Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The photocatalytic oxidation of 1-phenylethanol coupling with hydrogen evolution represents a promising strategy for the full utilization of the photogenerated electrons and holes to accomplish the maximum conversion of solar energy into chemical energy. To date, however, the controllable of reaction path and product distribution has yet not to be unrevealed. Herein, we report an efficient coupled catalytic system composed of ZnIn2S4/WO3 S-scheme heterojunction and Ni-containing polyoxometalate ([Ni4(H2O)2(PW9O34)2]10− (Ni4P2)), which exhibited excellent photocatalytic activities towards the oxidation valorization of 1-phenylethanol coupling with hydrogen evolution. The addition of Ni4P2 can efficiently control the product distribution. Specifically, 1-phenylethanol was preferentially converted to pinacol (86.0% selectivity) via C–C coupling over ZnIn2S4/WO3 S-scheme heterojunction accompanied by hydrogen production (202.4 μmol), whereas it would be converted to acetophenone (93.8% selectivity) by photogenerated holes with concomitant hydrogen formation (183.1 μmol) over the coupled Ni4P2/ZnIn2S4/WO3 catalytic system. Mechanism studies revealed that the hydrogen evolution cocatalyst Ni4P2, with its excellent electron storage capacity, can compete with the oxidation product acetophenone for electrons, and thus its addition can significantly inhibit the reduction of acetophenone, resulting in the inability to generate the coupling product pinacol.
Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdO x photocatalyst. Nat. Energy 2017, 2, 17021.
Wang, E. Y.; Mahmood, A.; Chen, S. G.; Sun, W. H.; Muhmood, T.; Yang, X. F.; Chen, Z. P. Solar-driven photocatalytic reforming of lignocellulose into H2 and value-added biochemicals. ACS Catal. 2022, 12, 11206–11215.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Gu, M. L.; Yang, Y.; Zhang, L. Y.; Zhu, B. C.; Liang, G. J.; Yu, J. G. Efficient sacrificial-agent-free solar H2O2 production over all-inorganic S-scheme composites. Appl. Catal. B: Environ. 2023, 324, 122227.
Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
Zhu, B. C.; Sun, J.; Zhao, Y. Y.; Zhang, L. Y.; Yu, J. G. Construction of 2D S-scheme heterojunction photocatalyst. Adv. Mater. 2024, 36, 2310600.
Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565.
Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. 2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chin. J. Catal. 2021, 42, 97–106.
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.
Wang, Z. L.; Cheng, B.; Zhang, L. Y.; Yu, J. G.; Tan, H. Y. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Sol. RRL 2022, 6, 2100587.
Li, T.; Tsubaki, N.; Jin, Z. L. S-scheme heterojunction in photocatalytic hydrogen production. J. Mater. Sci. Technol. 2024, 169, 82–104.
Wang, L. X.; Zhu, B. C.; Zhang, J. J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. G. S-scheme heterojunction photocatalysts for CO2 reduction. Matter 2022, 5, 4187–4211.
Han, X. X.; Lu, B. J.; Huang, X.; Liu, C.; Chen, S. X.; Chen, J. W.; Zeng, Z. L.; Deng, S. G.; Wang, J. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Appl. Catal. B: Environ. 2022, 316, 121587.
Wang, L. X.; Sun, J.; Cheng, B.; He, R. A.; Yu, J. G. S-scheme heterojunction photocatalysts for H2O2 production. J. Phys. Chem. Lett. 2023, 14, 4803–4814.
Zhang, Y. M.; Jin, Z. Z.; Liu, D.; Tan, Z. T.; Mamba, B. B.; Kuvarega, A. T.; Gui, J. Z. S-scheme Bi2S3/CdS nanorod heterojunction photocatalysts with improved carrier separation and redox capacity for pollutant removal. ACS Appl. Nano Mater. 2022, 5, 5448–5458.
Bariki, R.; Das, K.; Pradhan, S. K.; Prusti, B.; Mishra, B. G. MOF-derived hollow tubular In2O3/MIIIn2S4 (MII: Ca, Mn, and Zn) heterostructures: Synergetic charge-transfer mechanism and excellent photocatalytic performance to boost activation of small atmospheric molecules. ACS Appl. Energy Mater. 2022, 5, 11002–11017.
