AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Advances in structural color display of flexible materials and their emerging applications

Meng ZhangRui Xue ( )
School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
Show Author Information

Graphical Abstract

This paper reviews the development of flexible structural color materials (FSCMs), which use photonic crystals to produce adjustable colors through optical manipulation, highlighting various preparation strategies, stimuli-responsive color changes, and their potential applications in anti-counterfeiting, sensors, and displays. It also discusses the challenges and future prospects for FSCM manufacturing and use.

Abstract

Photonic crystals (PC) play an increasingly important role in anti-counterfeiting, sensors, displays, and other fields because they produce adjustable structural colors through optical manipulation of photonic stopbands. Flexible structural color materials (FSCMs) eliminate the requirement that traditional structures rely on hard substrates and the problem of poor mechanical quality caused by the stiffness of the building blocks. At the same time, different production technologies and materials provide FSCMs with different abilities to change color in response to stimulation. Therefore, they have attracted extensive attention. This paper summarizes the preparation strategy and variable structural colors of FSCMs. First, a series of preparation strategies for integrating materials with PC are summarized, including the assembly of colloidal spheres on flexible substrates, polymers, direct assembly based on polymers, and 3D printing. Subsequently, the variable structural colors of FSCMs with different stimuli, such as chemical stimuli, temperature, humidity, and mechanical stress, are described in detail. Finally, several potential directions for FSCMs manufacturing and application are introduced, and its prospects and challenges are discussed. It is believed that it will be valuable to promote the use of flexible optical materials.

References

[1]

Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500.

[2]

Zhu, T. X.; Ni, Y. M.; Biesold, G. M.; Cheng, Y.; Ge, M. Z.; Li, H. Q.; Huang, J. Y.; Lin, Z. Q.; Lai, Y. K. Recent advances in conductive hydrogels: Classifications, properties, and applications. Chem. Soc. Rev. 2023, 52, 473–509.

[3]

Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.

[4]

Shi, Q. W.; Liang, J. X.; Wang, X. Y.; Yao, K. X.; Tang, Y. D.; Pan, C.; Sun, J. X.; Liu, R.; Tan, H. Y.; Tang, T. Chameleon inspired high-temperature thermochromic traffic light type photonic crystal sensors toward early fire detection and visual sensing. Chem. Eng. J. 2024, 485, 149966.

[5]

Kou, D. H.; Zhang, S. F.; Ma, W. Recent advances in 1D photonic crystals: Diverse morphologies and distinctive structural colors for multifaceted applications. Adv. Opt. Mater. 2024, 12, 2400192.

[6]

Guo, Q. L.; Chen, S. P.; Li, H. T.; Wang, X. L.; He, J.; Chu, J.; Guo, J.; Wang, C. C. Non-iridescent magnetite photonic crystal films and pigments with enhanced magnetic coupling effect. Chem. Eng. J. 2024, 488, 150969.

[7]

Schroeder, T. B. H.; Houghtaling, J.; Wilts, B. D.; Mayer, M. It’s not a bug, it’s a feature: Functional materials in insects. Adv. Mater. 2018, 30, 1705322.

[8]

Yoshioka, S.; Kinoshita, S. Direct determination of the refractive index of natural multilayer systems. Phys. Rev. E 2011, 83, 051917.

[9]

Leertouwer, H. L.; Wilts, B. D.; Stavenga, D. G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 2011, 19, 24061–24066.

[10]

Cersonsky, R. K.; Antonaglia, J.; Dice, B. D.; Glotzer, S. C. The diversity of three-dimensional photonic crystals. Nat. Commun. 2021, 12, 2543.

[11]

Levy-Lior, A.; Shimoni, E.; Schwartz, O.; Gavish-Regev, E.; Oron, D.; Oxford, G.; Weiner, S.; Addadi, L. Guanine-based biogenic photonic-crystal arrays in fish and spiders. Adv. Funct. Mater. 2010, 20, 320–329.

[12]

Xiong, R.; Luan, J. Y.; Kang, S.; Ye, C. H.; Singamaneni, S.; Tsukruk, V. V. Biopolymeric photonic structures: Design, fabrication, and emerging applications. Chem. Soc. Rev. 2020, 49, 983–1031.

[13]

Goerlitzer, E. S. A.; Klupp Taylor, R. N.; Vogel, N. Bioinspired photonic pigments from colloidal self-assembly. Adv. Mater. 2018, 30, 1706654.

[14]

Parker, R. M.; Zhao, T. H.; Frka-Petesic, B.; Vignolini, S. Cellulose photonic pigments. Nat. Commun. 2022, 13, 3378.

[15]

Kim, J. J.; Liu, H. W.; Ashtiani, A. O.; Jiang, H. R. Biologically inspired artificial eyes and photonics. Rep. Prog. Phys. 2020, 83, 047101.

[16]

Castillo, M. A.; Estévez-Varela, C.; Wardley, W. P.; Serna, R.; Pastoriza-Santos, I.; Núñez-Sánchez, S.; Lopez-Garcia, M. Enhanced light absorption in all-polymer biomimetic photonic structures by near-zero-index organic matter. Adv. Funct. Mater. 2022, 32, 2113039.

