AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Charge-asymmetry RuCo single atom alloy catalyst for efficient hydrogen evolution reaction

Yi Yao1Huilong Geng2Wanchun Duan1Lili Zhang3Faqiang Xu1( )Huishan Shang3( )
National Synchrotron Radiation Laboratory (NSRL) University of Science and Technology of China (USTC), Hefei 230029, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

RuCo single-atom alloy catalyst supported on S, N co-doped carbon nanosheets (RuCo SAA/SNC) was synthesized by a continuous two-step pyrolysis and carbonization process. This method effectively introduces a large number of defects and high nonmetallic heteroatoms into the catalyst gradually. The incorporation of Ru significantly expedites the charge transfer between the RuCo single-atom alloy site and the nitrogen, sulfur co-doped carbon nanosheet matrix. This not only optimizes the structural characteristics of Ru clusters but also effectively reduces the overpotential for the hydrogen evolution reaction (HER), thereby substantially enhancing the intrinsic catalytic activity.

Abstract

By incorporating a limited number of precious metal atoms into the base metal, the single-atom alloy catalyst not only optimizes the electronic structure and stability of the catalyst but also emerges as an innovative material that enhances the efficiency and selectivity of catalytic reactions. RuCo single-atom alloy electrocatalyst supported on S, N co-doped carbon nanosheets (RuCo SAA/SNC) uniformly distributed on nitrogen, sulfur co-doped carbon nanosheets was prepared by two-step pyrolysis and carbonization. The incorporation of Ru not only optimizes the atomic utilization of Ru but also enhances the charge conduction properties of the surface Co species, thereby increasing the evolution and migration rates of hydrogen ions. In a 0.5 M H2SO4 solution, the RuCo SAA/SNC catalyst demonstrates a tafel slope of 27.5 mV·dec−1 and an overpotential of merely 43 mV at 10 mA·cm−2. This work achieves enhanced catalytic performance and stability by precisely regulating the atomic-level structure of single-atom alloy catalysts, thereby promoting their widespread application in energy conversion and green chemistry.

Electronic Supplementary Material

Download File(s)
7313_ESM.pdf (3.2 MB)

References

[1]

Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68–71.

[2]

Zhou, P.; Navid, I. A.; Ma, Y. J.; Xiao, Y. X.; Wang, P.; Ye, Z. W.; Zhou, B. W.; Sun, K.; Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

[3]

Boettcher, S. W. Introduction to green hydrogen. Chem. Rev. 2024, 124, 13095–13098.

[4]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[5]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[6]

Wang, Y. B.; Lu, Q.; Li, F.; Guan, D. Q.; Bu, Y. F. Atomic-scale configuration enables fast hydrogen migration for electrocatalysis of acidic hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2213523.

[7]

Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H. Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 3379–3389.

[8]

Yang, M. Y.; Yuan, J.; Fu, X. L.; Chen, J. J.; Hu, J.; Lu, Z. G.; Liu, C. Surface reconstruction of heterostructures in alkaline medium towards enhanced electrocatalytic hydrogen evolution. Rare Met. 2024, 43, 2636–2647.

[9]

Wang, D. G.; Wu, J. X.; Jiao, L. Y.; Xie, L. M. In situ identification of active sites during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 12910–12918.

[10]

Niu, X. D.; Geng, H. L.; Lv, Z. Y.; Wei, J.; Xu, D. Y.; Chen, W. X. A nitrogen-doped carbon nanosheet composited platinum-cobalt single atom alloy catalyst for effective hydrogen evolution reaction. Chem. Commun. 2024, 60, 5189–5192.

[11]

Wang, C. X.; Guo, W. X.; Chen, T. L.; Lu, W. Y.; Song, Z. Y.; Yan, C. C.; Feng, Y.; Gao, F. M.; Zhang, X. N.; Rao, Y. P. et al. Advanced noble-metal/transition-metal/metal-free electrocatalysts for hydrogen evolution reaction in water-electrolysis for hydrogen production. Coord. Chem. Rev. 2024, 514, 215899.

[12]

Cui, Z. B.; Jiao, W. S.; Huang, Z. Y.; Chen, G. Z.; Zhang, B.; Han, Y. H.; Huang, W. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction. Small 2023, 19, 2301465.

[13]

Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu–Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.

[14]

Li, Q. Q.; Zhang, Q.; Xu, W. L.; Zhao, R.; Jiang, M.; Gao, Y. H.; Zhong, W. D.; Chen, K.; Chen, Y. T.; Li, X. K. et al. Sowing single atom seeds: A versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction. Adv. Energy Mater. 2023, 13, 2203955.

