AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Machine learning driven high-throughput screening of S and N-coordinated SACs for eNRR

Lintao Xu1Yuhong Huang1,2 ( )Haiping Lin1,2Xiumei Wei1,2Fei Ma3 ( )
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
Shaanxi “Four Bodies and One Union” University-Enterprise Joint Research Center for Advanced Molybdenum-based Functional Materials, Xi’an 710119, China
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

The machine learning (ML)-driven efficient screening of 196 transition metals (TM)@SxNy single-atom catalysts (SACs) is successfully conducted via 10 features and 4 ML models. The (Mo and W)@S3N1 exhibited remarkably limiting potential values of −0.26 and −0.25 V, respectively. A new descriptor and key factors, as well as their relationships, are explored to reveal the catalytic mechanism.

Abstract

This study constructs 196 transition metals (TM)@SxNy single-atom catalysts (SACs) (x = 0–4 and y = 0–4) and employs the eXtreme Gradient Boosting (XGBoost) classification model in machine learning (ML) for effectively distinguishing qualified and unqualified catalysts. The prediction accuracy rate is high, up to 95%. The SHapley Additive exPlanations (SHAP) analysis reveals that the N≡N bond length and the number of outermost d electrons (Nd) can well describe the nitrogen (N2) reduction reaction (NRR) activity. The relationships between N≡N, Nd, the adsorption energies of different intermediates ( ΔEN2, ΔEN2H, and ΔENH2), the general descriptor (φ), and the Gibbs free energy of key steps ( ΔGN2, ΔGN2N2H, and ΔGNH2NH3) indicate that moderate nitrogen activation can enhance the reaction activity. Among the 17 screened SACs, Mo@S3N1, and W@S3N1 demonstrate the best catalytic performance, with limiting potential (UL) values of only −0.26 and −0.25 V under implicit solvation conditions. The electronic properties and variations in N≡N and TM–N bond lengths are investigated to reveal the origin of NRR activity. This study provides the decisive features and NRR dataset for ML research, as well as a feasible strategy for rational design of NRR SACs.

Electronic Supplementary Material

Download File(s)
7289_ESM.pdf (4.8 MB)

References

[1]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[2]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[3]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[4]

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

[5]

Saadatjou, N.; Jafari, A.; Sahebdelfar, S. Ruthenium nanocatalysts for ammonia synthesis: A review. Chem. Eng. Commun. 2015, 202, 420–448.

[6]

Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.

[7]

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.

[8]

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

[9]

Yuan, S. F.; Ren, H.; Meng, G. D.; Zhao, W.; Zhu, H. Y.; Guo, W. Y. ZnO monolayer supported single-atom catalysts for efficient nitrogen electroreduction to ammonia. Appl. Surf. Sci. 2021, 555, 149682.

[10]

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[11]

Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

[12]

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

[13]

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

[14]

Gong, Y. T.; Li, H. C.; Wu, J. Z.; Song, X. Y.; Yang, X. Q.; Bao, X. B.; Han, X.; Kitano, M.; Wang, J. J.; Hosono, H. Unique catalytic mechanism for Ru-loaded ternary intermetallic electrides for ammonia synthesis. J. Am. Chem. Soc. 2022, 144, 8683–8692.

[15]

Lv, X. S.; Wei, W.; Huang, B. B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett. 2021, 21, 1871–1878.

[16]

Hu, L.; Xing, Z.; Feng, X. F. Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Lett. 2020, 5, 430–436.

[17]

Wang, S. Y.; Shi, L.; Bai, X. W.; Li, Q.; Ling, C. Y.; Wang, J. L. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites. ACS Cent. Sci. 2020, 6, 1762–1771.

[18]

Lin, Y. X.; Feng, Y. Z.; Zhou, H.; Han, Y.; Sun, H.; Shi, L.; Meng, L. J.; Zhou, M.; Liu, Y. J.; Zhang, X. Y. Ligands dependent electrocatalytic nitrogen reduction performance in d–π conjugated molecules. Appl. Surf. Sci. 2022, 593, 153338.