[17]

Ramos, A.; Fernández-Alcázar, L.; Kottos, T.; Shapiro, B. Optical phase transitions in photonic networks: A spin-system formulation. Phys. Rev. X 2020, 10, 031024.

[18]

Meng, Y.; Feng, J. G.; Han, S.; Xu, Z. H.; Mao, W. B.; Zhang, T.; Kim, J. S.; Roh, I.; Zhao, Y. P.; Kim, D. H. et al. Photonic van Der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517.

[19]

Sun, Z. Q.; Liao, T.; Li, W. X.; Qiao, Y. X.; Ostrikov, K. Beyond seashells: Bioinspired 2D photonic and photoelectronic devices. Adv. Funct. Mater. 2019, 29, 1901460.

[20]

Li, F.; Chen, C. H.; Lu, S. Y.; Chen, X. G.; Liu, W. Y.; Weng, K. K.; Fu, Z.; Liu, D.; Zhang, L. P.; Abudukeremu, H. et al. Direct patterning of colloidal nanocrystals via thermally activated ligand chemistry. ACS Nano 2022, 16, 13674–13683.

[21]

Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Lončar, M.; Aizenberg, J. Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. J. Am. Chem. Soc. 2011, 133, 12430–12432.

[22]

Vogler-Neuling, V. V.; Saba, M.; Gunkel, I.; Zoppe, J. O.; Steiner, U.; Wilts, B. D.; Dodero, A. Biopolymer photonics: From nature to nanotechnology. Adv. Funct. Mater. 2024, 34, 2306528.

[23]

Guan, Y.; Li, H. Y.; Zhang, S. F.; Niu, W. B. Mechanochromic photonic vitrimer thermal management device based on dynamic covalent bond. Adv. Funct. Mater. 2023, 33, 2215055.

[24]

Wang, Z. Z.; Zhang, S. F.; Tang, B. T. Large-area rewritable paper based on polyurethane inverse photonic glass with durable high-resolution information storage and structural stability. ACS Nano 2024, 18, 186–198.

[25]

Wei, B. R.; Zhang, Z. K.; Yang, D. P.; Ma, D. K.; Zhang, Y. Q.; Huang, S. M. Lattice transformation-induced retroreflective structural colors. ACS Appl. Mater. Interfaces 2023, 15, 47350–47358.

[26]

Niu, W. B.; Cao, X. F.; Wang, Y. P.; Yao, B. W.; Zhao, Y. S.; Cheng, J.; Wu, S. L.; Zhang, S. F.; He, X. M. Photonic vitrimer elastomer with self-healing, high toughness, mechanochromism, and excellent durability based on dynamic covalent bond. Adv. Funct. Mater. 2021, 31, 2009017.

[27]

Li, X. Y.; Wang, X. H.; Wang, Y. N.; Hu, M. G.; Liu, G. J.; Chai, L. Q.; Zhou, L.; Shao, J. Z.; Li, Y. C. Bionic structural coloration of textiles using the synthetically prepared liquid photonic crystals. Small 2024, 20, 2302550.

[28]

Zhang, X.; Zhang, Z. Y.; Yu, F. C. Dual-responsive PU inverse photonic crystal film with high flexibility for anti-counterfeiting. J. Mater. Chem. C 2023, 11, 11936–11942.

[29]

Zhu, B. T.; Fu, Q. Q.; Chen, K.; Ge, J. P. Liquid photonic crystals for mesopore detection. Angew. Chem., Int. Ed. 2018, 57, 252–256.

[30]

Yang, D. P.; Hu, Y.; Ma, D. K.; Ge, J. P.; Huang, S. M. Reconfigurable mechanochromic patterns into chameleon-inspired photonic papers. Research 2022, 2022, 9838071.

[31]

Zhou, Q. T.; Park, J. G.; Bae, J.; Ha, D.; Park, J.; Song, K.; Kim, T. Multimodal and covert-overt convertible structural coloration transformed by mechanical stress. Adv. Mater. 2020, 32, 2001467.

[32]

Lai, X. T.; Peng, J. S.; Cheng, Q. F.; Tomsia, A. P.; Zhao, G. L.; Liu, L.; Zou, G. S.; Song, Y. L.; Jiang, L.; Li, M. Z. Bioinspired color switchable photonic crystal silicone elastomer kirigami. Angew. Chem., Int. Ed. 2021, 60, 14307–14312.

[33]

Eoh, H.; Jung, Y.; Park, C.; Lee, C. E.; Park, T. H.; Kang, H. S.; Jeon, S.; Ryu, D. Y.; Huh, J.; Park, C. Photonic crystal palette of binary block copolymer blends for full visible structural color encryption. Adv. Funct. Mater. 2022, 32, 2103697.

[34]

Poloni, E.; Rafsanjani, A.; Place, V.; Ferretti, D.; Studart, A. R. Stretchable soft composites with strain-induced architectured color. Adv. Mater. 2022, 34, 2104874.

[35]

Leiner, R.; Witayakran, S.; Verwaayen, S.; Siegwardt, L.; Ribeiro, C. C.; Dietz, C.; Koch, M.; Kulachenko, A.; Gallei, M. Tailored interaction between cellulose nanowhiskers and core-shell particles determines the optical and mechanical properties in hybrid films. ACS Appl. Mater. Interfaces 2024, 16, 64377–64387.

