AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Single-atom Pd confined in Ti3C2 nanosheet for boosted room-temperature trace NO2 monitoring

Yang CaiJinlong XiongYuwei WangHafiz Muhammad Adeel SharifJiahao CaiTing PanXueren TanZhuo LiChangping Li ( )
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
Show Author Information

Graphical Abstract

A highly effective NO2 sensor based on Pd single atoms-decorated Ti3C2 nanosheet (Ti3C2/PdSA) with a high response (0.289 to 1 ppm NO2) at room temperature is developed, which is 28.9 times of Ti3C2 and 7.8 times of Ti3C2/Pdnano, respectively. Rich active sites, chemical sensitization effect, and NO2 adsorption enhancement result from Pd single atoms in Ti3C2/PdSA boosted the sensing performance.

Abstract

Two-dimensional MXenes have great potential for gas sensing applications due to their distinct electronic structure and unique surface properties. However, low sensitivity and poor selectivity to target gas at room temperature are major shortcomings of MXene materials. In this study, PdCl2 was used to decorate Pd single atoms (PdSA) on Ti3C2 nanosheet (Ti3C2/PdSA). The Pd2+ was directly reduced (in-situ) into a PdSA due to abundant Ti vacancies and the inherent reducing ability of Ti3C2 MXene. The Ti3C2/PdSA sensor exhibited the highest response of 0.289 to 1 ppm NO2, which is 28.9 and 7.8 times higher over pristine Ti3C2 and Pd nanoparticles (Pdnano)-decorated on Ti3C2 (Ti3C2/Pdnano), respectively. Simultaneously, the Ti3C2/PdSA sensor possessed an ultralow detection limit (10 ppb) and excellent selectivity towards NO2. The enhanced gas sensing mechanism of Ti3C2/PdSA was investigated in detail through the activation energy calculation, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) studies. The rich active sites, chemical sensitization effect, and NO2 adsorption enhancement resulting from the Pd single atoms in Ti3C2/PdSA significantly boosted sensing performance. This work can provide new insights and guidelines for fabricating highly effective NO2 sensors operated at room temperature.

Electronic Supplementary Material

Download File(s)
7285_ESM.pdf (1.1 MB)

References

[1]

Lim, H.; Kwon, H.; Kang, H.; Jang, J. E.; Kwon, H. J. Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring. Nat. Commun. 2023, 14, 3114.

[2]

Song, J.; Baek, J.; Cho, J.; Kim, T.; Kim, M.; Kim, H. S.; Mun, J.; Kang, S. W. MOCVD of hierarchical C-MoS2 nanobranches for ppt-level NO2 detection. Small Struct. 2023, 4, 2200392.

[3]

Choi, J.; Kim, Y. J.; Cho, S. Y.; Park, K.; Kang, H.; Kim, S. J.; Jung, H. T. In situ formation of multiple schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 2020, 30, 2003998.

[4]

Wu, J.; Wu, Z. X.; Ding, H. J.; Wei, Y. M.; Huang, W. X.; Yang, X.; Li, Z. Y.; Qiu, L.; Wang, X. T. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 2020, 12, 2634–2643.

[5]

Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432.

[6]

Panigrahi, P.; Hussain, T.; Karton, A.; Ahuja, R. Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): Implications for enhanced gas sensing. ACS Sens. 2019, 4, 2646–2653.

[7]

Koo, W. T.; Kim, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: Highly active and conductive porous materials. Adv. Sci. 2019, 6, 1900250.

[8]

Lin, C. X.; Kim, K.; Wang, Z. C.; Yan, Z.; Tang, Z. Y.; Liu, Y. L. Mace-like TTF-TCNQ/HKUST-1 composite structures for rapid NO2 detection: Synergistically induced ultrahigh sensitivity and outstanding selectivity. Nano Res. 2023, 16, 13366–13374.

[9]

Sreedhar, A.; Ravi, P.; Noh, J. S. Advancements in two-dimensional Ti3C2 MXene interfaced semiconductors for room temperature NO2 gas sensing: A review. J. Mater. Sci. Technol. 2024, 203, 237–254.

[10]

Li, H. P.; Wen, J.; Ding, S. M.; Ding, J. B.; Song, Z. H.; Zhang, C.; Ge, Z.; Liu, X.; Zhao, R. Z.; Li, F. C. Synergistic coupling of 0D–2D heterostructure from ZnO and Ti3C2T x MXene-derived TiO2 for boosted NO2 detection at room temperature. Nano Mater. Sci. 2023, 5, 421–428.

[11]

Hilal, M.; Yang, W.; Hwang, Y.; Xie, W. F. Tailoring MXene thickness and functionalization for enhanced room-temperature trace NO2 sensing. Nano-Micro Lett. 2024, 16, 84.

