.; Xiong, G. et al. Highly-dispersed zinc species on zeolites for the continuous and selective dehydrogenation of ethane with CO2 as a soft oxidant. ACS Catal. 2021, 11, 2819–2830.
Xie, Z. H.; Winter, L. R.; Chen, J. G. Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter 2021, 4, 408–440.
Xie, Z. H.; Gomez, E.; Chen, J. G. Simultaneously upgrading CO2 and light alkanes into value-added products. AlChE J. 2021, 67, e17249.
Biswas, A. N.; Xie, Z. H.; Chen, J. G. Can CO2-assisted alkane dehydrogenation lead to negative CO2 emissions. Joule 2022, 6, 269–273.
Bikbaeva, V.; Nesterenko, N.; Konnov, S.; Nguyen, T. S.; Gilson, J. P.; Valtchev, V. A low carbon route to ethylene: Ethane oxidative dehydrogenation with CO2 on embryonic zeolite supported Mo-carbide catalyst. Appl. Catal. B: Environ. 2023, 320, 122011.
Xie, Z. H.; Chen, J. G. Bimetallic-derived catalytic structures for CO2-assisted ethane activation. Acc. Chem. Res. 2023, 56, 2447–2458.
Winter, L. R.; Chen, J. G. Challenges and opportunities in plasma-activated reactions of CO2 with light alkanes. J. Energy Chem. 2023, 84, 424–427.
Li, X. Q.; Kang, D. G.; He, Z. Q.; Chen, J.; Wang, F.; Zhang, Z. E. Regulation of catalytic reaction performance of CO2 with ethane by metal cation substitution on CeO2 support. Chem. Eng. J. 2024, 484, 149047.
Tian, G.; Zhang, C. X.; Wei, F. Fueling the future: Innovating the path to carbon-neutral skies with CO2-to-aviation fuel. Carbon Future 2024, 1, 9200010.
Porosoff, M. D.; Myint, M. N. Z.; Kattel, S.; Xie, Z. H.; Gomez, E.; Liu, P.; Chen, J. G. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation. Angew. Chem., Int. Ed. 2015, 54, 15501–15505.
Yan, B. H.; Yao, S. Y.; Kattel, S.; Wu, Q. Y.; Xie, Z. H.; Gomez, E.; Liu, P.; Su, D.; Chen, J. G. Active sites for tandem reactions of CO2 reduction and ethane dehydrogenation. Proc. Natl. Acad. Sci. USA 2018, 115, 8278–8283.
Tu, C. Y.; Fan, H. H.; Wang, D.; Rui, N.; Du, Y. H.; Senanayake, S. D.; Xie, Z. H.; Nie, X. W.; Chen, J. G. CO2-assisted ethane aromatization over zinc and phosphorous modified ZSM-5 catalysts. Appl. Catal. B: Environ. 2022, 304, 120956.
Garg, S.; Xie, Z. H.; Lam, A. X.; Chen, J. G. Tandem electrocatalytic-thermocatalytic conversion of CO2 to aromatic hydrocarbons. ACS Energy Lett. 2024, 9, 2990–2996.
Xie, Z. H.; Xu, Y. G.; Xie, M.; Chen, X. B.; Lee, J. H.; Stavitski, E.; Kattel, S.; Chen, J. G. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 2020, 11, 1887.
Xie, Z. H.; Guo, H. Y.; Huang, E. W.; Mao, Z. T.; Chen, X. B.; Liu, P.; Chen, J. G. Catalytic tandem CO2-ethane reactions and hydroformylation for C3 oxygenate production. ACS Catal. 2022, 12, 8279–8290.
Biswas, A. N.; Winter, L. R.; Xie, Z. H.; Chen, J. G. Utilizing CO2 as a reactant for C3 oxygenate production via tandem reactions. JACS Au 2023, 3, 293–305.
Garg, S.; Biswas, A. N.; Chen, J. G. Opportunities for CO2 upgrading to C3 oxygenates using tandem electrocatalytic-thermocatalytic processes. Carbon Future 2024, 1, 9200002.
Yan, B. H.; Yang, X. F.; Yao, S. Y.; Wan, J.; Myint, M.; Gomez, E.; Xie, Z. H.; Kattel, S.; Xu, W. Q.; Chen, J. G. Dry reforming of ethane and butane with CO2 over PtNi/CeO2 bimetallic catalysts. ACS Catal. 2016, 6, 7283–7292.
Xie, Z. H.; Yan, B. H.; Kattel, S.; Lee, J. H.; Yao, S. Y.; Wu, Q. Y.; Rui, N.; Gomez, E.; Liu, Z. Y.; Xu, W. Q. et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Appl. Catal. B: Environ. 2018, 236, 280–293.
Yan, B. H.; Yao, S. Y.; Chen, J. G. Effect of oxide support on catalytic performance of FeNi-based catalysts for CO2-assisted oxidative dehydrogenation of ethane. ChemCatChem 2020, 12, 494–503.
Zhai, P.; Xie, Z. H.; Huang, E. W.; Aireddy, D. R.; Yu, H. R.; Cullen, D. A.; Liu, P.; Chen, J. G.; Ding, K. L. CO2-mediated oxidative dehydrogenation of propane enabled by Pt-based bimetallic catalysts. Chem 2023, 9, 3268–3285.
Yan, B. H.; Zhao, B. H.; Kattel, S.; Wu, Q. Y.; Yao, S. Y.; Su, D.; Chen, J. G. Tuning CO2 hydrogenation selectivity via metal-oxide interfacial sites. J. Catal. 2019, 374, 60–71.