[36]

Zhai, Y. X.; Li, J.; Li, S. J.; James, T. D.; Chen, Z. J. Photoluminescent materials from woody biomass resources. Trends Chem. 2024, 6, 753–767.

[37]

Bai, L. J.; Yang, C. L.; Sun, X.; Yue, D. Q.; Wang, W. X.; Chen, H.; Yang, H. W.; Yang, L. X. Antifreeze proteins and surface-modified cellulose nanocrystals for designing anti-freezing conductive hydrogel sensors. Carbohydr. Polym. 2025, 350, 123056.

[38]

Cheng, C.; Yang, R. D.; Wang, Y.; Guo, X. H.; Sheng, J. Dual-network bacterial cellulose-based separators with high wet strength and a dual ion transport mechanism for uniform lithium deposition. J. Mater. Chem. A 2025, 13, 730–742 .

[39]
Sun, W. Y.; Tian, B.; An, B.; Teng, R.; Xu, M. C.; Ma, C. H.; Chen, Z. J.; Yu, H. P.; Li, J.; Li, W. et al. Cellulose-based switchable circularly polarized light emitter: Photo-actuated chiral assemblies with azobenzene polymers. Aggregate, in press, DOI: 10.1002/agt2.712.
[40]

Legat, T.; Grachev, V.; Kabus, D.; Lettinga, M. P.; Clays, K.; Verbiest, T.; de Coene, Y.; Thielemans, W.; Van Cleuvenbergen, S. Imaging with a twist: Three-dimensional insights of the chiral nematic phase of cellulose nanocrystals via SHG microscopy. Sci. Adv. 2024, 10, eadp2384.

[41]

Qin, Q. N.; Xu, Y. Hydroxypropyl cellulose-based meter-long structurally colored fibers for advanced fabrics. Adv. Sci. 2024, 11, 2404761.

[42]
Liu, J.; Zhou, X. Y.; Tang, X. Z.; Tang, Y. Q.; Wu, J. J.; Song, Z. P.; Jiang, H. Y.; Ma, Y.; Li, B. X.; Lu, Y. Q. et al. Circularly polarized organic ultralong room-temperature phosphorescence: Generation, enhancement, and application. Adv. Funct. Mater. in press, DOI: 10.1002/adfm.202414086.
[43]

Droguet, B. E.; Liang, H. L.; Frka-Petesic, B.; Parker, R. M.; De Volder, M. F. L.; Baumberg, J. J.; Vignolini, S. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments. Nat. Mater. 2022, 21, 352–358.

[44]
Wang, Y. F.; Yao, A. R.; Zhong, H. L.; Mo, Y. B.; Zhang, H.; Shang, J. J.; Lan, J. W.; Fan, W. H.; Chen, X. T.; Lin, S. J. Silver nanoparticle-decorated cellulose nanocrystal reinforced ionic polymer hydrogel with high conductivity and environmental tolerance for multifunctional sensing and emergency alarm system. Small in press, DOI: 10.1002/smll.202405826.
[45]

Liu, M. M.; Wang, X. J.; Pan, X. S.; Geng, M. C.; Liu, Y.; Zhang, Z. J.; Liu, H. B.; Gao, M. Porous cellulose photonic film via controlled unidirectional interlayer freezing for rapid visual sensing. Carbohydr. Polym. 2025, 347, 122767.

[46]

Singh, S.; Bhardwaj, S.; Choudhary, N.; Patgiri, R.; Teramoto, Y.; Maji, P. K. Stimuli-responsive chiral cellulose nanocrystals based self-assemblies for security measures to prevent counterfeiting: A review. ACS Appl. Mater. Interfaces 2024, 16, 41743–41765.

[47]

Jiang, H. E.; Zhao, S. Q.; Li, Z. J.; Chen, L. J.; Mo, H. Z.; Liu, X. H. Swan-feathers inspired smart-responsive sustainable carboxymethyl cellulose/polyvinyl alcohol based food packaging film for robustly integrated intelligent and active packaging. Nano Today 2024, 56, 102272.

[48]

Li, X. K.; Wang, Y. Y.; Zhang, X. X. Strong, healable materials with bio-like ordered architectures and versatile functionality. SusMat 2024, 4, e248.

[49]

Goyal, M.; Hassanpour, M.; Carneiro, A. A. B.; Moghaddam, L.; Shi, C. R.; Song, X. P.; Zhang, Z. Y. Lignin nanoparticles enable and improve multiple functions of photonic films derived from cellulose nanocrystals. J. Colloid Interface Sci. 2025, 680, 492–504.

[50]

Jia, S. Z.; Du, J.; Xie, Y. J.; Yang, B. B.; Tao, T. T.; Yu, L. Y.; Zhang, Y.; Zhang, J. Y.; Tang, W. W.; Gong, J. B. Cellulose-based photonic crystal film with multiple stimulus-responsive performances. Chem. Mater. 2024, 36, 7967–7975.

[51]

Wang, T.; Wang, Y. F.; Ji, C. Y.; Li, Y. F.; Yang, H. All-cellulose-based flexible photonic films. Adv. Funct. Mater. 2024, 34, 2408464.

