AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (45 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A self-powered triboelectric nano-sensor enabled digital twin for self-sustained machine monitoring in smart mine

Jianping Jiang1,4Chengliang Fan3Hongyu Chen5Fan Wu1,4Xihui Feng3Canjun Xiao2Hongye Pan1,4Xiaoping Wu1,4( )Zutao Zhang1,2( )
School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
Chengdu Technological University, Chengdu 611730, China
School of Information Science & Technology, Southwest Jiaotong University, Chengdu 611756, China
Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China
School of Design, Southwest Jiaotong University, Chengdu 611756, China
Show Author Information

Graphical Abstract

A self-powered triboelectric nano-sensor based on vibrational balls mechanism is designed to monitor vibrations from different directions. The potential of using the proposed self-powered triboelectric nano-sensor (STNS) to construct a self-sustained smart mine digital twin ecosystem at a lower cost is demonstrated.

Abstract

Effective monitoring of mining machinery is of great significance. Sensor nodes, which form the basis of the mine’s digital twin system, often face issues of poor sustainability. Therefore, this study introduces a self-powered triboelectric nano-sensor (STNS) enabled digital twin for self-sustained machine monitoring in smart mine. The STNS is designed with three mutually perpendicular sensor units to ensure responsiveness to vibrational energy sources from different directions. Compared to conventional spring-assisted triboelectric nanogenerator (TENG) structures, it exhibits higher frequency adaptability and bandwidth. For a 2 mm amplitude, the STNS responds to frequencies above 10 Hz, with a frequency linearity error rate of less than 0.05%. Utilizing deep learning, the STNS detects various vibrational parameters with an accuracy of ±1 Hz for frequency and ±1 mm for amplitude. A real-time monitoring system based on a deep learning model was constructed and successfully demonstrated for real-time monitoring of amplitude, frequency, and tilt angle. With STNS installed on vibration motor, real-time recognition of the five operating states of the vibration motor and real-time digital twin monitoring were realized. By large-scale distributed deployment of STNS devices, a self-sustained smart mine digital twin ecosystem can be constructed at a lower cost.

Electronic Supplementary Material

Video
7287_ESM_Video S1.mp4
7287_ESM_Video S2.mp4
7287_ESM_Video S3.mp4
7287_ESM_Video S4.mp4
Download File(s)
7287_ESM.pdf (2.4 MB)

References

[1]

Ralston, J.; Reid, D.; Hargrave, C.; Hainsworth, D. Sensing for advancing mining automation capability: A review of underground automation technology development. Int. J. Min. Sci. Technol. 2014, 24, 305–310.

[2]

Hazrathosseini, A.; Moradi Afrapoli, A. The advent of digital twins in surface mining: Its time has finally arrived. Resour. Policy 2023, 80, 103155.

[3]

Bofill, J.; Abisado, M.; Villaverde, J.; Sampedro, G. A. Exploring digital twin-based fault monitoring: Challenges and opportunities. Sensors 2023, 23, 7087.

[4]

Liu, M. N.; Fang, S. L.; Dong, H. Y.; Xu, C. Z. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361.

[5]

Adu-Manu, K. S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Trans. Sens. Netw. 2018, 14, 1–50.

[6]

Wang, B. C.; Zhou, H. Y.; Li, X. Y.; Yang, G.; Zheng, P.; Song, C.; Yuan, Y. X.; Wuest, T.; Yang, H. Y.; Wang, L. H. Human digital twin in the context of industry 5.0. Robot. Comput. Integr. Manuf. 2024, 85, 102626.

[7]

Belfadel, A.; Hörl, S.; Tapia, R. J.; Politaki, D.; Kureshi, I.; Tavasszy, L.; Puchinger, J. A conceptual digital twin framework for city logistics. Comput. Environ. Urban Syst. 2023, 103, 101989.

[8]

Wang, H.; Chen, X. W.; Jia, F.; Cheng, X. J. Digital twin-supported smart city: Status, challenges and future research directions. Expert Syst. Appl. 2023, 217, 119531.

[9]

Hao, D. N.; Gong, Y. C.; Wu, J. Y.; Shen, Q. H.; Zhang, Z. T.; Zhi, J. Y.; Zou, R.; Kong, W. H.; Kong, L. J. A self-sensing and self-powered wearable system based on multi-source human motion energy harvesting. Small 2024, 20, 2311036.

[10]

Zhou, S. Z.; Li, Z. Y.; Zhou, S. X. A two-degree-of-freedom nonlinear electromagnetic energy harvester in rotational motion. Mech. Syst. Signal Process. 2024, 220, 111695.