[12]

Guo, F. Q.; Feng, C.; Zhang, Z.; Zhang, L. L.; Xu, C.; Zhang, C. T.; Lin, S.; Wu, H. X.; Zhang, B. H.; Tabusi, A. et al. A room-temperature NO2 sensor based on Ti3C2T X MXene modified with sphere-like CuO. Sens. Actuators B: Chem. 2023, 375, 132885.

[13]

Wang, B.; Gao, X. X.; He, J. M.; Xiao, Y. N.; Liu, Y.; Jia, X. T.; Zhang, K.; Wang, C. G.; Sun, P.; Liu, F. M. et al. Room-temperature ppb-level NO2 sensor based on three-dimensional Mo2CT x nano-crumpled spheres. Sens. Actuators B: Chem. 2024, 399, 134790.

[14]

Zhao, Q. N.; Zhou, W. Z.; Zhang, M. X.; Wang, Y.; Duan, Z. H.; Tan, C. L.; Liu, B. H.; Ouyang, F. P.; Yuan, Z.; Tai, H. L. et al. Edge-enriched Mo2TiC2T x /MoS2 heterostructure with coupling interface for selective NO2 monitoring. Adv. Funct. Mater. 2022, 32, 2203528.

[15]

Ta, Q. T. H.; Tri, N. N.; Noh, J. S. Improved NO2 gas sensing performance of 2D MoS2/Ti3C2T x MXene nanocomposite. Appl. Surf. Sci. 2022, 604, 154624.

[16]

Chen, W. M.; Li, P. P.; Yu, J.; Cui, P. X.; Yu, X. H.; Song, W. G.; Cao, C. Y. In-situ doping nickel single atoms in two-dimensional MXenes analogue support for room temperature NO2 sensing. Nano Res. 2022, 15, 9544–9553.

[17]

Kuang, D. L.; Wang, L.; Guo, X. Z.; She, Y.; Du, B. S.; Liang, C. Y.; Qu, W. J.; Sun, X.; Wu, Z. L.; Hu, W. et al. Facile hydrothermal synthesis of Ti3C2T x -TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. J. Hazard. Mater. 2021, 416, 126171.

[18]

Yang, Z. J.; Zou, H. S.; Zhang, Y. Y.; Liu, F. M.; Wang, J.; Lv, S. Y.; Jiang, L.; Wang, C. G.; Yan, X.; Sun, P. et al. The introduction of defects in Ti3C2T x and Ti3C2T x -assisted reduction of graphene oxide for highly selective detection of ppb-level NO2. Adv. Funct. Mater. 2022, 32, 2108959.

[19]

Gasso, S.; Sohal, M. K.; Mahajan, A. MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sens. Actuators B: Chem. 2022, 357, 131427.

[20]

Liu, X.; Zhang, H. M.; Shen, T.; Sun, J. B. Flexible resistive NO2 gas sensor of SnO2@Ti3C2T x MXene for room temperature application. Ceram. Int. 2024, 50, 2459–2466.

[21]

Yang, Z. J.; Jiang, L.; Wang, J.; Liu, F. M.; He, J. M.; Liu, A.; Lv, S. Y.; You, R.; Yan, X.; Sun, P. et al. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2T x /ZnO spheres for room temperature application. Sens. Actuators B: Chem. 2021, 326, 128828.

[22]

Nam, M. S.; Kim, J. Y.; Mirzaei, A.; Lee, M. H.; Kim, H. W.; Kim, S. S. Au-and Pt-decorated Ti3C2T x MXenes for preparing self-heated and flexible NH3 gas sensors. Sens. Actuators B: Chem. 2024, 403, 135112.

[23]

Zong, B. Y.; Xu, Q. K.; Mao, S. Single-atom Pt-functionalized Ti3C2T x field-effect transistor for volatile organic compound gas detection. ACS Sens. 2022, 7, 1874–1882.

[24]

Hu, J. Y.; Wang, X. P.; Lei, H.; Luo, M. H.; Zhang, Y. Plasmonic photothermal driven MXene-based gas sensor for highly sensitive NO2 detection at room temperature. Sens. Actuators B: Chem. 2024, 407, 135422.

[25]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[26]

Wang, W. Y.; Li, S. J.; Qiang, Q.; Wu, K.; Pan, X. L.; Su, W. T.; Cai, J. Y.; Shen, Z. G.; Yang, Y. Q.; Li, C. Z. et al. Catalytic refining lignin-derived monomers: Seesaw effect between nanoparticle and single-atom Pt. Angew. Chem., Int. Ed. 2024, 63, e202404683.