[52]

Zhang, Y.; Li, D. Q.; Yang, C. X.; Xiong, Z. W.; Tohti, M.; Zhang, Y. Q.; Chen, H. J.; Li, J. Polymerization strategy for cellulose nanocrystals-based photonic crystal films with water resisting property. Int. J. Biol. Macromol. 2024, 265, 130793.

[53]

Jia, S. Z.; Yang, B. B.; Xie, Y. J.; Tao, T. T.; Du, J.; Yu, L. Y.; Zhang, Y.; Zhang, J. Y.; Tang, W. W.; Gong, J. B. Dual-direction circularly polarized luminescence materials with on-demand handedness and superior flexibility. Adv. Funct. Mater. 2024, 34, 2410206.

[54]

Duan, C. L.; Wang, B.; Li, J. P.; Zeng, J. S.; Cao, D. X.; Xu, J.; Gao, W. H.; Chen, K. F. Novel intelligent photon-encoding gel with dynamically switching supramolecular networks. Adv. Funct. Mater. 2024, 34, 2315865.

[55]

Bai, H. Y.; Hu, S. H.; Zhu, H. Y.; Zhang, S. W.; Wang, W.; Dong, W. F. Constructing a cellulose based chiral liquid crystal film with high flexibility, water resistance, and optical property. Int. J. Biol. Macromol. 2023, 250, 126132.

[56]

Xue, R.; Zhao, H.; An, Z. W.; Wu, W.; Jiang, Y.; Li, P.; Huang, C. X.; Shi, D. A.; Li, R. K. Y.; Hu, G. H. et al. Self-healable, solvent response cellulose nanocrystal/waterborne polyurethane nanocomposites with encryption capability. ACS Nano 2023, 17, 5653–5662.

[57]

Meng, Y. H.; Zong, G. L.; Sun, Y. J.; He, Z. B.; Dong, C. H.; Long, Z. Flexible multiple-stimulus-responsive photonic films based on layer-by-layer assembly of cellulose nanocrystals and deep eutectic solvents. Chem. Eng. J. 2024, 488, 150713.

[58]

Qian, Y.; Wang, H.; Qu, Z.; Li, Q. Y.; Wang, D. D.; Yang, X. D.; Qin, H. J.; Wei, H. J.; Zhang, F. S.; Qing, G. Y. Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. Mater. Horiz. 2025, 12, 499–511.

[59]

An, B.; Xu, M. C.; Sun, W. Y.; Ma, C. H.; Luo, S.; Li, J.; Liu, S. X.; Li, W. Butterfly wing-inspired superhydrophobic photonic cellulose nanocrystal films for vapor sensors and asymmetric actuators. Carbohydr. Polym. 2024, 345, 122595.

[60]

Wang, C.; Liang, Z. H.; Song, F.; Wang, X. L.; Wang, Y. Z. Surface engineering toward self-cleaning and color-fastness photonic textiles. J. Clean. Prod. 2024, 468, 143029.

[61]

Zhao, J.; Cai, X. L.; Zhang, X. J.; Zhang, J. J.; Fan, J.; Ma, F.; Zhu, W.; Jia, X. Y.; Wang, S. S.; Meng, Z. H. Hazardous gases-responsive photonic crystals cryogenic sensors based on antifreezing and water retention hydrogels. ACS Appl. Mater. Interfaces 2023, 15, 42046–42055.

[62]

Fan, J.; Cai, X. L.; Chen, H.; Wu, L.; Dong, X.; Zhang, W. X.; Qiao, Y.; Meng, Z. H.; Qiu, L. L. A smart large-scale explosive-responsive amorphous photonic crystal sensor based on color analysis method. Chem. Eng. J. 2022, 446, 136450.

[63]

Liu, P. M.; Liu, X. J.; Ji, M. H.; Gu, H. W.; Zhou, C. M.; Lei, L.; Lu, J.; Wu, X. M.; Zhu, T. T.; Yang, J. J. A highly colorimetric photonic film composed of non-close-packed melanin-like colloidal arrays. J. Colloid Interface Sci. 2020, 580, 573–582.

[64]

Ke, A. J.; Li, C. H.; Dong, B. H.; Zhang, X. Y. Biomimetic photonic crystal double-network hydrogel for visual and electrical dual signal bluetooth-enabled wearable sensor. J. Mater. Chem. C 2024, 12, 7260–7269.

[65]

Ke, A. J.; Li, C. H.; Mai, Z.; Jiang, X.; Zhang, X. Y. Simulation for regulatable assembly of large-scale photonic crystal: Application in flexible pressure sensor with visual sensing. Chem. Eng. Sci. 2025, 304, 121041.

[66]

Wang, W. T.; Zhang, L.; Zhao, G. C.; Yang, X. P.; Zhang, W. Z.; Meng, Y.; Tang, B. T.; Ding, L. M. Flexible inverse opal structural color films with high strength and harsh environment stability. ACS Appl. Mater. Interfaces 2024, 16, 64065–64073.

[67]

Shi, T.; Ge, C. C.; Kou, D. H.; Zhang, S. F.; Ma, W. Temperature-programmable ultrathin flexible and brilliant-colored 1d photonic crystal films for photonic pigments and sensing. ACS Appl. Polym. Mater. 2024, 6, 6812–6819.

[68]

Wang, Y.; Sun, L. Y.; Chen, G. P.; Chen, H. X.; Zhao, Y. J. Structural color ionic hydrogel patches for wound management. ACS Nano 2023, 17, 1437–1447.