[19]

Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

[20]

Long, X. H.; Huang, F.; Yao, Z. N.; Li, P.; Zhong, T.; Zhao, H. N.; Tian, S. H.; Shu, D.; He, C. Advancements in electrocatalytic nitrogen reduction: A comprehensive review of single-atom catalysts for sustainable ammonia synthesis. Small 2024, 20, 2400551.

[21]

Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

[22]

Wang, M.; Huang, Y. H.; Ma, F.; Wei, X. M.; Hou, P. F.; Zhu, G. Q.; Du, R. H.; Zhang, J. M. Newly designed photocatalyst of Fe4 single clusters on g-C6N6 for nitrogen reduction reaction. Comput. Theor. Chem. 2023, 1222, 114074.

[23]

Wang, M.; Huang, Y. H.; Ma, F.; Zhu, G. Q.; Zhang, J. M.; Wei, X. M.; Hou, P. F.; Du, R. H.; Liu, J. Theoretical insights into the mechanism of nitrogen-to-ammonia electroreduction on TM/g-C9N10. Mol. Catal. 2023, 547, 113391.

[24]

Singh, A. R.; Rohr, B. A.; Statt, M. J.; Schwalbe, J. A.; Cargnello, M.; Nørskov, J. K. Strategies toward selective electrochemical ammonia synthesis. ACS Catal. 2019, 9, 8316–8324.

[25]

Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Establishing a theoretical landscape for identifying basal plane active 2D metal borides (MBenes) toward nitrogen electroreduction. Adv. Funct. Mater. 2021, 31, 2008056.

[26]

Sun, J. X.; Xia, P.; Lin, Y. X.; Zhang, Y. F.; Chen, A. J.; Shi, L.; Liu, Y. J.; Niu, X. H.; He, A. L.; Zhang, X. Y. Theoretical exploration of the nitrogen fixation mechanism of two-dimensional dual-metal TM1TM2@C9N4 electrocatalysts. Nanoscale Horiz. 2023, 8, 211–223.

[27]

Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 2018, 1, 1800018.

[28]

Tang, Y. A.; Chen, W. G.; Zhou, J. C.; Chai, H. D.; Li, Y.; Cui, Y. Q.; Feng, Z.; Dai, X. Q. Mechanistic insight into the selective catalytic oxidation for NO and CO on co-doping graphene sheet: A theoretical study. Fuel 2019, 253, 1531–1544.

[29]

Tang, Y. N.; Chen, W. G.; Shen, Z. G.; Chang, S. S.; Zhao, M. Y.; Dai, X. Q. Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 2017, 111, 448–458.

[30]

Wang, X.; Wang, J.; Wang, D. L.; Dou, S. O.; Ma, Z. L.; Wu, J. H.; Tao, L.; Shen, A. L.; Ouyang, C. B.; Liu, Q. H. et al. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 2014, 50, 4839–4842.

[31]

Wang, M.; Huang, Y. H.; Lin, H. P.; Zhao, H. L.; Ma, F.; Zhang, J. M.; Wei, X. M. The enhanced electro/photocatalytic activity for nitric oxide reduction to ammonia by B@g-C9N10 monolayer. Mater. Chem. Phys. 2024, 315, 128914.

[32]

Zafari, M.; Kumar, D.; Umer, M.; Kim, K. S. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single-atom catalysts. J. Mater. Chem. A. 2020, 8, 5209–5216.

[33]

Tian, Y.; Xu, D. Z.; Chu, K.; Wei, Z.; Liu, W. M. Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. J. Mater. Sci. 2019, 54, 9088–9097.

[34]

Pankajakshan, P.; Sanyal, S.; de Noord, O. E.; Bhattacharya, I.; Bhattacharyya, A.; Waghmare, U. Machine learning and statistical analysis for materials science: Stability and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 2017, 29, 4190–4201.

[35]

Kumar, N.; Rajagopalan, P.; Pankajakshan, P.; Bhattacharyya, A.; Sanyal, S.; Balachandran, J.; Waghmare, U. V. Machine learning constrained with dimensional analysis and scaling laws: Simple, transferable, and interpretable models of materials from small datasets. Chem. Mater. 2019, 31, 314–321.

