AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Advanced porous thermoelectric materials: Design, construction, and application

Ruoyan LiBangzhi Ge ( )Chongjian Zhou
State Key Laboratory of Solidification Processing and Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

Porous thermoelectric materials exhibit great potential in energy-saving applications due to their lightweight, flexible, and low thermal conductivity characteristics. This review summarizes recent progress in pore structure optimization and its applications, providing insights for the development of next-generation thermoelectric materials.

Abstract

Thermoelectric (TE) technology, capable of converting heat directly into electricity, holds great promise for applications requiring efficient energy output, such as wearable devices and aerospace vehicles. However, the widespread use of traditional TE materials is limited by challenges such as high density, brittleness, and coupling of thermoelectric parameters. Porous TE materials offer a potential solution by enabling lightweight, enhancing mechanical flexibility, and reducing thermal conductivity by rational design and precise control of the pore structure. This review examined recent advances in the construction of optimized pore structures, including the size, distribution, and geometry. We summarized the state-of-the-art synthesis and classification for porous TE materials, highlighting methods for tuning pore configurations to enhance TE efficiency. Additionally, we also collected the cutting-edge device ensemble strategies and demonstrated their application such as aerospace, temperature management, and medical devices. Finally, we took an outlook on the rational and intelligent design of pore structures and their integration into systems for energy output. This review provides new understanding of mechanisms and designs for porous TEs, and also offers valuable guidance for the development of next-generation materials and their application in innovative self-powered systems.

References

[1]

Liu, M.; Guo, M. C.; Lyu, H.; Lai, Y. D.; Zhu, Y. K.; Guo, F. K.; Yang, Y. Y.; Yu, K.; Dong, X. Y.; Liu, Z. H. et al. Doping strategy in metavalently bonded materials for advancing thermoelectric performance. Nat. Commun. 2024, 15, 8286.

[2]

Qin, B. C.; Kanatzidis, M. G.; Zhao, L. D. The development and impact of tin selenide on thermoelectrics. Science 2024, 386, eadp2444.

[3]

Zhu, Y. K.; Sun, Y. X.; Dong, X. Y.; Yin, L.; Liu, M.; Guo, M. C.; Wu, H.; Li, F. S.; Guo, Z. T.; Wang, X. Y. et al. General design of high-performance and textured layered thermoelectric materials via stacking of mechanically exfoliated crystals. Joule 2024, 8, 2412–2424.

[4]

Bhui, A.; Biswas, K. Mobile ion confinement for better thermoelectrics. Nat. Mater. 2024, 23, 451–452.

[5]

Jiang, B. B.; Wang, W.; Liu, S. X.; Wang, Y.; Wang, C. F.; Chen, Y. N.; Xie, L.; Huang, M. Y.; He, J. Q. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022, 377, 208–213.

[6]

Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; Nisar, M.; Zha, Z. Z.; Zhong, Z. N.; Li, F.; Liang, G. X.; Luo, J. T.; Li, M. et al. Deviceization of high-performance and flexible Ag2Se films for electronic skin and servo rotation angle control. Nat. Commun. 2024, 15, 8356.

[7]

Qin, Y. X.; Qin, B. C.; Hong, T.; Zhang, X.; Wang, D. Y.; Liu, D. R.; Wang, Z. Y.; Su, L. Z.; Wang, S. N.; Gao, X. et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3. Science 2024, 383, 1204–1209.

[8]

Xie, L. J.; Yin, L.; Yu, Y.; Peng, G. Y.; Song, S. W.; Ying, P. J.; Cai, S. T.; Sun, Y. X.; Shi, W. J.; Wu, H. et al. Screening strategy for developing thermoelectric interface materials. Science 2023, 382, 921–928.

[9]

Ming, H. W.; Luo, Z. Z.; Chen, Z. X.; Cui, H. H.; Zheng, W. W.; Zou, Z. G.; Kanatzidis, M. G. Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering leading to high thermoelectric performance in SnTe. J. Am. Chem. Soc. 2024, 146, 28448–28458.

[10]

Ghosh, S.; Nozariasbmarz, A.; Lee, H.; Raman, L.; Sharma, S.; Smriti, R. B.; Mandal, D.; Zhang, Y.; Karan, S. K.; Liu, N. et al. High-entropy-driven half-Heusler alloys boost thermoelectric performance. Joule 2024, 8, 3303–3312.

[11]

Mao, D. S.; Zhou, Y.; Yu, Y.; Wang, Y.; Han, M.; Meng, Q. Y.; Lu, Y.; Feng, J. H.; Kong, M. H.; Yang, H. L. et al. Scalable and sustainable manufacturing of twin boundary-enhanced flexible Bi0.4Sb1.6Te3 films with high thermoelectric performance. Joule 2024, 8, 3313–3323.

[12]

Shi, X.; Song, S. W.; Gao, G. H.; Ren, Z. F. Global band convergence design for high-performance thermoelectric power generation in Zintls. Science 2024, 384, 757–762.

[13]

Zhao, P.; Xue, W. H.; Zhang, Y.; Zhi, S. Z.; Ma, X. J.; Qiu, J. M.; Zhang, T. Y.; Ye, S.; Mu, H. M.; Cheng, J. X. et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material. Nature 2024, 631, 777–782.

[14]

Liu, M.; Zhang, X. Y.; Zhang, S. X.; Pei, Y. Z. Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics. Nat. Commun. 2024, 15, 6580.

[15]

Yu, H. L.; Hu, Z. Q.; He, J.; Ran, Y. J.; Zhao, Y.; Yu, Z.; Tai, K. P. Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films. Nat. Commun. 2024, 15, 2521.

[16]

Cheng, R.; Ge, H. R.; Huang, S. P.; Xie, S.; Tong, Q. W.; Sang, H.; Yan, F.; Zhu, L. Y.; Wang, R.; Liu, Y. et al. Unraveling electronic origins for boosting thermoelectric performance of p-type (Bi, Sb)2Te3. Sci. Adv. 2024, 10, eadn9959.