[15]

Chen, S. H.; Zheng, X. B.; Zhu, P.; Li, Y. P.; Zhuang, Z. C.; Wu, H. J.; Zhu, J. X.; Xiao, C. H.; Chen, M. Z.; Wang, P. S. et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem., Int. Ed. 2024, 63, e202411591.

[16]
He, H.; Mai, J. H.; Hu, K. S.; Yu, H. Q.; Zhang, Z. G.; Zhan, F.; Liu, X. H. Recent advances in electrocatalysts for efficient hydrogen evolution reaction. Rare Met., in press, DOI: 10.1007/s12598-024-02649-1.
[17]

Fan, M. Y.; Wang, J. J.; Zhao, J.; Zhang, H.; Ma, T. Y.; Han, X. P.; Hu, W. B. High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Met. 2024, 43, 1537–1546.

[18]

Zhang, X. H.; Wu, A. P.; Wang, D. X.; Jiao, Y. Q.; Yan, H. J.; Jin, C. X.; Xie, Y.; Tian, C. G. Fine-tune the electronic structure in Co–Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting. Appl. Catal. B: Environ. 2023, 328, 122474.

[19]

Li, S. W.; Ren, P. J.; Yang, C.; Liu, X.; Yin, Z.; Li, W. Z.; Yang, H. J.; Li, J.; Wang, X. P.; Wang, Y. et al. Fe5C2 nanoparticles as low-cost HER electrocatalyst: The importance of Co substitution. Sci. Bull. 2018, 63, 1358–1363.

[20]

Jin, Q.; Liu, N.; Dai, C. N.; Xu, R. N.; Wu, B.; Yu, G. Q.; Chen, B. H.; Du, Y. Z. H2-directing strategy on in situ synthesis of Co–MoS2 with highly expanded interlayer for elegant HER activity and its mechanism. Adv. Energy Mater. 2020, 10, 2000291.

[21]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C. H.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co–N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[22]

Liu, X. H.; Zheng, L. R.; Han, C. X.; Zong, H. X.; Yang, G.; Lin, S. R.; Kumar, A.; Jadhav, A. R.; Tran, N. Q.; Hwang, Y. et al. Identifying the activity origin of a cobalt single-atom catalyst for hydrogen evolution using supervised learning. Adv. Funct. Mater. 2021, 31, 2100547.

[23]

Jung, K.; Pratama, D. S. A.; Haryanto, A.; Jang, J. I.; Kim, H. M.; Kim, J. C.; Lee, C. W.; Kim, D. W. Iridium-cluster-implanted ruthenium phosphide electrocatalyst for hydrogen evolution reaction. Adv. Fiber Mater. 2024, 6, 158–169.

[24]

Banerjee, S.; Kakekhani, A.; Wexler, R. B.; Rappe, A. M. Relationship between the surface reconstruction of nickel phosphides and their activity toward the hydrogen evolution reaction. ACS Catal. 2023, 13, 4611–4621.

[25]

Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902.

[26]

Xu, B. B.; Fu, X. B.; You, X. M.; Zhao, E.; Li, F. F.; Chen, Z. P.; Li, Y. X.; Wang, X. L.; Yao, Y. F. Synergistic promotion of single-atom co surrounding a PtCo alloy based on a g–C3N4 nanosheet for overall water splitting. ACS Catal. 2022, 12, 6958–6967.

[27]

Huo, L. X.; Jin, C. Q.; Tang, J. L.; Xu, X. H.; Jiang, K.; Shang, L. Y.; Li, Y. W.; Zhang, J. Z.; Zhu, L. Q.; Chu, J. H. et al. Ultrathin NiPt single-atom alloy for synergistically accelerating alkaline hydrogen evolution. ACS Appl. Energy Mater. 2022, 5, 15136–15145.

[28]

Kayode, G. O.; Hill, A. F.; Montemore, M. M. Bayesian optimization of single-atom alloys and other bimetallics: Efficient screening for alkane transformations, CO2 reduction, and hydrogen evolution. J. Mater. Chem. A 2023, 11, 19128–19137.

[29]

Wan, R. D.; Luo, M.; Wen, J. B.; Liu, S. L.; Kang, X. W.; Tian, Y. Pt–Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation. J. Energy Chem. 2022, 69, 44–53.

[30]

Lv, Y. K.; Han, Y.; Wang, K.; Sun, W. Y.; Du, C. X.; Huang, R. W.; Peng, P.; Zang, S. Q. Satellite Pd single-atom embraced AuPd alloy nanoclusters for enhanced hydrogen evolution. ACS Nano 2024, 18, 32186–32195.

