AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (21.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Boosting syngas production in photoelectrochemical CO2 reduction through organic molecule interaction with copper photoanodes

Chenchen Zhang1Chaofeng Chen1Junjun Mao1Dan Wang1Peng Luan2Qingqing Song1Yuanming Xie1Yao Wang1( )Yong Zhao3 ( )Ying Zhang1( )Yongfa Zhu4
Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
Department of Chemistry, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The PDI/Cu2O/Cu photoanode enhances photoelectrochemical syngas production from CO2 by improving light absorption, where PDI is the perylene tetracarboxylic di-(propyl imidazole), reducing photocorrosion, and increasing electron lifetime, achieving 124.47 μmol/(cm2·h) at 1.57 V vs. the reversible hydrogen electrode (RHE).

Abstract

Photoelectrochemical syngas production using photoanode-driven systems from aqueous CO2 is a promising technology. To address the challenge of poor selectivity caused by the wide band gap of photoelectrode, we introduce a novel photoanode, PDI/Cu2O/Cu, where PDI is the perylene tetracarboxylic di-(propyl imidazole). Using Cu2O as a substrate enhances charge transfer kinetics, while PDI modification mitigates photocorrosion and augments photoelectrochemical CO2 reduction reaction (PEC CO2RR) activity. This enhancement stems from PDI’s narrow band gap and efficient visible light absorption. The syngas production achieved a noteworthy 124.47 μmol/(cm2·h) at 1.57 V vs. RHE, making it an optimal feedstock gas for hydrocarbon synthesis. Detailed UV–vis spectra indicate that layered structure significantly improves the absorption edge of the photoanode, facilitating enhanced utilization of visible light. Additionally, the electron lifetime of the PDI/Cu2O/Cu photoanode is substantially increased which is also one of the factors affecting the reactivity, as demonstrated by the Bode phase plot.

Electronic Supplementary Material

Download File(s)
7306_ESM.pdf (1.4 MB)

References

[1]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[2]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0−Co δ + interface double-site-mediated C−C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[3]

Jiang, Z. N.; Ren, S.; Cao, X.; Fan, Q. K.; Yu, R.; Yang, J.; Mao, J. J. pH-universal electrocatalytic CO2 reduction with ampere-level current density on doping-engineered bismuth sulfide. Angew. Chem. , Int. Ed. 2024, 63, e202408412.

[4]

Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S. L.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.

[5]

Chen, S. H.; Zheng, X. B.; Zhu, P.; Li, Y. P.; Zhuang, Z. C.; Wu, H. J.; Zhu, J. X.; Xiao, C. H.; Chen, M. Z.; Wang, P. S. et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem., Int. Ed. 2024, 63, e202411591.

[6]

Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu−Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.

[7]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[8]

Pan, W. Y.; Wei, Z. H.; Su, Y. H.; Lian, Y. B.; Zheng, Z. Y.; Yuan, H. H.; Qin, Y. Z.; Xie, X. L.; Bai, Q. Q.; Jiao, Z. Y. et al. Hydroxylated metal-organic-layer nanocages anchoring single atomic cobalt sites for robust photocatalytic CO2 reduction. Nano Res. 2024, 17, 2410–2419.

[9]

Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed. 2023, 62, e202218460.

[10]

Fang, J. J.; Zhu, C. Y.; Hu, H. L.; Li, J. Q.; Li, L. C.; Zhu, H. Y.; Mao, J. J. Progress of photocatalytic CO2 reduction toward multi-carbon products. Sci. China Chem. 2024, 67, 3994–4013.

[11]

Abdi, F. F.; van de Krol, R. Nature and light dependence of bulk recombination in Co–Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 2012, 116, 9398–9404.

[12]

Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

[13]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[14]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[15]

Wang, L. Q.; Si, W. P.; Hou, X. G.; Wang, M. X.; Liu, X. L.; Ye, Y. H.; Hou, F.; Liang, J. Novel integrated strategies toward efficient and stable unassisted photoelectrochemical water splitting. Sustain. Mater. Technol. 2020, 25, e00209.