[17]

An, D. C.; Zhang, S. H.; Zhai, X.; Yang, W. T.; Wu, R. G.; Zhang, H. D.; Fan, W. H.; Wang, W. X.; Chen, S. P.; Cojocaru-Mirédin, O. et al. Metavalently bonded tellurides: The essence of improved thermoelectric performance in elemental Te. Nat. Commun. 2024, 15, 3177.

[18]

Wu, R. G.; Yu, Y.; Jia, S.; Zhou, C. J.; Cojocaru-Mirédin, O.; Wuttig, M. Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding. Nat. Commun. 2023, 14, 719.

[19]

Jia, B. H.; Wu, D.; Xie, L.; Wang, W.; Yu, T.; Li, S. Y.; Wang, Y.; Xu, Y. J.; Jiang, B. B.; Chen, Z. Q. et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024, 384, 81–86.

[20]

Fujimoto, S.; Nagase, K.; Ohshima, H.; Murata, M.; Yamamoto, A.; Lee, C. H. Thermoelectric module of SiGe bulk alloys forming p–n junction at the hot side. Adv. Eng. Mater. 2022, 24, 2101520.

[21]

Toko, K.; Maeda, S.; Ishiyama, T.; Nozawa, K.; Murata, M.; Suemasu, T. Layer exchange synthesis of SiGe for flexible thermoelectric generators: A comprehensive review. Adv. Electron. Mater. 2024, 10, 2400130.

[22]

Koike, S.; Yanagisawa, R.; Jalabert, L.; Anufriev, R.; Kurosawa, M.; Mori, T.; Nomura, M. Planar-type SiGe thermoelectric generator with double cavity structure. Appl. Phys. Lett. 2024, 124, 123902.

[23]

Li, A. R.; Wang, Y. C.; Li, Y. Z.; Yang, X. L.; Nan, P. F.; Liu, K.; Ge, B. H.; Fu, C. G.; Zhu, T. J. High performance magnesium-based plastic semiconductors for flexible thermoelectrics. Nat. Commun. 2024, 15, 5108.

[24]

Li, D.; Shi, X. L.; Zhu, J. X.; Cao, T. Y.; Ma, X.; Li, M.; Han, Z. K.; Feng, Z. Y.; Chen, Y. X.; Wang, J. Y. et al. High-performance flexible p-type Ce-filled Fe3CoSb12 skutterudite thin film for medium-to-high-temperature applications. Nat. Commun. 2024, 15, 4242.

[25]

Yin, L.; Yang, F.; Bao, X.; Xue, W. H.; Du, Z. P.; Wang, X. Y.; Cheng, J. X.; Ji, H. J.; Sui, J.; Liu, X. J. et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 2023, 8, 665–674.

[26]

Xu, B.; Tian, Y. J. Breaking a bottleneck for thermoelectric generators. Science 2023, 382, 882–883.

[27]

Su, L. Z.; Wang, D. Y.; Wang, S. N.; Qin, B. C.; Wang, Y. P.; Qin, Y. X.; Jin, Y.; Chang, C.; Zhao, L. D. High thermoelectric performance realized through manipulating layered phonon–electron decoupling. Science 2022, 375, 1385–1389.

[28]

Hu, J. S.; Sun, Y. X.; Shi, W. J.; Wu, H.; Zhu, J. B.; Cheng, J. X.; Jiao, L.; Jiang, X. H.; Xie, L. J.; Qu, N. et al. Realizing ultrahigh conversion efficiency of ≈ 9.0% in YbCd2Sb2/Mg3Sb2 zintl module for thermoelectric power generation. Adv. Mater. 2024, 36, 2411738.

[29]

Zhou, Y.; Liu, X. X.; Jia, B. H.; Ding, T. P.; Mao, D. S.; Wang, T. C.; Ho, G. W.; He, J. Q. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Sci. Adv. 2023, 9, eadf5701.

[30]

Palaporn, D.; Tanusilp, S. A.; Sun, Y. F.; Pinitsoontorn, S.; Kurosaki, K. Thermoelectric materials for space explorations. Mater. Adv. 2024, 5, 5351–5364.

[31]

Xie, L.; Ming, C.; Song, Q. F.; Wang, C.; Liao, J. C.; Wang, L.; Zhu, C. X.; Xu, F. F.; Sun, Y. Y.; Bai, S. Q. et al. Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%. Sci. Adv. 2023, 9, eadg7919.

[32]

Wang, D. Y.; Ding, J. M.; Ma, Y. Q.; Xu, C. L.; Li, Z. Y.; Zhang, X.; Zhao, Y.; Zhao, Y.; Di, Y. Q.; Liu, L. Y. et al. Multi-heterojunctioned plastics with high thermoelectric figure of merit. Nature 2024, 632, 528–535.

[33]

Yang, Q. Y.; Yang, S. Q.; Qiu, P. F.; Peng, L. M.; Wei, T. R.; Zhang, Z.; Shi, X.; Chen, L. F. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854–858.

[34]

Yu, L.; Shi, X. L.; Mao, Y. Q.; Liu, W. D.; Ji, Z.; Wei, S. T.; Zhang, Z. P.; Song, W. Y.; Zheng, S. Q.; Chen, Z. G. Simultaneously boosting thermoelectric and mechanical properties of n-type Mg3Sb1.5Bi0.5-based zintls through energy-band and defect engineering. ACS Nano 2024, 18, 1678–1689.

[35]

Zhang, X. F.; Zhu, H. T.; Dong, X. J.; Fan, Z.; Yao, Y.; Chen, N.; Yang, J. W.; Guo, K. W.; Hao, J. Z.; He, L. H. et al. High-performance MgAgSb/Mg3(Sb, Bi)2-based thermoelectrics with η = 12% at T ≤ 583 K. Joule 2024, 8, 3324–3335.

[36]

Liu, D. R.; Wang, D. Y.; Hong, T.; Wang, Z. Y.; Wang, Y. P.; Qin, Y. X.; Su, L. Z.; Yang, T. Y.; Gao, X.; Ge, Z. H. et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 2023, 380, 841–846.