[69]

Wang, Z. Z.; Meng, F. T.; Kong, M.; Guo, X. Y.; Zhang, S. F.; Zhang, Y. A.; Tang, B. T. 2D information security system based on polyurethane inverse photonic glass structure. Small 2024, 20, 2305825

[70]

Lu, M. H.; Zhang, X. X.; Xu, D. Y.; Li, N.; Zhao, Y. J. Encoded structural color microneedle patches for multiple screening of wound small molecules. Adv. Mater. 2023, 35, 2211330.

[71]

Lin, R. C.; Kou, D. H.; Gao, L.; Li, S.; Gao, Z. Y.; Li, X. F.; Ma, W.; Zhang, S. F. Biomimetic photonic elastomer exhibiting stress/moisture reconfigurable wrinkle-lattice for reversible deformation information storage. ACS Nano 2024, 18, 13346–13360.

[72]

Gong, X. B.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Flexible TPU inverse opal fabrics for colorimetric detecting of VOCs. RSC Adv. 2023, 13, 9457–9465.

[73]

Bae, J.; Yoo, C.; Kim, S.; Ahn, J.; Sim, H. H.; Kim, J. H.; Kim, J. H.; Yoon, S. Y.; Kim, J. T.; Seol, S. K. et al. Three-dimensional printing of structural color using a femtoliter meniscus. ACS Nano 2023, 17, 13584–13593.

[74]

Zeng, Y.; Liu, K. L.; Ding, H. B.; Chong, Z. J.; Niu, Y. F.; Guo, Y. J.; Wei, M. X.; Du, X.; Gu, Z. Z. Direct laser writing photonic crystal hydrogels with a supramolecular sacrificial scaffold. Small 2024, 20, 2306524.

[75]

Li, S. S.; Yu, K. H.; Garcia, I.; Nah, S. H.; Chui, H. N. T.; Tian, Z. T.; Yang, S. Direct ink writing of cephalopod skin-like core-shell fibers from cholesteric liquid crystal elastomers and dyed solutions. Adv. Funct. Mater. 2025, 35, 2413965.

[76]

Yan, J. B.; Cai, Y. H.; Zhang, H. W.; Han, M. Y.; Liu, X. Y.; Chen, H. J.; Cheng, C.; Lei, T.; Wang, L. X.; Wang, H. et al. Rapid thermochromic and highly thermally conductive nanocomposite based on silicone rubber for temperature visualization thermal management in electronic devices. ACS Appl. Mater. Interfaces 2024, 16, 7883–7893.

[77]

Zheng, Y.; Lin, G. Z.; Zhou, W. X.; Wei, L. Y.; Liu, J.; Shang, S. L.; Zhu, P. Bioinspired polydopamine modification for interface compatibility of PDMS-based responsive structurally colored textiles. ACS Appl. Mater. Interfaces 2024, 16, 51748–51756.

[78]

Zhou, Y. T.; You, X. Z.; Liu, W. Y.; Yang, W.; Jin, X. R.; Pei, X. P.; Xiang, S.; Zhou, H.; Liao, Z. Y.; Tan, Y. Arrays of bowl-shaped Janus particle film with structured colors. Small 2024, 20, 2401063.

[79]

Yamashita, K.; Taniguchi, K.; Hattori, T.; Kuwahara, Y.; Saito, A. Development of a high-performance, anti-fouling optical diffuser inspired by Morpho butterfly’s nanostructure. Adv. Opt. Mater. 2023, 11, 2301086.

[80]

Liang, S. Y.; Liu, Y. F.; Ji, Z. K.; Xia, H.; Sun, H. B. Multi-mode elastic full-color fluorescent patterns for multi-visual encryption. Laser Photon. Rev. 2025, 19, 2400307.

[81]

Cai, J. H.; Lai, W. Z.; Chen, Y.; Zhang, X.; Zheng, Y. Q.; Zhang, W. Y.; Chen, X. G.; Ye, Y.; Xu, S.; Yan, Q. et al. Pushing patterning limits of drop-on-demand inkjet printing with cspbbr3/PDMS nanoparticles. Laser Photon. Rev. 2024, 18, 2400298.

[82]

Yu, Y.; Li, Z. L.; Zhou, W.; Lu, W.; Wei, S. X.; Chen, T. Electricity/light-heat-hygro multi-responsive soft luminescent systems for rewritable and programmable information display. Chem. Eng. J. 2024, 490, 151742.

[83]

Zhou, M. J.; Hu, Y.; Qi, C. Z.; Yang, D. P.; Huang, S. M. Metal-organic framework photonic crystals with bidisperse particles-based brilliant structural colors and high optical transparency for elaborate anti-counterfeiting. J. Colloid Interface Sci. 2024, 662, 774–785.

[84]

Liu, Z. H.; Chen, Z. H.; Yang, S. Y.; Jia, H.; Wei, J. Photoresponsive nanometer-sized CdS colloids assembled into photonic crystals within polydimethylsiloxane as multicolored anticounterfeiting labels. ACS Appl. Nano Mater. 2023, 6, 20210–20219.