[31]

Han, X. X.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Recent progress on the synthesis and applications of high-entropy alloy catalysts. Nano Res. Energy 2023, 2, e9120084.

[32]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, 9120017.

[33]

Liu, J. W.; Lee, C.; Hu, Y.; Liang, Z. S.; Ji, R.; Soo, X. Y. D.; Zhu, Q.; Yan, Q. Y. Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high-entropy intermetallics. SmartMat 2023, 4, e1210.

[34]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α–MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem., Int. Ed. 2024, 63, e202316755.

[35]

Zhang, D. P.; Li, Y. X.; Li, Y.; Zhan, S. H. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat 2022, 3, 417–446.

[36]

Da, Y. M.; Jiang, R.; Tian, Z. L.; Han, X. P.; Chen, W.; Hu, W. B. The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 2023, 4, e1136.

[37]

Cheng, Y. J.; Wang, H.; Song, H. Q.; Zhang, K.; Waterhouse, G. I. N.; Chang, J. W.; Tang, Z. Y.; Lu, S. Y. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction-a review. Nano Res. Energy 2023, 2, e9120082.

[38]

Liu, Y.; Zhao, H.; Zhao, Y. L. Designing efficient single metal atom biocatalysts at the atomic structure level. Angew. Chem., Int. Ed. 2024, 63, e202315933.

[39]

Yan, L.; Mao, Y.; Li, Y. X.; Sha, Q. H.; Sun, K.; Li, P. P.; Waterhouse, G. I. N.; Wang, Z. Y.; Tian, S. B.; Sun, X. M. Sublimation transformation synthesis of dual-atom Fe catalysts for efficient oxygen reduction reaction. Angew. Chem., Int. Ed. 2025, 64, e202413179.

[40]

Geng, H. L.; Wei, Z. H.; Li, Y. Q.; Deng, Z. W.; Li, L.; Wang, Y.; Zhai, H. Z.; Li, S. H.; Chen, W. X. Controlling the electron spin states of single-atom catalysts for enhanced electrocatalytic performances. J. Energy Sustain. 2024, 1, 3630.

[41]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[42]

Yang, J. R.; Zhu, C. X.; Wang, D. S. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem., Int. Ed. 2024, 63, e202406883.

[43]

Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.

[44]

Yan, L.; Wang, D. C.; Li, M.; Lu, R. H.; Lu, M. G.; Li, P. P.; Wang, K. Y.; Jin, S.; Wang, Z. Y.; Tian, S. B. Hexa-atom Pt catalyst fabricated by a ligand engineering strategy for efficient hydrogen oxidation reaction. Angew. Chem. 2024, 136, e202410832.

[45]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[46]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[47]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi–O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[48]

Zhang, T. J.; Walsh, A. G.; Yu, J. H.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588.

[49]

Pang, Y.; Wan, X.; Li, Y. C.; Song, M. C.; Liu, X. F.; Shang, J. X.; Zheng, L. R.; Shui, J. L. Evolution of nitrogen-coordinated metal single atoms toward single-atom alloys on MgH2 as efficient and stable hydrogen spillover catalysts. Adv. Mater. 2024, 36, 2412942.

[50]

Shen, T.; Wang, S.; Zhao, T. H.; Hu, Y. Z.; Wang, D. L. Recent advances of single-atom-alloy for energy electrocatalysis. Adv. Energy Mater. 2022, 12, 2201823.

[51]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched Ru x Fe3- x O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[52]

Mu, X. Q.; Yu, M.; Liu, X. Y.; Liao, Y. R.; Chen, F. J.; Pan, H. Z.; Chen, Z. Y.; Liu, S. L.; Wang, D. S.; Mu, S. C. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS Energy Lett. 2024, 9, 5763–5770.

[53]

Hu, Y. M.; Chao, T. T.; Li, Y. P.; Liu, P. G.; Zhao, T. H.; Yu, G.; Chen, C.; Liang, X.; Jin, H. L.; Niu, S. W. et al. Cooperative Ni(Co)–Ru–P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem., Int. Ed. 2023, 62, e20230880.

Nano Research
Article number: 94907313
Cite this article:
Yao Y, Geng H, Duan W, et al. Charge-asymmetry RuCo single atom alloy catalyst for efficient hydrogen evolution reaction. Nano Research, 2025, 18(4): 94907313. https://doi.org/10.26599/NR.2025.94907313
Topics:

472

Views

129

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 January 2025
Revised: 13 February 2025
Accepted: 14 February 2025
Published: 17 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return