[37]

Qiu, P. F.; Deng, T. T.; Chen, L. D.; Shi, X. Plastic inorganic thermoelectric materials. Joule 2024, 8, 622–634.

[38]

Sun, Y. X.; Guo, F. K.; Feng, Y.; Li, C.; Zou, Y. C.; Cheng, J. X.; Dong, X. Y.; Wu, H.; Zhang, Q.; Liu, W. S. et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nat. Commun. 2023, 14, 8085.

[39]

Tang, G. D.; Liu, Y. Q.; Yang, X. Y.; Zhang, Y. S.; Nan, P. F.; Ying, P.; Gong, Y. R.; Zhang, X. M.; Ge, B. H.; Lin, N. et al. Interplay between metavalent bonds and dopant orbitals enables the design of SnTe thermoelectrics. Nat. Commun. 2024, 15, 9133.

[40]

Wang, L.; Wen, Y.; Bai, S. L.; Chang, C.; Li, Y. C.; Liu, S.; Liu, D. R.; Wang, S. Q.; Zhao, Z.; Zhan, S. P. et al. Realizing thermoelectric cooling and power generation in n-type PbS0.6Se0.4 via lattice plainification and interstitial doping. Nat. Commun. 2024, 15, 3782.

[41]

Yang, H. L.; Jia, B. H.; Xie, L.; Mao, D. S.; Xia, J. C.; Yang, J. M.; Yuan, M. H.; Gan, Q.; Liu, X. S.; Hu, M. Y. et al. Achieving high thermoelectric performance through ultra-low lattice thermal conductivity based on phonon localization. Joule 2024, 8, 2667–2680.

[42]

Zheng, Y. Y.; Han, X.; Yang, J. W.; Jing, Y. Y.; Chen, X. Y.; Li, Q. Q.; Zhang, T.; Li, G. D.; Zhu, H. T.; Zhao, H. Z. et al. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 2022, 15, 2374–2385.

[43]

Yu, J. C.; Liu, X. D.; Hu, H. H.; Jiang, Y. L.; Zhuang, H. L.; Li, H. Z.; Su, B.; Li, J. W.; Han, Z. R.; Wang, Z. Q. et al. Ultralow thermal conductivity and high ZT of Cu2Se-based thermoelectric materials mediated by TiO2− n nanoclusters. Joule 2024, 8, 2652–2666.

[44]

Liu, Z. H.; Gao, W. H.; Oshima, H.; Nagase, K.; Lee, C. H.; Mori, T. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 2022, 13, 1120.

[45]

Yang, D.; Shi, X. L.; Li, M.; Nisar, M.; Mansoor, A.; Chen, S.; Chen, Y. X.; Li, F.; Ma, H. L.; Liang, G. X. et al. Flexible power generators by Ag2Se thin films with record-high thermoelectric performance. Nat. Commun. 2024, 15, 923.

[46]

Wang, H. Y.; Lin, X. Y.; Han, G.; Zhang, B.; Chen, Y.; Zhang, L.; Lu, X.; Wang, G. Y.; Zhou, X. Y. Flexible porous Ag2Se films: From freestanding inorganic films to inorganic-network/organic-skeleton thermoelectric generators. Adv. Funct. Mater. 2025, 35, 2413605.

[47]

Hu, H. H.; Zhuang, H. L.; Jiang, Y. L.; Shi, J. L.; Li, J. W.; Cai, B. W.; Han, Z. R.; Pei, J.; Su, B.; Ge, Z. H. et al. Thermoelectric Cu12Sb4S13-based synthetic minerals with a sublimation-derived porous network. Adv. Mater. 2021, 33, 2103633.

[48]

Li, J. H.; Xia, B. L.; Xiao, X.; Huang, Z. F.; Yin, J. Y.; Jiang, Y. W.; Wang, S. L.; Gao, H. Q.; Shi, Q. W.; Xie, Y. N. et al. Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 2023, 17, 19232–19241.

[49]

Kim, F.; Yang, S. E.; Ju, H.; Choo, S.; Lee, J.; Kim, G.; Jung, S. H.; Kim, S.; Cha, C.; Kim, K. T. et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 2021, 4, 579–587.

[50]

Chen, J. J.; Xie, H.; Liu, L. Z.; Guan, H.; You, Z. S.; Zou, L. J.; Jin, H. J. Strengthening gold with dispersed nanovoids. Science 2024, 385, 629–633.

[51]

Choo, S.; Ejaz, F.; Ju, H.; Kim, F.; Lee, J.; Yang, S. E.; Kim, G.; Kim, H.; Jo, S.; Baek, S. et al. Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nat. Commun. 2021, 12, 3550.

[52]

Guo, Y.; Mu, J. K.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. Carbon 2016, 107, 146–153.

[53]

Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

[54]

Tang, J. Y.; Wang, H. T.; Lee, D. H.; Fardy, M.; Huo, Z. Y.; Russell, T. P.; Yang, P. D. Holey silicon as an efficient thermoelectric material. Nano Lett. 2010, 10, 4279–4283.

[55]

Zhang, T.; Wu, S. L.; Xu, J.; Zheng, R. T.; Cheng, G. A. High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays. Nano Energy 2015, 13, 433–441.

[56]

Qian, X.; Zhou, J. W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202.

[57]

He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

[58]

Ryu, B.; Chung, J.; Kumagai, M.; Mato, T.; Ando, Y.; Gunji, S.; Tanaka, A.; Yana, D.; Fujimoto, M.; Imai, Y. et al. Best thermoelectric efficiency of ever-explored materials. iScience 2023, 26, 106494.

[59]

Zhang, Y. W.; Ge, B. Z.; Feng, J. H.; Kuang, N. L.; Ye, H. L.; Yuan, Z. L.; Wu, M. Y.; Jiang, B. B.; Li, J.; Sun, Q. et al. High-performance self-powered flexible thermoelectric device for accelerated wound healing. Adv. Funct. Mater. 2024, 34, 2403990.