[36]

Rajan, A. C.; Mishra, A.; Satsangi, S.; Vaish, R.; Mizuseki, H.; Lee, K. R.; Singh, A. K. Machine-learning-assisted accurate band gap predictions of functionalized MXene. Chem. Mater. 2018, 30, 4031–4038.

[37]

Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.

[38]

Ma, J. Y.; Huang, Y. H.; Zhao, H. L.; Ma, F.; Lin, H. P.; Wei, X. M. Efficient screening and catalytic mechanism of TM@β-Te for nitrogen reduction reaction. J. Catal. 2024, 436, 115611.

[39]

Hou, P. F.; Huang, Y. H.; Ma, F.; Zhu, G. Q.; Zhang, J. M.; Wei, X. M.; Du, P. Y.; Liu, J. Computational screening and catalytic origin of transition metal supported on g-t-C3N4 as single-atom catalysts for nitrogen reduction reaction. Appl. Surf. Sci. 2022, 599, 153880.

[40]

Sun, J. X.; Chen, A. J.; Guan, J. M.; Han, Y.; Liu, Y. J.; Niu, X. H.; He, M. S.; Shi, L.; Wang, J. L.; Zhang, X. Y. Interpretable machine learning-assisted high-throughput screening for understanding NRR electrocatalyst performance modulation between active center and C–N coordination. Energy Environ. Mater. 2024, 7, e12693.

[41]

Zhou, J.; Chen, X. Y.; Jiang, X.; Tian, Z. A.; Hu, W. Y.; Huang, B. W.; Yuan, D. W. Machine-learning-accelerated screening of Heusler alloys for nitrogen reduction reaction with graph neural network. Appl. Surf. Sci. 2024, 669, 160519.

[42]

Xu, L. T.; Huang, Y. H.; Lin, H. P.; Du, R. H.; Wang, M.; Ma, F.; Wei, X. M.; Zhu, G. Q.; Zhang, J. M. High-throughput screening of carbon nitride single-atom catalysts for nitrogen fixation based on machine learning. J. Mater. Chem. A 2024, 12, 33053–33065.

[43]

Gu, Y. M.; Zhu, Q.; Liu, Z. T.; Fu, C.; Wu, J. Y.; Zhu, Q.; Jia, Q. Q.; Ma, J. Nitrogen reduction reaction energy and pathways in metal-zeolites: Deep learning and explainable machine learning with local acidity and hydrogen bonding features. J. Mater. Chem. A 2022, 10, 14976–14988.

[44]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[45]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 2013, 34, 2557–2567.

[46]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[47]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[48]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[49]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[50]

Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

[51]

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

[52]

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

[53]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[54]

Jiao, D. X.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study. J. Mater. Chem. A 2021, 9, 1240–1251.

[55]

Zhang, Y. Q.; Ma, N. G.; Wang, Y. H.; Liang, B. C.; Fan, J. Theoretical design toward highly efficient single-atom catalysts for nitrogen reduction by regulating the “acceptance–donation” mechanism. Appl. Surf. Sci. 2023, 623, 156827.

[56]

Yu, L. K.; Li, F. Y.; Huang, J. S.; Sumpter, B. G.; Mustain, W. E.; Chen, Z. F. Double-atom catalysts featuring inverse sandwich structure for CO2 reduction reaction: A synergetic first-principles and machine learning investigation. ACS Catal. 2023, 13, 9616–9628.

[57]

Tao, H. B.; Fang, L. W.; Chen, J. Z.; Yang, H. B.; Gao, J. J.; Miao, J. W.; Chen, S. L.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985.

[58]

Zhang, R. X.; Shehzad, N.; Zhang, L. X.; Ali, A.; Amin, B.; Shahid, I. Efficient electrocatalysts of single metal atom supported on defective graphene for oxygen reduction reaction (ORR): A first principles study. Chem. Phys. 2023, 570, 111888.

Nano Research
Article number: 94907289
Cite this article:
Xu L, Huang Y, Lin H, et al. Machine learning driven high-throughput screening of S and N-coordinated SACs for eNRR. Nano Research, 2025, 18(4): 94907289. https://doi.org/10.26599/NR.2025.94907289

682

Views

292

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 November 2024
Revised: 10 January 2025
Accepted: 06 February 2025
Published: 20 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return