Cheng, C.; Zhu, B. C.; Cheng, B.; Macyk, W.; Wang, L. X.; Yu, J. G. Catalytic conversion of styrene to benzaldehyde over S-scheme photocatalysts by singlet oxygen. ACS Catal. 2023, 13, 459–468.
Fan, Y. S.; Xi, X. L.; Liu, Y. S.; Nie, Z. R.; Zhao, L. Y.; Zhang, Q. H. Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Met. 2021, 40, 1738–1745.
Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.
Lv, H. J.; Guo, W. W.; Wu, K. F.; Chen, Z. Y.; Bacsa, J.; Musaev, D. G.; Geletii, Y. V.; Lauinger, S. M.; Lian, T. Q.; Hill, C. L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018.
Lv, H. J.; Chi, Y. N.; van Leusen, J.; Kögerler, P.; Chen, Z. Y.; Bacsa, J.; Geletii, Y. V.; Guo, W. W.; Lian, T. Q.; Hill, C. L. [{Ni4(OH)3AsO4}4(B-α-PW9O34)4]28−: A new polyoxometalate structural family with catalytic hydrogen evolution activity. Chem.—Eur. J. 2015, 21, 17363–17370.
von Allmen, K.; Moré, R.; Müller, R.; Soriano-López, J.; Linden, A.; Patzke, G. R. Nickel-containing keggin-type polyoxometalates as hydrogen evolution catalysts: Photochemical structure-activity relationships. ChemPlusChem 2015, 80, 1389–1398.
Wang, Y. Q.; Xin, X.; Feng, Y. Q.; Chi, M. Z.; Wang, R. J.; Liu, T. F.; Lv, H. J. Structurally-new hexadecanuclear Ni-containing silicotungstate with catalytic hydrogen generation activity. Molecules 2023, 28, 2017.
Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M. H.; Tran, T. T.; Pino, T.; Marrot, J.; Rivière, E.; Hendon, C. H.; Oms, O. et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166–4169.
Li, J.; Feng, Y. Q.; Fu, F. Y.; Xin, X.; Yang, G. Y.; Lv, H. J. Polyoxometalate-organic cage with {Ni4SiW9} node for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2024, 35, 108736.
Han, X. B.; Qin, C.; Wang, X. L.; Tan, Y. Z.; Zhao, X. J.; Wang, E. B. Bio-inspired assembly of cubane-adjustable polyoxometalate-based high-nuclear nickel clusters for visible light-driven hydrogen evolution. Appl. Catal. B: Environ. 2017, 211, 349–356.
Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B: Environ. 2022, 303, 120893.
Zhang, J. H.; Zhang, M.; Dong, Y. Y.; Bai, C. C.; Feng, Y. Q.; Jiao, L.; Lv, H. J. CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen. Nano Res. 2022, 15, 1347–1354.
Paille, G.; Gomez-Mingot, M.; Roch-Marchal, C.; Lassalle-Kaiser, B.; Mialane, P.; Fontecave, M.; Mellot-Draznieks, C.; Dolbecq, A. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation. J. Am. Chem. Soc. 2018, 140, 3613–3618.
Ren, M. Z.; Liu, T. F.; Dong, Y. Y.; Li, Z.; Yang, J. X.; Diao, Z. H.; Lv, H. J.; Yang, G. Y. Near-unity photocatalytic dehydrocoupling of thiophenols into disulfides and hydrogen using coupled CdS Nanorods and Ni-containing polyoxometalate. Chin. J. Catal. 2024, 61, 312–321.
Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal. 2018, 8, 10809–10825.
Wang, Q.; Du, J.; Ma, Y. Y.; Yin, X. Y.; Tian, Z. Y.; Han, Z. G. Noble-metal-free 3D hierarchical Ni–WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination. Chem. Eng. J. 2023, 451, 139107.
Wang, Q.; Liu, Q.; Ma, Y. Y.; Bi, H. X.; Du, J.; Han, Z. G. A photocatalyst with an enhanced Schottky effect and an efficient electron-transfer channel fabricated by assembling Ni–WC heterojunction nanoparticles on g-C3N4 for highly efficient removal of chlorophenols. Inorg. Chem. Front. 2024, 11, 1238–1251.