[60]

Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266.

[61]

Yun, J.; Yoo, Y. J.; Kim, H. R.; Song, Y. M. Recent progress in thermal management for flexible/wearable devices. Soft Sci. 2023, 3, 12.

[62]

Yang, S.; Li, Y. M.; Deng, L.; Tian, S.; Yao, Y.; Yang, F.; Feng, C. L.; Dai, J.; Wang, P.; Gao, M. Y. Flexible thermoelectric generator and energy management electronics powered by body heat. Microsyst. Nanoeng. 2023, 9, 106.

[63]

Zoui, M. A.; Bentouba, S.; Stocholm, J. G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies 2020, 13, 3606.

[64]

Yousefi, E.; Abbas Nejad, A.; Sayyar, N. A new approach for simultaneous thermal management of hot and cold sides of thermoelectric modules. Appl. Therm. Eng. 2023, 233, 121156.

[65]

Al-Madhhachi, H.; Min, G. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system. Energy Convers. Manage. 2017, 133, 14–19.

[66]

Wang, D. Z.; Liu, W. D.; Mao, Y. Q.; Li, S.; Yin, L. C.; Wu, H.; Li, M.; Wang, Y. F.; Shi, X. L.; Yang, X. N. et al. Decoupling carrier-phonon scattering boosts the thermoelectric performance of n-type GeTe-based materials. J. Am. Chem. Soc. 2024, 146, 1681–1689.

[67]

Si, R. F.; Zhang, Z. W.; Liu, C. Y.; Peng, Y.; Bai, X. B.; Feng, B. Q.; Chen, J. L.; Gao, J.; Miao, L. Decoupled electron and phonon transport in thermoelectric GeTe compounded with multi-walled carbon nanotubes. Mater. Today Phys. 2023, 34, 101081.

[68]

Jin, K. P.; Tiwari, J.; Feng, T. L.; Lou, Y.; Xu, B. Realizing high thermoelectric performance in eco-friendly Bi2S3 with nanopores and Cl-doping through shape-controlled nano precursors. Nano Energy 2022, 100, 107478.

[69]

Zhang, Y. C.; Day, T.; Snedaker, M. L.; Wang, H.; Krämer, S.; Birkel, C. S.; Ji, X. L.; Liu, D. Y.; Snyder, G. J.; Stucky, G. D. A mesoporous anisotropic n-type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material. Adv. Mater. 2012, 24, 5065–5070.

[70]

Ning, H. P.; Mastrorillo, G. D.; Grasso, S.; Du, B. L.; Mori, T.; Hu, C. F.; Xu, Y.; Simpson, K.; Maizza, G.; Reece, M. J. Enhanced thermoelectric performance of porous magnesium tin silicide prepared using pressure-less spark plasma sintering. J. Mater. Chem. A 2015, 3, 17426–17432.

[71]

Wu, H. J.; Chen, L. L.; Ning, S. T.; Zhao, X. D.; Deng, S. P.; Qi, N.; Ren, F.; Chen, Z. Q.; Tang, J. Extremely low thermal conductivity and enhanced thermoelectric performance of porous gallium-doped In2O3. ACS Appl. Energy Mater. 2021, 4, 12943–12953.

[72]

Chen, J.; Sun, Q.; Bao, D. Y.; Liu, T. Y.; Liu, W. D.; Liu, C.; Tang, J.; Zhou, D. L.; Yang, L.; Chen, Z. G. Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se. ACS Appl. Mater. Interfaces 2020, 12, 51523–51529.

[73]

Lee, M. H.; Kang, Y. H.; Kim, J.; Lee, Y. K.; Cho, S. Y. Freely shapable and 3D porous carbon nanotube foam using rapid solvent evaporation method for flexible thermoelectric power generators. Adv. Energy Mater. 2019, 9, 1900914.

[74]

Okada, N.; Sato, K.; Yokoo, M.; Kodama, E.; Kanehashi, S.; Shimomura, T. Thermoelectric properties of poly(3-hexylthiophene) nanofiber aerogels with a giant Seebeck coefficient. ACS Appl. Polym. Mater. 2021, 3, 455–463.

[75]

Gnanaseelan, M.; Chen, Y. A.; Luo, J. J.; Krause, B.; Pionteck, J.; Pötschke, P.; Qi, H. S. Cellulose-carbon nanotube composite aerogels as novel thermoelectric materials. Compos. Sci. Technol. 2018, 163, 133–140.

[76]

Gordon, M. P.; Zaia, E. W.; Zhou, P.; Russ, B.; Coates, N. E.; Sahu, A.; Urban, J. J. Soft PEDOT: PSS aerogel architectures for thermoelectric applications. J. Appl. Polym. Sci. 2017, 134, 44070.

[77]

Wang, X. D.; Liang, L. R.; Lv, H. C.; Zhang, Y. C.; Chen, G. M. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano Energy 2021, 90, 106577.

[78]

Tan, D. X.; Zhao, J.; Gao, C. Y.; Wang, H. F.; Chen, G. M.; Shi, D. L. Carbon nanoparticle hybrid aerogels: 3D double-interconnected network porous microstructure, thermoelectric, and solvent-removal functions. ACS Appl. Mater. Interfaces 2017, 9, 21820–21828.

[79]
Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330, March 11, 1986.
[80]

Kim, F.; Kwon, B.; Eom, Y.; Lee, J. E.; Park, S.; Jo, S.; Park, S. H.; Kim, B. S.; Im, H. J.; Lee, M. H. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309.

[81]

Choo, S.; Lee, J.; Şişik, B.; Jung, S. J.; Kim, K.; Yang, S. E.; Jo, S.; Nam, C.; Ahn, S.; Lee, H. S. et al. Geometric design of Cu2Se-based thermoelectric materials for enhancing power generation. Nat. Energy 2024, 8, 1105–1116.