[11]

Hao, D. N.; Kong, L. J.; Zhang, Z. T.; Kong, W. H.; Tairab, A. M.; Luo, X.; Ahmed, A.; Yang, Y. W. An electromagnetic energy harvester with a half-wave rectification mechanism for military personnel. Sustain. Energy Technol. Assess. 2023, 57, 103184.

[12]

Nadertehrani, A.; Ziaei-Rad, S.; Eshtehardiha, R. Harvesting vibration energy by quad-stable piezoelectric cantilever beam: Modeling, fabrication and testing. Eur. J. Mech. A/Solids 2024, 107, 105389.

[13]

Sezer, N.; Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 2021, 80, 105567.

[14]

Lin, Z. W.; Sun, C. C.; Zhang, G. Q.; Fan, E. D.; Zhou, Z. H.; Shen, Z. Y.; Yang, J.; Liu, M. Y.; Xia, Y. S.; Si, S. B. et al. Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Res. 2022, 15, 7484–7491.

[15]

Tang, S.; Chang, W. X.; Li, G.; Sun, J. F.; Du, Y.; Hui, X. D.; Tang, Q.; Hu, Z. H.; Li, J. Q.; Chen, J. et al. High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Res. 2023, 16, 6933–6939.

[16]

Wang, K. K.; Yao, Y. M.; Liu, Y. X.; Guan, X.; Yu, Y.; Wang, J. L.; Wang, Y. Q.; Li, T. Y.; Cheng, T. H. Self-powered system for real-time wireless monitoring and early warning of UAV motor vibration based on triboelectric nanogenerator. Nano Energy 2024, 129, 110012.

[17]

Tan, D. G.; Zhou, J. X.; Wang, K.; Zhao, X. H.; Wang, Q.; Xu, D. L. Bow-type bistable triboelectric nanogenerator for harvesting energy from low-frequency vibration. Nano Energy 2022, 92, 106746.

[18]

Zhao, Y. C.; Gao, S. H.; Zhang, X.; Huo, W. X.; Xu, H.; Chen, C.; Li, J.; Xu, K. X.; Huang, X. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553.

[19]

Chen, X. X.; Guo, H.; Wu, H. X.; Chen, H. T.; Song, Y.; Su, Z. M.; Zhang, H. X. Hybrid generator based on freestanding magnet as all-direction in-plane energy harvester and vibration sensor. Nano Energy 2018, 49, 51–58.

[20]

Koka, A.; Sodano, H. A. High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays. Nat. Commun. 2013, 4, 2682.

[21]

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

[22]

Xu, Y. H.; Yang, W. X.; Yu, X.; Li, H. C.; Cheng, T. H.; Lu, X. H.; Wang, Z. L. Real-time monitoring system of automobile driver status and intelligent fatigue warning based on triboelectric nanogenerator. ACS Nano 2021, 15, 7271–7278.

[23]

Fang, Z.; Kong, L. J.; Chen, J. F.; Chen, H. Y.; Zhao, X. Y.; Luo, D. B. Zhang, Z. T. A multi-node self-powered fault detection system by triboelectric-electromagnetic nanosensors for smart transportation. Nano Energy 2024, 128, 109882.

[24]

Fang, Z.; Zhou, Z. J.; Yi, M. Y.; Zhang, Z. T.; Luo, X.; Ahmed, A. A roller-bearing-based triboelectric nanosensor for freight train synergistic maintenance in smart transportation. Nano Energy 2023, 106, 108089.

[25]

Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.

[26]

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

[27]

Zhang, X. Q.; Yu, M.; Ma, Z. R.; Ouyang, H.; Zou, Y.; Zhang, S. L.; Niu, H. K.; Pan, X. X.; Xu, M. Y.; Li, Z. et al. Self-powered distributed water level sensors based on liquid-solid triboelectric nanogenerators for ship draft detecting. Adv. Funct. Mater. 2019, 29, 1900327.

[28]

Zhang, Q. Y.; Barri, K.; Kari, S. R.; Wang, Z. L.; Alavi, A. H. Multifunctional triboelectric nanogenerator-enabled structural elements for next generation civil infrastructure monitoring systems. Adv. Funct. Mater. 2021, 31, 2105825.

[29]

Lee, D.; Kim, D. Dual output from unitary input for a hybrid coaxial triboelectric nanogenerator inspired by a crank engine. Nano Energy 2020, 71, 104599.

[30]

Wang, X. H.; Yin, G. F.; Sun, T.; Xu, X. J.; Rasool, G.; Abbas, K. Mechanical vibration energy harvesting and vibration monitoring based on triboelectric nanogenerators. Energy Technol. 2024, 12, 2300931.

[31]

Wang, C.; Zhang, X. S.; Wu, J.; Yu, X.; Cheng, T. H.; Ma, H. W.; Wang, Z. L. Double-spring-piece structured triboelectric sensor for broadband vibration monitoring and warning. Mech. Syst. Signal Process. 2022, 166, 108429.

