AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Oxygen vacancies-rich TiO2−x enhanced composite polyurethane electrolytes for high-voltage solid-state lithium metal batteries

Xiaoning Xu1,2Fei Pei1 ( )Wenjie Lin1Jia Lei1Yuhan Yang1Henghui Xu1Zhen Li1 ( )Yunhui Huang1
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Dongfeng Motor Corporation Research & Development Institute, Wuhan 430058, China
Show Author Information

Graphical Abstract

The profusion of Lewis acid sites on the TiO2−x surface was designed as multifunctional fillers to facilitate interactions with ether oxygen groups and bistrifluoromethanesulfonimide (TFSI) anions, thereby enhancing ionic conductivity and expanding the electrochemical stability window of the polymer electrolytes.

Abstract

Due to the favorable interfacial stability with electrodes, excellent processability, and reasonable material cost, organic–inorganic composite solid-state electrolytes have attracted broad interests in the field of solid-state batteries. In this study, we have developed a solid-state composite electrolyte with polyurethane (PU) as polymer matrix and TiO2−x as nanofiller (denoted as PUL-TiO2−x). The block copolymer PU features alternating soft and hard segments, which offers distinct advantages due to its unique structural arrangement. The soft segment of the block copolymer facilitates the dissociation of lithium salt, enabling the conduction of Li+, while the rich hydrogen bond network formed by the hard segment ensures the mechanical strength of the electrolyte. The profusion of Lewis acid sites on the TiO2−x surface facilitates interactions with ether oxygen groups and bistrifluoromethanesulfonimide (TFSI) anions, thereby enhancing ionic conductivity (σ) and expanding the electrochemical stability window of the electrolyte. Notably, the PUL-TiO2−x electrolyte exhibits an impressive σ of 2.19 × 10−4 S·cm−1 at 40 °C, a Li+ transference number of 0.47, and an electrochemical stability window of 4.98 V. The resulting LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery demonstrates a specific capacity of 171 mAh·g−1 and exhibits excellent cycling stability, maintaining its performance over 270 cycles at 40 °C. These findings underscore the immense potential of the PUL-TiO2−x in advancing the development of high-performance all-solid-state lithium batteries.

Electronic Supplementary Material

Download File(s)
7304_ESM.pdf (1.4 MB)

References

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Huo, S. D.; Sheng, L.; Xue, W. D.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. M. Challenges of stable ion pathways in cathode electrode for all-solid-state lithium batteries: A review. Adv. Energy Mater. 2023, 13, 2204343.

[3]

Chen, J.; Wu, J. W.; Wang, X. D.; Zhou, A. A.; Yang, Z. L. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87.

[4]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[5]

Wang, H.; An, H. W.; Shan, H. M.; Zhao, L.; Wang, J. J. Research progress on interfaces of all-solid-state batteries. Acta Phys.-Chim. Sin. 2021, 37, 2007070.

[6]

Zhao, Q.; Stalin, S.; Zhao, C.Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[7]

Wang, Z. F.; Zhao, J.; Zhang, X. D.; Rong, Z. Y.; Tang, Y. F.; Liu, X. Y.; Zhu, L. Y.; Zhang, L. Q.; Huang, J. Y. Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries. eScience 2023, 3, 100087.

[8]

Ji, Y.; Wang, Z. F.; Zhao, C. T.; Fang, Z. Q.; Gong, Y.; Jing, Q. H.; Xia, Y.; Luan, T. J.; Jiang, Y. Y.; Liang, J. W. et al. Diffusion-free all-solid-state batteries enabled by an ionic/electronic dual-conductive anode. Renewables 2024, 2, 194–203.

[9]

Wu, J. Y.; Yuan, L. X.; Zhang, W. X.; Li, Z.; Xie, X. L.; Huang, Y. H. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14, 12–36.

[10]

Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Challenges and improvement strategies progress of lithium metal anode. Acta Phys.-Chim. Sin. 2021, 37, 2006021.

[11]

Zhao, Y.; Wang, L.; Zhou, Y. N.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci. 2021, 8, 2003675.

[12]

Tang, C. K.; Yu, L. Y.; Jiang, Q. K.; Gu, R. M.; Zhang, Y. M.; Liu, Z. Q.; Cai, W. L.; Wu, H.; Zhang, Y.; Yao, M. Polymer-based electrolyte for lithium-based high-energy-density and safe energy storages devices: Strategy and mechanisms. Renewables 2024, 2, 297–340.

[13]

Reinoso, D. M.; Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430–464.

[14]

Meng, N.; Lian, F.; Cui, G. L. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small 2021, 17, 2005762.