[82]

Zhang, D. W.; Lim, X. J. G.; Li, X. W.; Saglik, K.; Solco, S. F. D.; Tan, X. Y.; Leow, Y.; Zhai, W.; Tan, C. K. I.; Xu, J. W. et al. 3D-printed porous thermoelectrics for in situ energy harvesting. ACS Energy Lett. 2023, 8, 332–338.

[83]

Qiu, J. H.; Yan, Y. G.; Luo, T. T.; Tang, K. C.; Yao, L.; Zhang, J.; Zhang, M.; Su, X. L.; Tan, G. J.; Xie, H. Y. et al. 3D Printing of highly textured bulk thermoelectric materials: Mechanically robust BiSbTe alloys with superior performance. Energy Environ. Sci. 2019, 12, 3106–3117.

[84]

Zhang, Y. H.; Xu, G. Y.; Han, F.; Wang, Z.; Ge, C. C. Preparation and thermoelectric properties of nanoporous Bi2Te3-based alloys. J. Electron. Mater. 2010, 39, 1741–1745.

[85]

Wu, C. F.; Wei, T. R.; Sun, F. H.; Li, J. F. Nanoporous PbSe–SiO2 thermoelectric composites. Adv. Sci. 2017, 4, 1700199.

[86]

Qiao, J. X.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S. Q.; Qiu, J. H.; Tai, K. P. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075–38083.

[87]

Zhao, L. D.; Zhang, B. P.; Liu, W. S.; Zhang, H. L.; Li, J. F. Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2009, 467, 91–97.

[88]

Schmidt, R. D.; Case, E. D.; Ni, J. E.; Sakamoto, J. S.; Trejo, R. M.; Lara-Curzio, E.; Payzant, E. A.; Kirkham, M. J.; Peascoe-Meisner, R. A. The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials. Philos. Mag. 2012, 92, 1261–1286.

[89]

Khan, A. U.; Kobayashi, K.; Tang, D. M.; Yamauchi, Y.; Hasegawa, K.; Mitome, M.; Xue, Y. M.; Jiang, B. Z.; Tsuchiya, K.; Golberg, D. et al. Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity. Nano Energy 2017, 31, 152–159.

[90]

Morata, A.; Pacios, M.; Gadea, G.; Flox, C.; Cadavid, D.; Cabot, A.; Tarancón, A. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Nat. Commun. 2018, 9, 4759.

[91]

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

[92]

de Boor, J.; Kim, D. S.; Ao, X.; Becker, M.; Hinsche, N. F.; Mertig, I.; Zahn, P.; Schmidt, V. Thermoelectric properties of porous silicon. Appl. Phys. A 2012, 107, 789–794.

[93]

Ju, H.; Kim, J. Anion-exchanged porous SnTe nanosheets for ultra-low thermal conductivity and high-performance thermoelectrics. Chem. Eng. J. 2020, 402, 126274.

[94]

Ju, H.; Kim, K.; Park, D.; Kim, J. Fabrication of porous SnSeS nanosheets with controlled porosity and their enhanced thermoelectric performance. Chem. Eng. J. 2018, 335, 560–566.

[95]

Zhao, K. P.; Duan, H. Z.; Raghavendra, N.; Qiu, P. F.; Zeng, Y.; Zhang, W. Q.; Yang, J. H.; Shi, X.; Chen, L. D. Solid-state explosive reaction for nanoporous bulk thermoelectric materials. Adv. Mater. 2017, 29, 1701148.

[96]

Pan, Y.; Aydemir, U.; Grovogui, J. A.; Witting, I. T.; Hanus, R.; Xu, Y. B.; Wu, J. S.; Wu, C. F.; Sun, F. H.; Zhuang, H. L. et al. Melt-centrifuged (Bi, Sb)2Te3: Engineering microstructure toward high thermoelectric efficiency. Adv. Mater. 2018, 30, 1802016.

[97]

Dun, C.; Hewitt, C. A.; Jiang, Q. K.; Guo, Y.; Xu, J. W.; Li, Y.; Li, Q.; Wang, H. Z.; Carroll, D. L. Bi2Te3 plates with single nanopore: The formation of surface defects and self-repair growth. Chem. Mater. 2018, 30, 1965–1970.

[98]

Xu, B.; Feng, T. L.; Li, Z.; Pantelides, S. T.; Wu, Y. Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano Lett. 2018, 18, 4034–4039.

[99]

Xu, B.; Feng, T. L.; Agne, M. T.; Zhou, L.; Ruan, X. L.; Snyder, G. J.; Wu, Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem., Int. Ed. 2017, 56, 3546–3551.

[100]

Hu, L. P.; Wu, H. J.; Zhu, T. J.; Fu, C. G.; He, J. Q.; Ying, P. J.; Zhao, X. B. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 2015, 5, 1500411.

[101]

Pan, Y.; Li, J. F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 2016, 8, e275–e275.

[102]

Hong, M.; Chasapis, T. C.; Chen, Z. G.; Yang, L.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. n-Type Bi2Te3− x Se x nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719–4727.

[103]

Romano, G.; Grossman, J. C. Toward phonon-boundary engineering in nanoporous materials. Appl. Phys. Lett. 2014, 105, 033116.

[104]

Zhang, J.; Zhu, T.; Zhang, C.; Yan, Y. G.; Tan, G. J.; Liu, W.; Su, X. L.; Tang, X. F. In-situ formed nano-pore induced by Ultrasonication boosts the thermoelectric performance of Cu2Se compounds. J. Alloys Compd. 2021, 881, 160639.

[105]

Zhang, W.; Al-Maythalony, B. A.; Gao, F.; Wu, F.; Zhao, W.; Xu, P.; Zhang, W.; Chen, C.; Shi, Z.; Wang, X. et al. Thermally stable inorganic Bi0.4Sb1.6Te3/metal–organic framework (MOF) composites with 1-by-1 nm pore engineering towards mid-temperature thermoelectrics. Energy Environ. Sci. 2024, 17, 5679–5690.

[106]

Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 1979, 34, 1–71.

