AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (31.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-temperature shock-induced transformation of bulk copper into single-atom catalyst

Renjie Fang1,§Ji Yang1,§Wei-Shen Song1Na Yang2Jie Ding3Jian-Feng Li1 ( )Feng Ru Fan1 ( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden 01062, Germany

§ Renjie Fang and Ji Yang contributed equally to this work.

Show Author Information

Graphical Abstract

The high-temperature shock (HTS) strategy enables the direct transformation of bulk copper foil into single atoms in just 0.5 s at 1700 K. The transient high temperature not only promotes the formation of thermodynamically favorable Cu–N bonds but also prevents excessive sintering and aggregation of metal atoms.

Abstract

Transforming nanoscale and bulk metals into single atoms is crucial for the scalable production of single-atom catalysts (SACs), especially during pyrolysis. However, conventional equilibrium heating approaches often require prolonged operation to decompose metal aggregates, leading to tedious and time-consuming procedures for synthesizing SACs. In this study, we introduce high-temperature shock (HTS) strategy to enhance metal atomization, achieving the direct transformation of bulk copper foil into single atoms in just 0.5 s at 1700 K. The HTS-produced Cu catalyst demonstrates a high content of 0.54 wt.%, comparable to those achieved by commonly reported top-down strategies, indicating that the HTS method provides a compelling alternative for synthesizing Cu SACs from bulk Cu precursors. Structural analysis confirmed the synthesis of a Cu–N–C SAC with a Cu–N4 coordination environment. This Cu–N4 structure shows excellent catalytic performance for nitrite reduction to ammonia, achieving over 90% Faradaic efficiency across the entire working potential range and an ammonia production rate of up to 11.12 mg·cm−2·h−1 at −1.2 V vs. reversible hydrogen electrode (RHE), surpassing other reported Cu-based electrocatalysts. Furthermore, ab initio molecular dynamics (AIMD) simulations reveal that transient high temperatures not only promote the formation of thermodynamically favorable Cu–N bonds but also prevent excessive sintering and aggregation of metal atoms.

Electronic Supplementary Material

Video
7300_ESM_Video S1.mp4
7300_ESM_Video S2.mp4
Download File(s)
7300_ESM.pdf (2.2 MB)

References

[1]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[2]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[3]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[4]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[5]

Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

[6]

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

[7]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[8]

Huang, Y.; Chen, Y. C.; Xu, M. J.; Ly, A.; Gili, A.; Murphy, E.; Asset, T.; Liu, Y. C.; De Andrade, V.; Segre, C. U. et al. Catalysts by pyrolysis: Transforming metal–organic frameworks (MOFs) precursors into metal–nitrogen–carbon (M–N–C) materials. Mater. Today 2023, 69, 66–78.

[9]

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

[10]

Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal–N x centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

[11]

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

[12]

He, Y. H.; Shi, Q. R.; Shan, W. T.; Li, X.; Kropf, A. J.; Wegener, E. C.; Wright, J.; Karakalos, S.; Su, D.; Cullen, D. A. et al. Dynamically unveiling metal–nitrogen coordination during thermal activation to design high-efficient atomically dispersed CoN4 active sites. Angew. Chem., Int. Ed. 2021, 60, 9516–9526.

[13]

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

[14]

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

[15]

Li, Y. X.; Wang, S. Y.; Wang, X. S.; He, Y.; Wang, Q.; Li, Y. B.; Li, M. L.; Yang, G. L.; Yi, J. D.; Lin, H. W. et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. J. Am. Chem. Soc. 2020, 142, 19259–19267.

[16]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[17]

Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. E. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 10, 3734.

[18]

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

[19]

Fan, Y. M.; Li, R. T.; Wang, B. B.; Feng, X. H.; Du, X. Z.; Liu, C. X.; Wang, F.; Liu, C. H.; Dong, C.; Ning, Y. X. et al. Water-assisted oxidative redispersion of Cu particles through formation of Cu hydroxide at room temperature. Nat. Commun. 2024, 15, 3046.

[20]

Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.

[21]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[22]

Han, Y. C.; Yi, J.; Pang, B. B.; Wang, N.; Li, X. C.; Yao, T.; Novoselov, K. S.; Tian, Z. Q. Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. Natl. Sci. Rev. 2023, 10, nwad081.

[23]

Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.

[24]

Huang, B.; Wang, M. H.; Wu, C. X.; Guan, L. H. Highly dispersive metal atoms anchored on carbon matrix obtained by direct rapid pyrolysis of metal complexes. CCS Chem. 2022, 4, 2968–2979.