[16]

Wang, J.; Liu, D.; Zhu, Y. F.; Zhou, S. Y.; Guan, S. Y. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B: Environ. 2018, 231, 251–261.

[17]

Yang, J.; Miao, H.; Li, W. L.; Li, H. Q.; Zhu, Y. F. Designed synthesis of a p-Ag2S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. J. Mater. Chem. A 2019, 7, 6482–6490.

[18]

Ghosh, S.; Kouamé, N. A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P. H.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511.

[19]

Gui, J. N.; Li, L. B.; Yu, B. Y.; Wang, D.; Yang, B.; Gu, Q. Q.; Zhao, Y.; Zhu, Y. F.; Zhang, Y. Modulation of the coordination environment of copper for stable CO2 electroreduction with tunable selectivity. ACS Appl. Mater. Interfaces 2023, 15, 25516–25523.

[20]

Zhang, Y.; Zhang, C. C.; Wang, D.; Gui, J. N.; Mao, J. J.; Lou, Y.; Pan, C. S.; Zhu, Y. F. In situ formed copper nanoparticles via strong electronic interaction with organic skeleton for pH-universal electrocatalytic CO2 reduction. J. Mater. Chem. A 2023, 11, 22992–23000.

[21]

Liu, G. J.; Zheng, F.; Li, J. R.; Zeng, G. S.; Ye, Y. F.; Larson, D. M.; Yano, J.; Crumlin, E. J.; Ager, J. W.; Wang, L. W. et al. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat. Energy 2021, 6, 1124–1132.

[22]

Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. C. et al. Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.

[23]

Zhou, Y. X.; Yao, Y. B.; Zhao, R.; Wang, X. X.; Fu, Z. Z.; Wang, D. W.; Wang, H. Z.; Zhao, L.; Ni, W.; Yang, Z. Y. et al. Stabilization of Cu+ via strong electronic interaction for selective and stable CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205832.

[24]

Zhou, Q. Q.; Chen, Y. X.; Shi, H. Y.; Chen, R.; Ji, M. H.; Li, K. X.; Wang, H. L.; Jiang, X.; Lu, C. Z. The construction of p/n-Cu2O heterojunction catalysts for efficient CO2 photoelectric reduction. Catalysts 2023, 13, 857.

[25]

Zhang, T.; Wu, J. D.; Wang, Z.; Wei, Z.; Liu, J. H.; Gong, X. Z. Transfer of molecular oxygen and electrons improved by the regulation of C–N/C=O for highly efficient 2e-ORR. Chem. Eng. J. 2022, 433, 133591.

[26]

Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.

[27]

Zhang, Y. N.; Wang, D.; Liu, W. X.; Lou, Y.; Zhang, Y.; Dong, Y. M.; Xu, J.; Pan, C. S.; Zhu, Y. F. Create a strong internal electric-field on PDI photocatalysts for boosting phenols degradation via preferentially exposing π-conjugated planes up to 100%. Appl. Catal. B: Environ. 2022, 300, 120762.

[28]

Guan, L. L.; Shu, Y.; Jiang, Y. H.; Zhao, F.; Wei, Y. B.; Yan, J. C.; Ren, Y.; Zhou, X. W.; Liu, Z. Rational design and fabrication of Cu2O film as photoelectrode for water splitting. J. Alloy. Compd. 2023, 956, 170283.

[29]

Zhang, Y. H.; Lee, S.; Jeong, S.; Son, E.; Baik, J. M.; Han, Y. K.; Park, H. Phase-bridged hierarchical catalysts for efficient and stable water electrolysis. Adv. Funct. Mater. 2024, 34, 2309250.

[30]

Yi, X. S.; Zhang, S. Q.; Shen, H.; Li, B.; Yang, L. X.; Dai, W. L.; Song, R. J.; Zou, J. P.; Luo, S. L. Atomic sulfur dissimilation remolding ZnIn2S4 nanosheets surface to enhance built-internal electric field for photocatalytic CO2 conversion to syngas. Appl. Catal. B: Environ. 2023, 338, 123003.