[107]

Li, S. K.; Wang, R.; Zhu, W. M.; Chu, M. H.; Huang, Z. Y.; Zhang, Y. J.; Zhao, W. G.; Liu, F. S.; Luo, J.; Xiao, Y. G. et al. Achieving high thermoelectric performance by introducing 3D atomically thin conductive framework in porous Bi2Te2.7Se0.3-carbon nanotube hybrids. Adv. Electron. Mater. 2020, 6, 2000292.

[108]

Zen, N.; Puurtinen, T. A.; Isotalo, T. J.; Chaudhuri, S.; Maasilta, I. J. Engineering thermal conductance using a two-dimensional phononic crystal. Nat. Commun. 2014, 5, 3435.

[109]

Li, Y.; Li, W.; Han, T. C.; Zheng, X.; Li, J. X.; Li, B. W.; Fan, S. H.; Qiu, C. W. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 2021, 6, 488–507.

[110]

Ma, H.; Li, C.; Ma, Y. W.; Wang, H.; Rouse, Z. W.; Zhang, Z. L.; Slebodnick, C.; Alatas, A.; Baker, S. P.; Urban, J. J. et al. Supercompliant and soft (CH3NH3)3Bi2I9 crystal with ultralow thermal conductivity. Phys. Rev. Lett. 2019, 123, 155901.

[111]

Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 1999, 283, 1699–1706.

[112]

Kim, D. S.; Hellman, O.; Shulumba, N.; Saunders, C. N.; Lin, J. Y. Y.; Smith, H. L.; Herriman, J. E.; Niedziela, J. L.; Abernathy, D. L.; Li, C. W. et al. Temperature-dependent phonon lifetimes and thermal conductivity of silicon by inelastic neutron scattering and ab initio calculations. Phys. Rev. B 2020, 102, 174311.

[113]

Xie, L. J.; Yang, J. W.; Liu, Z. Y.; Qu, N.; Dong, X. Y.; Zhu, J. B.; Shi, W. J.; Wu, H.; Peng, G. Y.; Guo, F. K. et al. Highly efficient thermoelectric cooling performance of ultrafine-grained and nanoporous materials. Mater. Today 2023, 65, 5–13.

[114]

Hong, M.; Wang, Y.; Xu, S. D.; Shi, X.; Chen, L. D.; Zou, J.; Chen, Z. G. Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1− x Se x with refined band structures. Nano Energy 2019, 60, 1–7.

[115]

Shi, X. L.; Wu, A. Y.; Liu, W. D.; Moshwan, R.; Wang, Y.; Chen, Z. G.; Zou, J. Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 2018, 12, 11417–11425.

[116]

Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515.

[117]

Yang, J.; Xi, L. L.; Qiu, W. J.; Wu, L. H.; Shi, X.; Chen, L. D.; Yang, J. H.; Zhang, W. Q.; Uher, C.; Singh, D. J. On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory-experiment perspective. Npj Comput. Mater. 2016, 2, 15015.

[118]

Kimberly, T. Q.; Wang, E. Y. C.; Navarro, G. D.; Qi, X.; Ciesielski, K. M.; Toberer, E. S.; Kauzlarich, S. M. Into the void: Single nanopore in colloidally synthesized Bi2Te3 nanoplates with ultralow lattice thermal conductivity. Chem. Mater. 2024, 36, 6618–6626.

[119]

Li, J. H.; Shi, Q. W.; Röhr, J. A.; Wu, H.; Wu, B.; Guo, Y.; Zhang, Q. H.; Hou, C. Y.; Li, Y. G.; Wang, H. Z. Flexible 3D porous MoS2/CNTs architectures with ZT of 0.17 at room temperature for wearable thermoelectric applications. Adv. Funct. Mater. 2020, 30, 2002508.

[120]

He, P. L.; Wu, Y. Constructing of highly porous thermoelectric structures with improved thermoelectric performance. Nano Res. 2021, 14, 3608–3615.

[121]

Lee, J. H.; Galli, G. A.; Grossman, J. C. Nanoporous Si as an efficient thermoelectric material. Nano Lett. 2008, 8, 3750–3754.

[122]

Hu, Q. J.; Zhu, Z.; Zhang, Y. W.; Li, X. J.; Song, H. Z.; Zhang, Y. J. Remarkably high thermoelectric performance of Cu2− x Li x Se bulks with nanopores. J. Mater. Chem. A 2018, 6, 23417–23424.

[123]

Acharya, S.; Yu, B. K.; Hwang, J.; Kim, J.; Kim, W. High thermoelectric performance of ZnO by coherent phonon scattering and optimized charge transport. Adv. Funct. Mater. 2021, 31, 2105008.

[124]

Zhao, L. W.; Qiu, W. B.; Sun, Y. X.; Chen, L. Q.; Deng, H.; Yang, L.; Shi, X. M.; Tang, J. Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles. J. Alloys Compd. 2021, 863, 158376.

[125]

Cutler, M.; Leavy, J. F.; Fitzpatrick, R. L. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 1964, 133, A1143–A1152.

[126]

Zhu, Z.; Zhang, Y. W.; Song, H. Z.; Li, X. J. High thermoelectric performance and low thermal conductivity in Cu2− x Na x Se bulk materials with micro-pores. Appl. Phys. A 2019, 125, 572.

[127]

Wang, J. J.; Zhou, C. J.; Yu, Y.; Zhou, Y. X.; Lu, L.; Ge, B. Z.; Cheng, Y. D.; Jia, C. L.; Mazzarello, R.; Shi, Z. Q. et al. Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano Energy 2021, 79, 105484.

[128]

Tan, G. J.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149.

[129]

Zhao, Y.; Li, Z. Y.; Wang, D. Y.; Zhang, X.; Ji, Z.; Niu, L. X.; Di, Y. Q.; Guan, Y.; Liu, L. Y.; Zou, Y. et al. High performance and colorful polymer thermoelectrics with imprinted porous film. Adv. Mater. 2024, 36, 2407692.