Wang, Q. W.; Wang, J. X.; Zhang, D.; Chen, Y. N.; Wang, J.; Wang, X. H. Fabrication of macroporous POMs/biochar materials for fast degradation of phthalic acid esters through adsorption coupled with aerobic oxidation. Polyoxometalates 2024, 3, 9140064.
Wang, Y.; Liu, Q.; Ma, Y. Y.; Liu, Z. X.; Zhang, Y. N.; Wang, Y. S.; Du, J.; Han, Z. G. Polyoxometalate-embedded copper-organic network as dual-site synergetic catalyst for the selective oxidation of benzylic C–H bond. Mol. Catal. 2024, 569, 114579.
Zhang, M.; Li, Z.; Feng, Y. Q.; Xin, X.; Yang, G. Y.; Lv, H. J. Highly selective hydrogenolysis of lignin β-O-4 models by a coupled polyoxometalate/CdS photocatalytic system. Green Chem. 2023, 25, 10091–10100.
Weng, B.; Wu, J.; Zhang, N.; Xu, Y. J. Observing the role of graphene in boosting the two-electron reduction of oxygen in graphene-WO3 nanorod photocatalysts. Langmuir 2014, 30, 5574–5584.
Wang, J.; Sun, S. J.; Zhou, R.; Li, Y. Z.; He, Z. T.; Ding, H.; Chen, D. M.; Ao, W. H. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1–19.
Jiao, L.; Dong, Y. Y.; Xin, X.; Qin, L.; Lv, H. J. Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Appl. Catal. B: Environ. 2021, 291, 120091.
Han, G. Q.; Liu, X. W.; Cao, Z.; Sun, Y. J. Photocatalytic pinacol C–C coupling and jet fuel precursor production on ZnIn2S4 nanosheets. ACS Catal. 2020, 10, 9346–9355.
Dong, Y. Y.; Feng, Y. Q.; Li, Z.; Zhou, H.; Lv, H. J.; Yang, G. Y. CsPbBr3/polyoxometalate composites for selective photocatalytic oxidation of benzyl alcohol. ACS Catal. 2023, 13, 14346–14355.
Zhao, M. Y.; Liu, S.; Chen, D. M.; Zhang, S. S.; Carabineiro, S. A. C.; Lv, K. L. A novel S-scheme 3D ZnIn2S4/WO3 heterostructure for improved hydrogen production under visible light irradiation. Chin. J. Catal. 2022, 43, 2615–2624.
He, B. W.; Xiao, P.; Wan, S. J.; Zhang, J. J.; Chen, T.; Zhang, L. Y.; Yu, J. G. Rapid charge transfer endowed by interfacial Ni–O bonding in S-scheme heterojunction for efficient photocatalytic H2 and imine production. Angew. Chem., Int. Ed. 2023, 62, e202313172.
Zhang, M.; Li, Z.; Xin, X.; Zhang, J. H.; Feng, Y. Q.; Lv, H. J. Selective valorization of 5-hydroxymethylfurfural to 2, 5-diformylfuran using atmospheric O2 and MAPbBr3 perovskite under visible light. ACS Catal. 2020, 10, 14793–14800.
Xue, W. H.; Ye, J.; Zhu, Z.; Kumar, R.; Zhao, J. Harnessing trace water for enhanced photocatalytic oxidation of biomass-derived alcohols to aldehydes. Energy Environ. Sci. 2025, 18, 214–226.
Liu, F.; Fu, Y. W.; Lu, K. J.; Wang, S. J.; Wang, B.; Huang, J.; Yan, X. L.; Zheng, Y. Q.; Guo, L. J.; Liu, M. C. Solar reforming lignocellulose into H2 over pH-triggered hydroxyl-functionalized chalcogenide nanotwins. ACS Catal. 2023, 13, 15591–15602.
Ma, F. H.; Wang, S. H.; Han, L. Y.; Guo, Y. H.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K. et al. Targeted regulation of the electronic states of nickel toward the efficient electrosynthesis of benzonitrile and hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 56140–56150.
346
Views
63
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).