[32]

Tang, G.; Cheng, F.; Hu, X.; Huang, B.; Xu, B.; Li, Z. B.; Yan, X. X.; Yuan, D. D.; Wu, W. J.; Shi, Q. F. A two-degree-of-freedom cantilever-based vibration triboelectric nanogenerator for low-frequency and broadband operation. Electronics 2019, 8, 1526.

[33]

Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

[34]

Jin, L.; Deng, W. L.; Su, Y. C.; Xu, Z.; Meng, H.; Wang, B.; Zhang, H. P.; Zhang, B. B.; Zhang, L.; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185–192.

[35]

Shi, Q.; Yang, J. H.; Gui, H.; Gui, Y. G.; Tang, C.; Yu, Y. Q.; Zhao, Z. Y. Self-powered circular-honeycomb triboelectric nanogenerator for vibration energy harvesting and resonance detection of synchronous machine. Sens. Actuators A Phys. 2023, 354, 114291.

[36]

Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.

[37]

Zhao, H. F.; Shu, M. R.; Ai, Z. H.; Lou, Z. R.; Sou, K. W.; Lu, C. Y.; Jin, Y. C.; Wang, Z. H.; Wang, J. Y.; Wu, C. S. et al. A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv. Energy Mater. 2022, 12, 2201132.

[38]

Bhatta, T.; Pradhan, G. B.; Shrestha, K.; Jeong, S. H.; Zhang, S. P.; Kim, H. S.; Park, J. Y. All elastomeric pillars-based triboelectric vibration sensor for self-powered broad range machinery condition monitoring. Nano Energy 2023, 117, 108929.

[39]

Xin, C. F.; Xu, Z. F.; Xie, X.; Guo, H. Y.; Peng, Y.; Li, Z. J.; Liu, L. L.; Xie, S. R. Structure-crack detection and digital twin demonstration based on triboelectric nanogenerator for intelligent maintenance. Adv. Sci. 2023, 10, 2302443.

[40]

Yang, Y. Q.; Shi, Q. F.; Zhang, Z. X.; Shan, X. C.; Salam, B.; Lee, C. Robust triboelectric information-mat enhanced by multi-modality deep learning for smart home. InfoMat 2023, 5, e12360.

[41]

Walter, P. L. Review: Fifty years plus of accelerometer history for shock and vibration (1940-1996). Shock Vib. 1999, 6, 197–207.

[42]

Son, J. D.; Niu, G.; Yang, B. S.; Hwang, D. H.; Kang, D. S. Development of smart sensors system for machine fault diagnosis. Expert Syst. Appl. 2009, 36, 11981–11991.

[43]

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

[44]

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

[45]

Huang, C. M.; Li, Q. T.; Li, J.; Guo, H. Z.; Hao, W. H.; Sheng, K. X.; An, Y. S.; Chen, J. Y.; Zhang, X. Y.; Xu, M. Y. Research on dynamics of bouncing ball in triboelectric nanogenerator. J. Micromech. Microeng. 2021, 31, 085002.

[46]

Luo, A. C. J.; Han, R. P. S. The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 1996, 10, 1–18.

[47]

Li, G. B.; Li, Q. T.; Hao, W. H.; Li, J.; Guo, H. Z.; Zheng, X. Q.; Huang, C. M. Numerical calculation and experimental investigation on optimization of bouncing ball triboelectric nanogenerator. Nano Energy 2022, 104, 107864.

[48]

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

[49]

Ahmad, M. M.; Khan, N. M.; Khan, F. U. Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism. Int. J. Energy Res. 2021, 45, 15609–15645.

[50]

Yu, Y.; Li, H. Y.; Zhao, D.; Gao, Q.; Li, X.; Wang, J. L.; Wang, Z. L.; Cheng, T. H. Material’s selection rules for high performance triboelectric nanogenerators. Mater. Today 2023, 64, 61–71.

[51]

Lu, C. X.; Han, C. B.; Gu, G. Q.; Chen, J.; Yang, Z. W.; Jiang, T.; He, C.; Wang, Z. L. Temperature effect on performance of triboelectric nanogenerator. Adv. Eng. Mater. 2017, 19, 1700275.

Nano Research
Article number: 94907287
Cite this article:
Jiang J, Fan C, Chen H, et al. A self-powered triboelectric nano-sensor enabled digital twin for self-sustained machine monitoring in smart mine. Nano Research, 2025, 18(4): 94907287. https://doi.org/10.26599/NR.2025.94907287

260

Views

34

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 November 2024
Revised: 04 January 2025
Accepted: 06 February 2025
Published: 03 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return