[130]

Lee, Y.; Lo, S. H.; Chen, C. Q.; Sun, H.; Chung, D. Y.; Chasapis, T. C.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nat. Commun. 2014, 5, 3640.

[131]

Chen, Z. W.; Ge, B. H.; Li, W.; Lin, S. Q.; Shen, J. W.; Chang, Y. J.; Hanus, R.; Snyder, G. J.; Pei, Y. Z. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun. 2017, 8, 13828.

[132]

Wang, H.; LaLonde, A. D.; Pei, Y. Z.; Snyder, G. J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 2013, 23, 1586–1596.

[133]

Liu, H. T.; Sun, Q.; Zhong, Y.; Deng, Q.; Gan, L.; Lv, F. L.; Shi, X. L.; Chen, Z. G.; Ang, R. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano Energy 2022, 91, 106706.

[134]

Jia, B. H.; Huang, Y.; Wang, Y.; Zhou, Y. S. Y.; Zhao, X. D.; Ning, S. T.; Xu, X.; Lin, P. J.; Chen, Z. Q.; Jiang, B. B. et al. Realizing high thermoelectric performance in non-nanostructured n-type PbTe. Energy Environ. Sci. 2022, 15, 1920–1929.

[135]

Toprak, M. S.; Stiewe, C.; Platzek, D.; Williams, S.; Bertini, L.; Müller, E.; Gatti, C.; Zhang, Y.; Rowe, M.; Muhammed, M. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 2004, 14, 1189–1196.

[136]

Liang, J.; Zhang, X. F.; Wan, C. L. From brittle to ductile: A scalable and tailorable all-inorganic semiconductor foil through a rolling process toward flexible thermoelectric modules. ACS Appl. Mater. Interfaces 2022, 14, 52017–52024.

[137]

Liu, Y. J.; Wang, X. D.; Hou, S. H.; Wu, Z. X.; Wang, J.; Mao, J.; Zhang, Q.; Liu, Z. G.; Cao, F. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat. Commun. 2023, 14, 3058.

[138]

Karthikeyan, V.; Surjadi, J. U.; Li, X. C.; Fan, R.; Theja, V. C. S.; Li, W. J.; Lu, Y.; Roy, V. A. L. Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nat. Commun. 2023, 14, 2069.

[139]

Zhang, X.; Zhao, L. D. Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics 2015, 1, 92–105.

[140]

He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.

[141]

Yan, Q. Y.; Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 2022, 21, 503–513.

[142]

Yang, L.; Chen, Z. G.; Han, G.; Hong, M.; Zou, Y. C.; Zou, J. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy 2015, 16, 367–374.

[143]

Huang, S. Y.; Liu, Y.; Zhao, Y.; Ren, Z. F.; Guo, C. F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2019, 29, 1805924.

[144]

Sun, T. T.; Zhou, B. Y.; Zheng, Q.; Wang, L. J.; Jiang, W.; Snyder, G. J. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 2020, 11, 572.

[145]

Chen, L. Z.; Lou, J.; Rong, X. H.; Liu, Z. Q.; Ding, Q. J.; Li, X.; Jiang, Y. F.; Ji, X. X.; Han, W. J. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors. Carbohydr. Polym. 2023, 321, 121310.

[146]

Kishore, R. A.; Nozariasbmarz, A.; Poudel, B.; Sanghadasa, M.; Priya, S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat. Commun. 2019, 10, 1765.

[147]

Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050.

[148]

Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manage. 2017, 140, 167–181.

[149]
Simatupang, J. W.; Purnama, I. Study on various simple power tracking methods for thermoelectric generator. In 2019 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Tangerang, Indonesia, 2019, pp 79–84.
[150]

Xu, H. W.; Zhang, Q.; Yi, L. B.; Huang, S. L.; Yang, H.; Li, Y. N.; Guo, Z.; Hu, H. Y.; Sun, P.; Tan, X. J. et al. High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process. Appl. Energy 2022, 326, 119959.

[151]

Cui, G. P.; Feng, C. P.; Xu, S. C.; Sun, K. Y.; Ji, J. C.; Hou, L.; Lan, H. B.; Shang, H. J.; Ding, F. Z. 3D-printed Bi2Te3-based thermoelectric generators for energy harvesting and temperature response. ACS Appl. Mater. Interfaces 2024, 16, 35353–35360.

[152]
Belovski, I.; Yovcheva, P.; Surchev, S.; Aleksandrov, A. Thermoelectric generator power prediction based on artificial neural network. In 2018 20 th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, Bulgaria, 2018, pp 1–4.
[153]

Jung, S. J.; Shin, J.; Lim, S. S.; Kwon, B.; Baek, S. H.; Kim, S. K.; Park, H. H.; Kim, J. S. Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy 2021, 81, 105604.

[154]

Lv, H. C.; Liang, L. R.; Zhang, Y. C.; Deng, L.; Chen, Z. J.; Liu, Z. X.; Wang, H. F.; Chen, G. M. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 2021, 88, 106260.

[155]

Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2017, 2, 17066.

[156]

Giulia, P. Thermoelectric materials: The power of pores. Nat. Rev. Mater. 2017, 2, 17006.

[157]

Lee, M. H.; Yun, J. H.; Kim, G.; Lee, J. E.; Park, S. D.; Reith, H.; Schierning, G.; Nielsch, K.; Ko, W.; Li, A. P. et al. Synergetic enhancement of thermoelectric performance by selective charge anderson localization-delocalization transition in n-type Bi-doped PbTe/Ag2Te nanocomposite. ACS Nano 2019, 13, 3806–3815.

[158]

Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N. K.; Soni, A.; He, J. Q.; Waghmare, U. V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727.

[159]

Zhang, Y. X.; Huang, Q. Y.; Yan, X.; Wang, C. Y.; Yang, T. Y.; Wang, Z. Y.; Shi, Y. C.; Shan, Q.; Feng, J.; Ge, Z. H. Synergistically optimized electron and phonon transport in high-performance copper sulfides thermoelectric materials via one-pot modulation. Nat. Commun. 2024, 15, 2736.