[15]

Lin, Z. Y.; Guo, X. W.; Zhang, R.; Tang, M. X.; Ding, P. P.; Zhang, Z. H.; Wu, L. Q.; Wang, Y. T.; Zhao, S.; Zhang, Q. et al. Molecular structure adjustment enhanced anti-oxidation ability of polymer electrolyte for solid-state lithium metal battery. Nano Energy 2022, 98, 107330.

[16]

Yang, L. X.; Luo, D.; Zheng, Y.; Yang, T. Z.; Ma, Q. Y.; Nie, Y. H.; Dou, H. Z.; Zhang, Y. G.; Huang, R.; Yu, A. P. et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries. Adv. Funct. Mater. 2022, 32, 2204778.

[17]

Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

[18]

Huo, H. Y.; Wu, B.; Zhang, T.; Zheng, X. S.; Ge, L.; Xu, T. W.; Guo, X. X.; Sun, X. L. Anion-immobilized polymer electrolyte achieved by cationic metal–organic framework filler for dendrite-free solid-state batteries. Energy Storage Mater. 2019, 18, 59–67.

[19]

Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

[20]

Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem., Int. Ed. 2018, 57, 2096–2100.

[21]

Sun, Y. H.; Gao, M. D.; Li, H.; Xu, L.; Xue, Q.; Wang, X. R.; Bai, Y.; Wu, C. Application of metal–organic frameworks to the interface of lithium metal batteries. Acta Phys.-Chim. Sin. 2021, 37, 2007048.

[22]

Xu, H. T.; Zhang, H. R.; Ma, J.; Xu, G. J.; Dong, T. T.; Chen, J. C.; Cui, G. L. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 2019, 4, 2871–2886.

[23]

Xi, G.; Xiao, M.; Wang, S. J.; Han, D. M.; Li, Y. N.; Meng, Y. Z. Polymer-based solid electrolytes: Material selection, design, and application. Adv. Funct. Mater. 2021, 31, 2007598.

[24]

Zheng, F. F.; Li, C. W.; Li, Z. C.; Cao, X.; Luo, H. B.; Liang, J.; Zhao, X. D.; Kong, J. Advanced composite solid electrolytes for lithium batteries: Filler dimensional design and ion path optimization. Small 2023, 19, 2206355.

[25]

Pei, F.; Huang, Y. M.; Wu, L.; Zhou, S. Y.; Kang, Q.; Lin, W. J.; Liao, Y. Q.; Zhang, Y.; Huang, K.; Shen, Y. et al. Multisite crosslinked poly(ether-urethane)-based polymer electrolytes for high-voltage solid-state lithium metal batteries. Adv. Mater. 2024, 36, 2409269.

[26]

Liang, H. M.; Wang, L.; Wang, A. P.; Song, Y. Z.; Wu, Y. Z.; Yang, Y.; He, X. M. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review. Nano-Micro Lett. 2023, 15, 42.

[27]

Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv. Mater. 2023, 35, 2110423.

[28]

Pan, X. N.; Yang, P. X.; Guo, Y.; Zhao, K. J.; Xi, B. J.; Lin, F.; Xiong, S. L. Electrochemical and nanomechanical properties of TiO2 ceramic filler Li-ion composite gel polymer electrolytes for Li metal batteries. Adv. Mater. Interfaces 2021, 8, 2100669.

[29]

Banitaba, S. N.; Semnani, D.; Rezaei, B.; Ensafi, A. A. Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2 nanofiller applicable in lithium-ion batteries. Polym. Adv. Technol. 2019, 30, 1234–1242.

[30]

Qin, J. L.; Pei, F.; Wang, R.; Wu, L.; Han, Y.; Xiao, P.; Shen, Y.; Yuan, L. X.; Huang, Y. H.; Wang, D. L. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh·kg−1 lithium metal batteries. Adv. Mater. 2024, 36, 2312773.

[31]

Tang, S.; Guo, W.; Fu, Y. Z. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802.

[32]

Mackanic, D. G.; Yan, X. Z.; Zhang, Q. H.; Matsuhisa, N.; Yu, Z. A.; Jiang, Y. W.; Manika, T.; Lopez, J.; Yan, H. P.; Liu, K. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 2019, 10, 5384.

[33]

Guo, Z. M.; Pang, Y. P.; Xia, S. X.; Xu, F.; Yang, J. H.; Sun, L. X.; Zheng, S. Y. Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries. Adv. Sci. 2021, 8, 2100899.

[34]

Mackanic, D. G.; Michaels, W.; Lee, M.; Feng, D. W.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 2018, 8, 1800703.

[35]

Dong, L. N.; Zeng, X. F.; Fu, J. F.; Chen, L. Y.; Zhou, J.; Dai, S. W.; Shi, L. Y. Cross-linked ionic copolymer solid electrolytes with loose coordination-assisted lithium transport for lithium batteries. Chem. Eng. J. 2021, 423, 130209.