Xie, Z. H.; Tian, D.; Xie, M.; Yang, S. Z.; Xu, Y. G.; Rui, N.; Lee, J. H.; Senanayake, S. D.; Li, K. Z.; Wang, H. et al. Interfacial active sites for CO2 assisted selective cleavage of C–C/C–H bonds in ethane. Chem 2020, 6, 2703–2716.
Xie, Z. H.; Wang, X. L.; Chen, X. B.; Liu, P.; Chen, J. G. General descriptors for CO2-assisted selective C–H/C–C bond scission in ethane. J. Am. Chem. Soc. 2022, 144, 4186–4195.
Li, X.; Pereira-Hernández, X. I.; Chen, Y. Z.; Xu, J.; Zhao, J. K.; Pao, C. W.; Fang, C. Y.; Zeng, J.; Wang, Y.; Gates, B. C. et al. Functional CeO x nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284–288.
Metin, Ö.; Mendoza-Garcia, A.; Dalmızrak, D.; Gültekin, M. S.; Sun, S. H. FePd alloy nanoparticles assembled on reduced graphene oxide as a catalyst for selective transfer hydrogenation of nitroarenes to anilines using ammonia borane as a hydrogen source. Catal. Sci. Technol. 2016, 6, 6137–6143.
Gulyaev, R. V.; Stadnichenko, A. I.; Slavinskaya, E. M.; Ivanova, A. S.; Koscheev, S. V.; Boronin, A. I. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl. Catal. A: Gen. 2012, 439–440, 41–50.
Yang, R. T.; Doong, S. J. Gas separation by pressure swing adsorption: A pore-diffusion model for bulk separation. AlChE J. 1985, 31, 1829–1842.
Liu, W. S.; Geng, S. B.; Li, N.; Wang, S.; Jia, S. P.; Jin, F. Z.; Wang, T.; Forrest, K. A.; Pham, T.; Cheng, P. et al. Highly robust microporous metal–organic frameworks for efficient ethylene purification under dry and humid conditions. Angew. Chem., Int. Ed. 2023, 62, e202217662.
Li, J. R.; Sculley, J.; Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.
Bao, Z. B.; Wang, J. W.; Zhang, Z. G.; Xing, H. B.; Yang, Q. W.; Yang, Y. W.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B. L. et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal–organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 16020–16025.
Fabián-Anguiano, J. A.; Mendoza-Serrato, C. G.; Gómez-Yáñez, C.; Zeifert, B.; Ma, X.; Ortiz-Landeros, J. Simultaneous CO2 and O2 separation coupled to oxy-dry reforming of CH4 by means of a ceramic–carbonate membrane reactor for in situ syngas production. Chem. Eng. Sci. 2019, 210, 115250.
Taghizadeh Damanabi, A.; Bahadori, F. Improving GTL process by CO2 utilization in tri-reforming reactor and application of membranes in Fisher Tropsch reactor. J. CO2 Util. 2017, 21, 227–237.
Duan, S. F.; Xu, H. Y.; Zhang, J. J.; Shan, M. X.; Zhang, S. M.; Zhang, Y. T.; Wang, X. R.; Kapteijn, F. Benzimidazole-linked polymer membranes for efficient syngas (H2/CO/CO2) separation. J. Membr. Sci. 2025, 717, 123595.
Avendaño, S. J.; Pinzón, J. S.; Orjuela, A. Comparative assessment of different intensified distillation schemes for the downstream separation in the oxidative coupling of methane (OCM) process. Chem. Eng. Process. Process Intensif. 2020, 158, 108172.
Leo, M. B.; Dutta, A.; Farooq, S. Process synthesis and optimization of heat pump assisted distillation for ethylene–ethane separation. Ind. Eng. Chem. Res. 2018, 57, 11747–11756.
Zhang, R. H.; Wang, H.; Tang, S. Y.; Liu, C. J.; Dong, F.; Yue, H. R.; Liang, B. Photocatalytic oxidative dehydrogenation of ethane using CO2 as a soft oxidant over Pd/TiO2 catalysts to C2H4 and syngas. ACS Catal. 2018, 8, 9280–9286.
Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.
Yang, H. L.; Wang, X. X.; Liu, Q. G.; Huang, A. J.; Zhang, X.; Yu, Y.; Zhuang, Z. W.; Li, G. G.; Li, Y.; Peng, Q. et al. Heterogeneous iridium single-atom molecular-like catalysis for epoxidation of ethylene. J. Am. Chem. Soc. 2023, 145, 6658–6670.
Sato, S.; Ohhara, M.; Sodesawa, T.; Nozaki, F. Combination of ethylbenzene dehydrogenation and carbon dioxide shift-reaction over a sodium oxide/alumina catalyst. Appl. Catal. 1988, 37, 207–215.
Xing, F. L.; Furukawa, S. Metallic catalysts for oxidative dehydrogenation of propane using CO2. Chem.—Eur. J. 2023, 29, e202202173.
Zheng, Y. B.; Zhang, X. B.; Li, J. J.; An, J.; Xu, L. Y.; Li, X. J.; Zhu, X. X. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts. Chin. J. Catal. 2024, 65, 40–69.
Yuan, Y.; Huang, E. W.; Hwang, S.; Liu, P.; Chen, J. G. Converting carbon dioxide into carbon nanotubes by reacting with ethane. Angew. Chem., Int. Ed. 2024, 63, e202404047.
Xie, Z. H.; Huang, E. W.; Garg, S.; Hwang, S.; Liu, P.; Chen, J. G. CO2 fixation into carbon nanofibres using electrochemical-thermochemical tandem catalysis. Nat. Catal. 2024, 7, 98–109.
479
Views
113
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).