[25]
Lin, Y. X.; Wang, Y.; Xu, Y.; Liu, H. J.; Liu, X.; Shan, L.; Wu, C. Q.; Yang, L.; Song, L. Optimizing local configuration of interphase copper oxide by Ru atoms incorporation for high-efficient nitrate reduction to ammonia. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202417486.
[26]

Hu, X. S.; Zuo, D. X.; Cheng, S. R.; Chen, S. H.; Liu, Y.; Bao, W. Z.; Deng, S. L.; Harris, S. J.; Wan, J. Y. Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chem. Soc. Rev. 2023, 52, 1103–1128.

[27]

Han, Y. C.; Cao, P. Y.; Tian, Z. Q. Controllable synthesis of solid catalysts by high-temperature pulse. Acc. Mater. Res. 2023, 4, 648–654.

[28]

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Wu, L. P.; Ma, L.; Li, T. Y.; Pang, Z. Q.; Jiao, M. L.; Liang, Z. Q.; Gao, J. L. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851–857.

[29]

Xi, D. W.; Li, J. Y.; Low, J.; Mao, K. K.; Long, R.; Li, J. W.; Dai, Z. H.; Shao, T. Y.; Zhong, Y.; Li, Y. et al. Limiting the uncoordinated N species in M–N x single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv. Mater. 2022, 34, 2104090.

[30]

Xing, L. L.; Liu, R.; Gong, Z. C.; Liu, J. J.; Liu, J. B.; Gong, H. S.; Huang, K.; Fei, H. L. Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co–N–C single-atom monoliths. Nano Res. 2022, 15, 3913–3919.

[31]

Du, J. Y.; Wu, G.; Liang, K.; Yang, J.; Zhang, Y. D.; Lin, Y.; Zheng, X. S.; Yu, Z. Q.; Wu, Y. E.; Hong, X. Rapid controllable synthesis of atomically dispersed Co on carbon under high voltage within one minute. Small 2021, 17, 2007264.

[32]

Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co–N–C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

[33]

Yue, Y. X.; Wang, S. S.; Zhou, Q.; Wang, B. L.; Jin, C. X.; Chang, R. Q.; Wan, L. Q.; Pan, Z. Y.; Zhu, Y. H.; Zhao, J. et al. Tailoring asymmetric Cu–O–P coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported cu catalysts. ACS Catal. 2023, 13, 9777–9791.

[34]

Liu, K. Y.; Sun, Z. Y.; Chen, W. X.; Lang, X. F.; Gao, X.; Chen, P. W. Ultra-fast pulsed discharge preparation of coordinatively unsaturated asymmetric copper single-atom catalysts for CO2 reduction. Adv. Funct. Mater. 2024, 34, 2312589.

[35]

Dong, Q.; Lele, A. D.; Zhao, X. P.; Li, S. K.; Cheng, S. C.; Wang, Y. Q.; Cui, M. J.; Guo, M.; Brozena, A. H.; Lin, Y. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023, 616, 488–494.

[36]

Dong, Q.; Yao, Y. G.; Cheng, S. C.; Alexopoulos, K.; Gao, J. L.; Srinivas, S.; Wang, Y. F.; Pei, Y.; Zheng, C. L.; Brozena, A. H. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 2022, 605, 470–476.

[37]

Fang, R. J.; He, H. X.; Wang, Z. Y.; Han, Y.-C.; Fan, F. R. Rapid synthesis of high-purity molybdenum carbide with controlled crystal phases. Mater. Horiz. 2024, 11, 3595–3603.

[38]

Niu, W. J.; Sun, Q. Q.; He, J. Z.; Chen, J. L.; Gu, B. N.; Liu, M. J.; Chung, C. C.; Wu, Y. Z.; Chueh, Y. L. Zeolitic imidazolate framework-derived copper single atom anchored on nitrogen-doped porous carbon as a highly efficient electrocatalyst for the oxygen reduction reaction toward Zn-air battery. Chem. Mater. 2022, 34, 4104–4114.

[39]

Han, G. F.; Li, F.; Rykov, A. I.; Im, Y. K.; Yu, S. Y.; Jeon, J. P.; Kim, S. J.; Zhou, W. H.; Ge, R. L.; Ao, Z. M. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 2022, 17, 403–407.

[40]

Wang, Y. X.; Li, B. Y.; Xue, B.; Libretto, N.; Xie, Z. H.; Shen, H.; Wang, C. H.; Raciti, D.; Marinkovic, N.; Zong, H. et al. CO electroreduction on single-atom copper. Sci. Adv. 2023, 9, eade3557.

[41]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu–N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[42]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu–S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[43]

Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

[44]

Lai, Q. X.; Zhu, J. J.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. MOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn-air batteries. Small 2017, 13, 1700740.

[45]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[46]

Bunău, O.; Joly, Y. Self-consistent aspects of X-ray absorption calculations. J. Phys.: Condens. Matter 2009, 21, 345501.

[47]

Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 2001, 63, 125120.