[31]

Akbar, M. B.; Wang, Y. J.; Zhang, X. H.; He, T. Study on photoelectrochemical CO2 reduction over Cu2O. J. Photochem. Photobiol. A: Chem. 2023, 437, 114483.

[32]

Zhao, B.; Huang, X. J.; Ding, Y.; Bi, Y. P. Bias-free solar-driven syngas production: A Fe2O3 photoanode featuring single-atom cobalt integrated with a silver-palladium cathode. Angew. Chem., Int. Ed. 2023, 62, e202213067.

[33]

Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem., Int. Ed. 2016, 55, 8840–8845.

[34]

Wang, T. X.; Guo, L. L.; Pei, H.; Chen, S. T.; Li, R. J.; Zhang, J.; Peng, T. Y. Electron-rich pincer ligand-coupled cobalt porphyrin polymer with single-atom sites for efficient (photo)electrocatalytic CO2 reduction at ultralow overpotential. Small 2021, 17, 2102957.

[35]

Wang, D.; He, Y. N.; Zhong, N.; He, Z. Q.; Shen, Y.; Zeng, T.; Lu, X. H.; Ma, J.; Song, S. In situ chloride-mediated synthesis of TiO2 thin film photoanode with enhanced photoelectrochemical activity for carbamazepine oxidation coupled with simultaneous cathodic H2 production and CO2 conversion to fuels. J. Hazard. Mater. 2021, 410, 124563.

[36]

Wang, Y.; Zhu, Y.; Sun, L. C.; Li, F. Selective CO production by photoelectrochemical CO2 reduction in an aqueous solution with cobalt-based molecular redox catalysts. ACS Appl. Mater. Interfaces 2020, 12, 41644–41648.

[37]

Lu, W. W.; Zhang, Y.; Zhang, J. J.; Xu, P. Reduction of gas CO2 to CO with high selectivity by Ag nanocube-based membrane cathodes in a photoelectrochemical system. Ind. Eng. Chem. Res. 2020, 59, 5536–5545.

[38]

Xu, L.; Zhang, F. Y.; Song, X. Y.; Yin, Z. L.; Bu, Y. X. Construction of reduced graphene oxide-supported Ag–Cu2O composites with hierarchical structures for enhanced photocatalytic activities and recyclability. J. Mater. Chem. A 2015, 3, 5923–5933.

[39]

Chen, X. B.; Tang, Y.; Liu, W. W. Efficient dye-sensitized solar cells based on nanoflower-like ZnO photoelectrode. Molecules 2017, 22, 1284.

[40]

Yang, M.; Zhao, X. Y.; Ma, L. Q.; Yao, Y.; Ding, Y.; Shen, X. D. Electrochemical properties of Cu2O/Cu composite particles prepared by a novel and facile method. Electrochim. Acta 2011, 56, 5783–5787.

[41]

Udayabhanu; Nagaraju, G.; Nagabhushana, H.; Suresh, D.; Anupama, C.; Raghu, G. K.; Sharma, S. C. Vitis labruska skin extract assisted green synthesis of ZnO super structures for multifunctional applications. Ceram. Int. 2017, 43, 11656–11667.

[42]

Basavalingaiah, K. R.; Harishkumar, S.; Nagaraju, G. Synthesis of Cu2O/Ag composite nanocubes with promising photoluminescence and photodegradation activity over methylene blue dye. Adv. Mater. Lett. 2019, 10, 832–838.

[43]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[44]

Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched RuFe3−O4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

[45]

Mu, X. Q.; Yuan, Y. T.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.

Nano Research
Article number: 94907306
Cite this article:
Zhang C, Chen C, Mao J, et al. Boosting syngas production in photoelectrochemical CO2 reduction through organic molecule interaction with copper photoanodes. Nano Research, 2025, 18(4): 94907306. https://doi.org/10.26599/NR.2025.94907306
Topics:

408

Views

95

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 January 2025
Revised: 10 February 2025
Accepted: 13 February 2025
Published: 20 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return