[160]

Jiang, Y. L.; Su, B.; Yu, J. C.; Han, Z. R.; Hu, H. H.; Zhuang, H. L.; Li, H. Z.; Dong, J. F.; Li, J. W.; Wang, C. et al. Exceptional figure of merit achieved in boron-dispersed GeTe-based thermoelectric composites. Nat. Commun. 2024, 15, 5915.

[161]

Kim, J.; Bae, E. J.; Kang, Y. H.; Lee, C.; Cho, S. Y. Elastic thermoelectric sponge for pressure-induced enhancement of power generation. Nano Energy 2020, 74, 104824.

[162]

Han, X.; Yang, X.; Zhang, K. A conformable and stretchable thermoelectric generator for efficient body heat harvesting. ACS Appl. Electron. Mater. 2024, 6, 8608–8616.

[163]

Hu, Q. X.; Liu, W. D.; Zhang, L.; Sun, W.; Gao, H.; Shi, X. L.; Yang, Y. L.; Liu, Q. F.; Chen, Z. G. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing. Chem. Eng. J. 2023, 457, 141024.

[164]

Zhu, W. C.; Xu, A. Q.; Yang, W. L.; Xiong, B. Y.; Xie, C. J.; Li, Y.; Xu, L. M.; Shi, Y.; Lin, W. Optimal design of annular thermoelectric generator with twisted tape for performance enhancement. Energy Convers. Manage. 2022, 270, 116258.

[165]

Zaia, E. W.; Gordon, M. P.; Yuan, P. Y.; Urban, J. J. Progress and perspective: Soft thermoelectric materials for wearable and internet-of-things applications. Adv. Electron. Mater. 2019, 5, 1800823.

[166]

Chen, Y. N.; Zhao, Y.; Liang, Z. Q. Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ. Sci. 2015, 8, 401–422.

[167]

He, M. H.; Zhao, Y.; Wang, B.; Xi, Q.; Zhou, J.; Liang, Z. Q. 3D printing fabrication of amorphous thermoelectric materials with ultralow thermal conductivity. Small 2015, 11, 5889–5894.

[168]

Li, H. B.; Zong, Y. D.; He, J.; Ding, Q. J.; Jiang, Y. F.; Li, X.; Han, W. J. Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydr. Polym. 2022, 280, 119036.

[169]

Falanga, V.; Isseroff, R. R.; Soulika, A. M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic wounds. Nat. Rev. Dis. Primers 2022, 8, 50.

[170]

Kamoun, E. A.; Kenawy, E. R. S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233.

[171]

O’Brien, J. F.; Grace, P. A.; Perry, I. J.; Hannigan, A.; Clarke Moloney, M.; Burke, P. E. Randomized clinical trial and economic analysis of four-layer compression bandaging for venous ulcers. Br. J. Surg. 2003, 90, 794–798.

[172]

Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G. P.; Wang, F.; Guo, A. H.; Walczysko, P.; Gu, Y. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 2006, 442, 457–460.

[173]

Willenborg, S.; Eming, S. A. Cellular networks in wound healing. Science 2018, 362, 891, 892.

[174]

Vanhaesebroeck, B. Charging the batteries to heal wounds through PI3K. Nat. Chem. Biol. 2006, 2, 453–455.

[175]

Logothetis, I.; Gkoutzeli, D.; Kagkas, D.; Vassiliadis, S.; Siores, E.; Pirogova, E. Thermoelectric heat patch for clinical and self-management: Melanoma excision wound care. Ann. Biomed. Eng. 2019, 47, 537–548.

[176]

Gao, Y. F.; Zhu, S. J.; Gao, J.; Miao, L.; Xu, F.; Sun, L. X. Wearable thermoelectric cooler encapsulated with low thermal conductivity filler and honeycomb structure for high cooling effect. Mater. Today Phys. 2024, 46, 101491.

[177]

Gao, X. Z.; Gao, F. L.; Liu, J.; Li, Y. J.; Wan, P. B.; Yu, Z. Z.; Li, X. F. Self-powered resilient porous sensors with thermoelectric poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) and carbon nanotubes for sensitive temperature and pressure dual-mode sensing. ACS Appl. Mater. Interfaces 2022, 14, 43783–43791.

[178]

Yang, L.; Chen, X.; Dutta, A.; Zhang, H.; Wang, Z. H.; Xin, M. Y.; Du, S. J.; Xu, G. Z.; Cheng, H. Y. Thermoelectric porous laser-induced graphene-based strain–temperature decoupling and self-powered sensing. Nat. Commun. 2025, 16, 792.

[179]

Deng, Q.; Shi, X. L.; Li, M.; Tan, X. B.; Li, R. H.; Wang, C.; Chen, Y.; Dong, H. L.; Ang, R.; Chen, Z. G. Lattice defect engineering advances n-type PbSe thermoelectrics. Nat. Commun. 2025, 16, 656.

[180]

Deng, T. T.; Gao, Z. Q.; Li, Z.; Qiu, P. F.; Li, Z.; Yuan, X. J.; Ming, C.; Wei, T. R.; Chen, L. D.; Shi, X. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals. Science 2024, 386, 1112–1117.

[181]

Siddique, S.; Abbas, G.; Yaqoob, M. M.; Zhao, J.; Chen, R. H.; Larsson, J. A.; Cao, Y. D.; Chen, Y. X.; Zheng, Z. H.; Zhang, D. P. et al. Optimization of thermoelectric performance in p-type SnSe crystals through localized lattice distortions and band convergence. Adv. Sci. 2024, 12, 2411594.

Nano Research
Article number: 94907308
Cite this article:
Li R, Ge B, Zhou C. Advanced porous thermoelectric materials: Design, construction, and application. Nano Research, 2025, 18(4): 94907308. https://doi.org/10.26599/NR.2025.94907308

552

Views

172

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 December 2024
Revised: 04 February 2025
Accepted: 14 February 2025
Published: 22 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return