[27]

Chen, C.; Ou, W.; Yam, K. M.; Xi, S. B.; Zhao, X. X.; Chen, S.; Li, J.; Lyu, P.; Ma, L.; Du, Y. H. et al. Zero-valent palladium single-atoms catalysts confined in black phosphorus for efficient semi-hydrogenation. Adv. Mater. 2021, 33, 2008471.

[28]

Chu, T. S.; Rong, C.; Zhou, L.; Mao, X. Y.; Zhang, B. W.; Xuan, F. Z. Progress and perspectives of single-atom catalysts for gas sensing. Adv. Mater. 2023, 35, 2206783.

[29]

Jia, X.; Qiao, P. Z.; Wang, X. W.; Yan, M. Y.; Chen, Y.; An, B. L.; Hu, P. F.; Lu, B.; Xu, J.; Xue, Z. G. et al. Building feedback-regulation system through atomic design for highly active SO2 sensing. Nano-Micro Lett. 2024, 16, 136.

[30]

Zhang, S. C.; Chang, X.; Zhou, L. H.; Liu, X. H.; Zhang, J. Stabilizing single-atom Pt on Fe2O3 nanosheets by constructing oxygen vacancies for ultrafast H2 sensing. ACS Sens. 2024, 9, 2101–2109.

[31]

Wang, C. Y.; Xie, J. Y.; Chang, X.; Zheng, W.; Zhang, J.; Liu, X. H. ZnO single nanowire gas sensor: A platform to investigate the sensitization of Pt. Chem. Eng. J. 2023, 473, 145481.

[32]

Ye, X. L.; Lin, S. J.; Zhang, J. W.; Jiang, H. J.; Cao, L. A.; Wen, Y. Y.; Yao, M. S.; Li, W. H.; Wang, G. E.; Xu, G. Boosting room temperature sensing performances by atomically dispersed Pd stabilized via surface coordination. ACS Sens. 2021, 6, 1103–1110.

[33]

Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.

[34]

Zhu, L. Y.; Ou, L. X.; Mao, L. W.; Wu, X. Y.; Liu, Y. P.; Lu, H. L. Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: Overview. Nano-Micro Lett. 2023, 15, 89.

[35]

Xiong, J. L.; Cai, Y.; Nie, X. L.; Wang, Y. W.; Song, H. R.; Sharif, H. M. A.; Li, Z.; Li, C. P. PANI/3D crumpled Ti3C2T X /TiO2 nanocomposites for flexible conductometric NH3 sensors working at room temperature. Sens. Actuators B: Chem. 2023, 390, 133987.

[36]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[37]

Xiu, L. Y.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Qiu, J. S. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 8017–8028.

[38]

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

[39]

Lv, D. W.; Shen, W. F.; Chen, W. G.; Tan, R. Q.; Xu, L.; Song, W. J. PSS-PANI/PVDF composite based flexible NH3 sensors with sub-ppm detection at room temperature. Sens. Actuators B: Chem. 2021, 328, 129085.

[40]

Li, J. Y.; Si, W. Z.; Shi, L.; Gao, R. Q.; Li, Q. J.; An, W.; Zhao, Z. C.; Zhang, L.; Bai, N.; Zou, X. X. et al. Essential role of lattice oxygen in hydrogen sensing reaction. Nat. Commun. 2024, 15, 2998.

[41]

Lou, C. M.; Wang, K.; Liu, X. H.; Li, X. Y.; Wang, H.; Li, L. H.; Zheng, W.; Zhang, J. Heterogeneous Co3O4/carbon nanofibers for low temperature triethylamine detection: Mechanistic insights by operando DRIFTS and DFT. Adv. Mater. Interfaces 2022, 9, 2101479.

[42]

Tang, H. Y.; Luo, X. A.; Li, W. T.; Pan, Y.; Wang, S. Q.; Ma, H.; Shen, Y.; Fang, R. M.; Dong, F. Highly active Ag/ZnO/ZnAl-LDH heterojunction photocatalysts for NO removal. Chem. Eng. J. 2023, 474, 145873.

[43]

Bai, H. N.; Guo, H.; Feng, C.; Wang, J.; Liu, B.; Xie, Z. L.; Guo, F. Q.; Chen, D. J.; Zhang, R.; Zheng, Y. D. Highly responsive and selective ppb-level NO2 gas sensor based on porous Pd-functionalized CuO/rGO at room temperature. J. Mater. Chem. C 2022, 10, 3756–3769.

Nano Research
Article number: 94907285
Cite this article:
Cai Y, Xiong J, Wang Y, et al. Single-atom Pd confined in Ti3C2 nanosheet for boosted room-temperature trace NO2 monitoring. Nano Research, 2025, 18(4): 94907285. https://doi.org/10.26599/NR.2025.94907285

595

Views

189

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 13 November 2024
Revised: 07 January 2025
Accepted: 06 February 2025
Published: 22 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return