[85]

Wang, S. Q.; Dai, X.; Fu, D.; Wang, F.; Zhang, L. L.; Shen, J. Chiral nematic cellulose nanocrystals and gluconic acid iridescent films with high flexibility and humidity response. Cellulose 2024, 31, 6211–6224.

[86]

Fu, J. Y.; Tang, J.; Ma, S. D.; Pan, Z. J.; Li, R. X.; Wu, Y. T.; Yan, T. Anti-interference flexible temperature-sensitive/strain-sensing aerogel fiber for cooperative monitoring of human body temperature and movement information. Compos. Sci. Technol. 2025, 259, 110955.

[87]

Ge, F. Q.; Peng, J.; Tan, J. L.; Yu, W. D.; Li, Y. N.; Wang, C. X. Color tunable photo-thermochromic elastic fiber for flexible wearable heater. Adv. Compos. Hybrid. Mater. 2024, 7, 173.

[88]

Wu, H.; Chai, S. S.; Zhu, L. F.; Li, Y. T.; Zhong, Y. W.; Li, P.; Fu, Y.; Ma, L.; Yun, C.; Chen, F. F. et al. Wearable fiber-based visual strain sensors with high sensitivity and excellent cyclic stability for health monitoring and thermal management. Nano Energy 2024, 131, 110300.

[89]

Zhai, X. Y.; Xu, X. D.; Wu, Z. D.; Zhang, G.; Li, J.; Peng, X. T.; Peng, H. Membrane dressing utilizing thermochromic phase change nano-capsules for body temperature monitoring and regulation. J. Energy Storage 2024, 90, 111875.

[90]

Lin, Y. Y.; Jiao, C. J.; Qi, Y. G.; Zou, J. W.; Xu, D. H.; Luan, S. F. Multiple stimuli-responsive color-changing polymer materials for reversible writing and anti-counterfeiting. ACS Appl. Mater. Interfaces 2024, 16, 43064–43071.

[91]

Wang, Y.; Yu, Y. R.; Guo, J. H.; Zhang, Z. H.; Zhang, X. X.; Zhao, Y. J. Bio-inspired stretchable, adhesive, and conductive structural color film for visually flexible electronics. Adv. Funct. Mater. 2020, 30, 2000151.

[92]

Li, X. L.; Dai, C. J.; Shi, Y. Y.; Wan, S.; Li, Z.; Dai, W.; Guan, Z. Q.; Li, Z. Y. Hydrogel-waveguiding on-chip meta-optics for dynamic multicolor holography. Adv. Funct. Mater. 2024, 34, 2408958.

[93]

Wang, X.; Mu, J. J.; Yu, H. R.; Lv, X. B.; Liang, T.; Cheng, C. J. Calix[6]arene-functionalized photonic hydrogel biosensor for naked-eye cholesterol detection based on supramolecular host-guest interactions. ACS Sens. 2024, 9, 5148–5155.

[94]

Tao, T. T.; Zhu, Z. X.; Jia, S. Z.; Tang, W. W.; Gong, J. B. Bioinspired transparent ultratough birefringent photonic films with engineerable interference colors derived from in-situ synthesis of CaCO3. Chem. Eng. J. 2024, 498, 155148.

[95]

Wang, Z. H.; Chen, X. M.; Wang, T. T.; Tang, M. S.; He, Z. W.; Wang, Y. L.; Ma, J. A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy. Mater. Horiz. 2025, 12, 1234–1245.

[96]

Lee, H.; Lim, J.; Shin, M. K.; Moon, C. E.; Lee, J. K.; Kim, J.; Kang, Y. J.; Woo Ji, Y.; Haam, S. Long-term monitoring of apoe4 within aqueous humor using intraocular lenses containing target-responsive inverse opal hydrogel. Small Struct. 2024, 5, 2400154.

[97]

Yang, X. X.; Chai, L. J.; Huang, Z.; Zhu, B.; Liu, H. Y.; Shi, Z. T.; Wu, Y.; Guo, L.; Xue, L. J.; Lei, Y. F. Smart photonic crystal hydrogels for visual glucose monitoring in diabetic wound healing. J. Nanobiotechnol. 2024, 22, 618.

[98]

Pradal, P.; Kim, J. B.; Nam, S. K.; Kim, S. H.; Amstad, E. Direct ink writing of rigid microparticles. Small 2025, 21, 2405675.

[99]

Meng, Y. R.; Teng, Z. Q.; Zhang, H.; Jin, J. B.; Li, Z. L.; Wang, S. J.; Xia, Y. Q. Polymerization-induced ultrafast and massive growth of colloidal photonic crystals on hydrogel surface. Chem. Eng. J. 2024, 500, 156773.

[100]

Shang, Y. Y.; Huang, C.; Li, Z.; Du, X. M. Bioinspired ultra-stretchable and highly sensitive structural color electronic skins. Adv. Funct. Mater. 2025, 35, 2412703.

[101]

Hu, Y.; Tian, Z. Q.; Ma, D. K.; Qi, C. Z.; Yang, D. P.; Huang, S. M. Smart colloidal photonic crystal sensors. Adv. Colloid Interface Sci. 2024, 324, 103089.