[48]

Da Silva, J. L. F.; Barreteau, C.; Schroeder, K.; Blügel, S. All-electron first-principles investigations of the energetics of vicinal Cu surfaces. Phys. Rev. B 2006, 73, 125402.

[49]

Skriver, H. L.; Rosengaard, N. M. Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46, 7157–7168.

[50]

Vitos, L.; Skriver, H. L.; Kollár, J. The formation energy for steps and kinks on cubic transition metal surfaces. Surf. Sci. 1999, 425, 212–223.

[51]

Deng, B.; Wang, Z.; Chen, W. Y.; Li, J. T.; Luong, D. X.; Carter, R. A.; Gao, G. H.; Yakobson, B. I.; Zhao, Y. F.; Tour, J. M. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 2022, 13, 262.

[52]

Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.

[53]

Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

[54]

Zhao, H. Y.; Xiang, J. Q.; Sun, Z. Y.; Shang, S. Y.; Chu, K. Electroreduction of nitrite to ammonia over a cobalt single-atom catalyst. ACS Sustain. Chem. Eng. 2024, 12, 2783–2789.

[55]

Xiang, J. Q.; Zhao, H. Y.; Chen, K.; Yang, X.; Chu, K. Electrocatalytic nitrite reduction to ammonia on an Rh single-atom catalyst. J. Colloid Interf. Sci. 2024, 659, 432–438.

[56]

Jiang, Z.; Wang, Y. M.; Lin, Z. C.; Yuan, Y. B.; Zhang, X.; Tang, Y. R.; Wang, H. X.; Li, H.; Jin, C. Y.; Liang, Y. Y. Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia. Energy Environ. Sci. 2023, 16, 2239–2246.

[57]

Wang, F. Z.; Zhao, H. Y.; Zhang, G. K.; Zhang, H.; Han, X. P.; Chu, K. Electroreduction of nitrite to ammonia over Ni1Ru single-atom alloys. Adv. Funct. Mater. 2024, 34, 2308072.

[58]

Xiang, J. Q.; Qiang, C. F.; Shang, S. Y.; Chen, K.; Kang, C. Y.; Chu, K. Tandem electrocatalytic reduction of nitrite to ammonia on rhodium-copper single atom alloys. Adv. Funct. Mater. 2024, 34, 2401941.

[59]

Wang, F. Z.; Shang, S. Y.; Sun, Z. Y.; Yang, X.; Chu, K. P-block antimony-copper single-atom alloys for selective nitrite electroreduction to ammonia. ACS Nano 2024, 18, 13141–13149.

[60]

Chen, Q. Y.; An, X. G.; Liu, Q.; Wu, X. Q.; Xie, L. S.; Zhang, J.; Yao, W. T.; Hamdy, M. S.; Kong, Q. Q.; Sun, X. P. Boosting electrochemical nitrite-ammonia conversion properties by a Cu foam@Cu2O catalyst. Chem. Commun. 2022, 58, 517–520.

[61]

Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

[62]

Ouyang, L.; Yue, L. C.; Liu, Q.; Liu, Q.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Alshehri, A. A.; Hamdy, M. S.; Kong, Q. Q. et al. Cu nanoparticles decorated juncus-derived carbon for efficient electrocatalytic nitrite-to-ammonia conversion. J. Colloid Interf. Sci. 2022, 624, 394–399.

[63]

Wan, Y. Y.; Du, W. Y.; Chen, K.; Zhang, N. N.; Chu, K. Electrocatalytic nitrite-to-ammonia reduction on isolated Cu sites. J. Colloid Interf. Sci. 2023, 652, 2180–2185.

[64]

Wang, G. H.; Ma, R. Y.; Zhang, N. N.; Guo, Y. L.; Chu, K. Single-atom Cu anchored on Mo2C boosts nitrite electroreduction to ammonia. Chem. Commun. 2023, 59, 13887–13890.

[65]

Zhang, R. C.; Shang, S. Y.; Wang, F. Z.; Chu, K. Electrocatalytic reduction of nitrite to ammonia on undercoordinated Cu. Dalton Trans. 2024, 53, 3470–3475.

[66]

Zhang, Y. Y.; Wang, Y.; Han, L.; Wang, S. N.; Cui, T. D.; Yan, Y. F.; Xu, M.; Duan, H. H.; Kuang, Y.; Sun, X. M. Nitrite electroreduction to ammonia promoted by molecular carbon dioxide with near-unity Faradaic efficiency. Angew. Chem., Int. Ed. 2023, 62, e202213711.

Nano Research
Article number: 94907300
Cite this article:
Fang R, Yang J, Song W-S, et al. High-temperature shock-induced transformation of bulk copper into single-atom catalyst. Nano Research, 2025, 18(4): 94907300. https://doi.org/10.26599/NR.2025.94907300

683

Views

207

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 December 2024
Revised: 16 January 2025
Accepted: 12 February 2025
Published: 20 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return