[36]

Huang, D. R.; Wu, L.; Kang, Q.; Shen, Z. Y.; Huang, Q. S.; Lin, W. J.; Pei, F.; Huang, Y. H. Amino-modified UiO-66-NH2 reinforced polyurethane based polymer electrolytes for high-voltage solid-state lithium metal batteries. Nano Res. 2024, 17, 9662–9670.

[37]

Pei, F.; Wu, L.; Zhang, Y.; Liao, Y. Q.; Kang, Q.; Han, Y.; Zhang, H. W.; Shen, Y.; Xu, H. H.; Li, Z. et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.

[38]

Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G. Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angew. Chem., Int. Ed. 2019, 58, 18146–18149.

[39]

Wu, L.; Pei, F.; Cheng, D. M.; Zhang, Y.; Cheng, H.; Huang, K.; Yuan, L. X.; Li, Z.; Xu, H. H.; Huang, Y. H. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries. Adv. Funct. Mater. 2024, 34, 2310084.

[40]

Yao, Y.; Xu, Z. Y.; Liu, B.; Xiao, M.; Yang, J. H.; Liu, W. G. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence. Adv. Funct. Mater. 2021, 31, 2006944.

[41]

Lai, Y.; Kuang, X.; Zhu, P.; Huang, M. M.; Dong, X.; Wang, D. J. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, 1802556.

[42]

Cheng, C. Y.; Liu, H. Z.; Ouyang, C. Y.; Hu, N. G.; Zha, G.; Hou, H. Q. A high-temperature stable composite polyurethane separator coated Al2O3 particles for lithium ion battery. Compos. Commun. 2022, 33, 101217.

[43]

Isfahani, A. P.; Sadeghi, M.; Nilouyal, S.; Huang, G. J.; Muchtar, A.; Ito, M. M.; Yamaguchi, D.; Sivaniah, E.; Ghalei, B. Tuning the morphology of segmented block copolymers with Zr-MOF nanoparticles for durable and efficient hydrocarbon separation membranes. J. Mater. Chem. A 2020, 8, 9382–9391.

[44]

Li, Z.; Fu, J. L.; Zhou, X. Y.; Gui, S. W.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 2023, 10, 2201718.

[45]

Guo, Z. K.; Fan, L. S.; Zhao, C. Y.; Chen, A. S.; Liu, N. N.; Zhang, Y.; Zhang, N. Q. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2105133.

[46]

Yang, X. F.; Jiang, M.; Gao, X. J.; Bao, D. N.; Sun, Q.; Holmes, N.; Duan, H.; Mukherjee, S.; Adair, K.; Zhao, C. T. et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal–OH group. Energy Environ. Sci. 2020, 13, 1318–1325.

[47]

Chen, H.; Adekoya, D.; Hencz, L.; Ma, J.; Chen, S.; Yan, C.; Zhao, H. J.; Cui, G. L.; Zhang, S. Q. Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv. Energy Mater. 2020, 10, 2000049.

[48]

Sun, Z. J.; Li, Y. H.; Zhang, S. Y.; Shi, L.; Wu, H.; Bu, H. T.; Ding, S. J. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 2019, 7, 11069–11076.

[49]

Wu, N.; Chien, P. H.; Qian, Y. M.; Li, Y. T.; Xu, H. H.; Grundish, N. S.; Xu, B. Y.; Jin, H. B.; Hu, Y. Y.; Yu, G. H. et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem., Int. Ed. 2020, 59, 4131–4137.

[50]

Bakker, A.; Gejji, S.; Lindgren, J.; Hermansson, K.; Probst, M. M. Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEO n for M = Mg, Ca, Sr and Ba. Polymer 1995, 36, 4371–4378.

[51]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[52]

Zang Y.; Peng P.; Pei F.; Li, R. H.; Wu L.; Lu, D. Q.; Zhang Y.; Huang K.; Shen Y.; Huang Y. H. et al. Conjugated phthalocyanine based framework as artificial SEI for over 400 Wh·kg−1 lithium metal battery. Natl. Sci. Rev. 2024, 12, nwae443.

Nano Research
Article number: 94907304
Cite this article:
Xu X, Pei F, Lin W, et al. Oxygen vacancies-rich TiO2−x enhanced composite polyurethane electrolytes for high-voltage solid-state lithium metal batteries. Nano Research, 2025, 18(4): 94907304. https://doi.org/10.26599/NR.2025.94907304
Topics:

587

Views

134

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 November 2024
Revised: 05 February 2025
Accepted: 13 February 2025
Published: 22 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return