[102]

Yang, Y. Z.; Rong, Y.; Li, Y. Y.; Ma, M. M.; Chen, D.; Lu, H.; Wu, C.; Shen, B. Y.; Guan, J. P.; Zhuo, M. P. Rationally integrating charge-transfer cocrystal and Ni(II) organometallics for visualized photo/thermochromic sensors. ACS Appl. Mater. Interfaces 2024, 16, 42726–42735.

[103]

Adane, A. M.; Park, S. Y. Photonic interpenetrating polymer network fibers comprising intertwined solid-state cholesteric liquid crystal and polyelectrolyte networks for sensor applications. ACS Appl. Mater. Interfaces 2024, 16, 16830–16843.

[104]

Barty-King, C. H.; Chan, C. L. C.; Parker, R. M.; Bay, M. M.; Vadrucci, R.; De Volder, M.; Vignolini, S. Mechanochromic, structurally colored, and edible hydrogels prepared from hydroxypropyl cellulose and gelatin. Adv. Mater. 2021, 33, 2102112.

[105]

Vaz, R.; Sales, M. G. F.; Frasco, M. F. Green photonic biosensing: Approaching sustainability in point-of-care diagnostics. TrAC Trends Analyt. Chem. 2024, 177, 117771.

[106]

He, M. J.; Hsu, Y. I.; Uyama, H. High-performance bioinspired multi-responsive chiral cellulose nanocrystals-based flexible films for information encryption. Chem. Eng. J. 2024, 495, 153516.

[107]

Bak, J. M.; Kim, Y.; Park, C.; Lee, C.; Lee, H. W.; Lim, B.; Jung, S. H.; Lee, H. I. Dual-responsive photonic multilayers in combination with a smartphone application as high-security anti-counterfeiting devices. Chem. Eng. J. 2023, 468, 143631.

[108]

Kim, Y.; Kim, J.; Lee, J. H.; Jung, Y. J.; Na, H.; Hwang, G.; Hwang, D. H.; Lee, H. I.; Jung, S. H. Humidity-induced decolorization of 1D photonic multilayers for anti-counterfeiting applications. Adv. Funct. Mater. 2025, 35, 2412679.

[109]
Yang, Y. B.; Zhou, X. H.; Ji, X. F.; Liu, W. P.; Li, Q. Y.; Zhu, C. B.; Li, X. L.; Liu, S.; Lu, X.; Qu, J. P. Bioinspired passive cooling hydrogel for visualizing hygroscopicity and desorption process. Adv. Funct. Mater. in press, DOI: 10.1002/ADFM.202416776.
[110]

Zhang, X.; Zhang, Z. Y.; Long, J.; Shang, B. B. Vapor absorption and liquefication triggered dynamic color changes and pattern conversions on photonic crystal films for anticounterfeiting. ACS Appl. Mater. Interfaces 2024, 16, 61360–61370.

[111]

Jia, S. Z.; Yang, B. B.; Du, J.; Zhang, J. Y.; Xie, Y. J.; Yu, L. Y.; Zhang, Y.; Tao, T. T.; Tang, W. W.; Gong, J. B. Highly flexible and reversible stimuli-responsive photonic crystal film in anti-counterfeit, detector, and coating. Small Methods 2024, 8, 2400447.

[112]

Tian, A. Q.; Pan, C.; Wu, M. X.; Liu, H. X.; Shi, Q. W.; Sun, J. X.; Liang, J. X.; Liu, X. H.; Tan, H. Y.; Jin, J. Fabrication of thermochromic photonic crystal stickers with highly sensitive response for non-open fire sensing. ACS Appl. Mater. Interfaces 2024, 16, 66436–66446.

[113]

Wu, Y.; Sun, R. K.; Han, Y. Q.; Zhang, S. F.; Wu, S. L. Ultrathin photonic crystal film with supersensitive thermochromism in air. Chem. Eng. J. 2023, 451, 139075.

[114]

Wu, Y.; Sun, R. K.; Ren, J.; Zhang, S. F.; Wu, S. L. Bioinspired dynamic camouflage in programmable thermochromic-patterned photonic films for sophisticated anti-counterfeiting. Adv. Funct. Mater. 2023, 33, 2210047.

[115]

Yu, S.Y.; Ma, D. K.; Qi, C. Z.; Yang, D. P.; Huang, S. M. All-in-one photonic crystals with multi-stimuli-chromic, color-recordable, self-healable, and adhesive functions. Adv. Funct. Mater. 2024, 34, 2411670.

[116]

Hu, Y.; Qi, C. Z.; Ma, D. K.; Yang, D. P.; Huang, S. M. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper. Nat. Commun. 2024, 15, 5643.

[117]

Nguyen, H. Q.; Kim, J.; Oh, S.; Nguyen, M. C.; Hwang, D.; Kang, H.; Hu, X. J.; Chen, H. X.; Tran, V. T.; Lee, J. Mechanochromic strain sensor by magnetoplasmonic amorphous photonic arrays. Chem. Eng. J. 2024, 498, 155297.

[118]

Tan, J. L.; Sun, J. J.; Ye, T.; Liu, H.; Liu, J. Y.; Wang, C. X. Bioinspired low-angle-dependent photonic crystal elastomer for highly sensitive visual strain sensor. ACS Appl. Mater. Interfaces 2024, 16, 41300–41309.

[119]

Wang, T. X.; Li, X. S.; Zhang, Y. B.; Ma, H. M.; Sun, Y. B. Cholesteric liquid crystal network composite film with structure, dual-band responsive luminescent color for multiple anti-counterfeiting and information encryption. ACS Appl. Mater. Interfaces 2024, 16, 68498–68505.

[120]

Yang, W. J.; Zheng, C. L.; Sun, L.; Bie, Z. Y.; Yue, Y. C.; Li, X. H.; Sun, W. T.; Ikeda, T.; Wang, J. X.; Jiang, L. Spatiotemporal programmability of 3d chiral color units driven by ink spontaneous diffusion toward customized printing. Adv. Mater. 2025, 37, 2411988.

[121]

Kang, B. S.; Choi, J. S.; Kang, S. M. Transfunctional optical thin films via bioinspired engineering. ACS Appl. Mater. Interfaces 2024, 16, 65480–65488.

[122]

Nie, F.; Yan, D. P. Bio-sourced flexible supramolecular glasses for dynamic and full-color phosphorescence. Nat. Commun. 2024, 15, 9491.

[123]

Cao, X. Y.; Wang, Y.; Wu, X. Y.; Wang, J. L.; Ren, H. Z.; Zhao, Y. J. Multifunctional structural color Chinese herb hydrogel patches for wound management. Chem. Eng. J. 2024, 485, 149957.

[124]

Peng, L.; Hou, L.; Wu, P. Y. Synergetic lithium and hydrogen bonds endow liquid-free photonic ionic elastomer with mechanical robustness and electrical/optical dual-output. Adv. Mater. 2023, 35, 2211342.

[125]

Huang, L. Y.; Zhang, X. Z.; Deng, L.; Wang, Y.; Liu, Y. M.; Zhu, H. L. Sustainable cellulose-derived organic photonic gels with tunable and dynamic structural color. ACS Nano 2024, 18, 3627–3635.

[126]

Yu, Z. L.; Wang, K. D.; Lu, X. N. Flexible cellulose nanocrystal-based bionanocomposite film as a smart photonic material responsive to humidity. Int. J. Biol. Macromol. 2021, 188, 385–390.

[127]

Wang, M.; Li, X. S.; Yang, H.; Yang, H. Mechanochromic 3D soft photonic crystals enabled anticounterfeiting and encryption information storage. Adv. Opt. Mater. 2025, 13, 2401934.

[128]

Zheng, W.; Zhang, N.; Murtaza, G.; Meng, Z.; Wu, L.; Qiu, L. Naked-eye visual thermometer based on glycerol─nonclose-packed photonic crystals for real-time temperature sensing and monitoring. ACS Appl. Mater. Interfaces 2024, 16, 13041.

[129]

Zheng, W. X.; Muhammad, I.; Yin, X. D.; Fan, J.; Murtaza, G.; Zhang, N.; Meng, Z. H.; Wang, W. Z.; Qiu, L. L. Bioinspired wearable hydrogel composite with sustained drug-release for wound healing and naked-eye visual early warning of wound dehiscence. ACS Appl. Mater. Interfaces 2024, 16, 49711–49723.

[130]

Wang, L.; Ding, X. Y.; Fan, L.; Filppula, A. M.; Li, Q. Y.; Zhang, H. B.; Zhao, Y. J.; Shang, L. R. Self-healing dynamic hydrogel microparticles with structural color for wound management. Nano-Micro Lett. 2024, 16, 232.

[131]

Du, Y. J.; Zeng, J. J.; Sun, Q. H.; Yu, S. Y.; Yang, D. P.; Huang, S. M. Polymerization-induced highly brilliant and color-recordable mechanochromic photonic gels for ink-free patterning. J. Colloid Interface Sci. 2025, 679, 883–892.

[132]

Fu, Y.; Liu, B.; Luan, Y. H.; Zhao, H.; Chen, D.; Wang, D.; Cai, W. H.; Zhang, L.; Sun, S.; Zheng, J. Q. et al. Photonic crystal sensor evaluating the effectiveness of medical products under different storage conditions. ACS Appl. Mater. Interfaces 2023, 15, 44147–44153.

[133]

Kou, D. H.; Gao, L.; Lin, R. C.; Zhang, S. F.; Ma, W. Hydrogen bond-mediated self-shielded moisture-responsive structural color for time-temperature indicating. Adv. Sci. 2024, 11, 2310060.

[134]

Wang, J. Q.; Yin, T.; Ge, J. P. A disposable thermally triggered photonic crystal anti-counterfeiting tag with irreversible response and multi-step color changes. Small 2024, 20, 2311308.

[135]
Liu, L.L.; Feng, C. Y.; Bo, G. H.; Wang, J.; Zhang, H. Y.; Shao, H. G.; Zhang, J.; Zhang, X. F. Hydrogel-based dynamic structural color with optical janus effect for imaging encryption/concealment. Adv. Opt. Mater. in press, DOI: 10.1002/ADOM.202402644.
Nano Research
Article number: 94907329
Cite this article:
Zhang M, Xue R. Advances in structural color display of flexible materials and their emerging applications. Nano Research, 2025, 18(4): 94907329. https://doi.org/10.26599/NR.2025.94907329
Topics:

396

Views

97

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 22 December 2024
Revised: 03 February 2025
Accepted: 24 February 2025
Published: 08 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return