AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication | Open Access

Asymmetric B-coordination stimulated high-spin cobalt boosts ORR

Yugang Qi1Kexin Song1Qing Liang1Xinyan Zhou1Meiqi Liu1Wenwen Li1Fuxi Liu1Zhou Jiang1Qinhua Gu2Zhongjun Chen3Bingsen Zhang2( )Wei Zhang1( )
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, and International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Asymmetric B-coordination stimulated carbon-supported cobalt single atom boosts oxygen reduction reactions (ORR). Ideal electron (t2g5eg2) filling aids in modulating the adsorption of oxygenate intermediates.

Abstract

As affordable electrocatalysts for oxygen reduction reactions (ORR) in metal-air batteries, nitrogen-carbon supported atomically dispersed single-atom transition-metal electrocatalysts are emerging. Accurately modulating the first-shell coordination of single-atom metal sites remains challenging, which impedes the elucidation of geometric/electronic structures for optimizing ORR catalysts. Aiming to tackle this challenge by rational design and constructing an asymmetric coordination model catalyst Co-B/N-C, herein we unravel that asymmetric B-coordination stimulates the generation of Co high spin state (t2g5eg2). By using X-ray absorption spectroscopy (XAS), we confirm Co active sites are atomically dispersed with a first-shell coordination of boron and nitrogen atom (Co-B1N3). Thus, the adsorption strength and electron transfer between the cobalt centers and the reactants/intermediates were boosted for optimal ORR capacity (E1/2 = 0.87 V). Our work will provide valuable new perspectives on the strategic development of high-performance magnetic metal catalysts for ORR.

Electronic Supplementary Material

Download File(s)
7278_ESM.pdf (8.3 MB)

References

[1]

Zhang, W.; Zheng, W. T. Single atom excels as the smallest functional material. Adv. Funct. Mater. 2016, 26, 2988–2993.

[2]

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

[3]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[4]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[5]

Kim, H.; Shin, D.; Yang, W.; Won, D. H.; Oh, H. S.; Chung, M. W.; Jeong, D.; Kim, S. H.; Chae, K. H.; Ryu, J. Y. et al. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 2021, 143, 925–933.

[6]

Xue, W. X.; Zhu, Z. W.; Chen, S. X.; You, B.; Tang, C. H. Atomically dispersed Co-N/C catalyst for divergent synthesis of nitrogen-containing compounds from alkenes. J. Am. Chem. Soc. 2023, 145, 4142–4149.

[7]

Wu, Q. Y.; Zhou, R. X.; Yao, Z. Y.; Wang, T. Y.; Li, Q. Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chin. Chem. Lett. 2024, 35, 109416.

[8]

Wagner, S.; Auerbach, H.; Tait, C. E.; Martinaiou, I.; Kumar, S. C. N.; Kübel, C.; Sergeev, I.; Wille, H. C.; Behrends, J.; Wolny, J. A. et al. Elucidating the structural composition of an Fe-N-C catalyst by nuclear- and electron-resonance techniques. Angew. Chem., Int. Ed. 2019, 58, 10486–10492.

[9]

Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

[10]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[11]

Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe-N x sites in Fe–N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.

[12]

Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

[13]

Yan, X. X.; Liu, K. X.; Wang, T.; You, Y.; Liu, J. G.; Wang, P.; Pan, X. Q.; Wang, G. F.; Luo, J.; Zhu, J. Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. J. Mater. Chem. A. 2017, 5, 3336–3345.

[14]

Li, Y. J.; Ding, Y. J.; Zhang, B.; Huang, Y. C.; Qi, H. F.; Das, P.; Zhang, L. Z.; Wang, X.; Wu, Z. S.; Bao, X. H. N,O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn-air batteries. Energy Environ. Sci. 2023, 16, 2629–2636.

[15]

Mehmood, A.; Gong, M. J.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M. T.; Primbs, M.; Bonastre, A. M.; Fongalland, D. et al. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 311–323.

[16]

Ren, X. Y.; Liu, H.; Wang, J. G.; Yu, J. Y. Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chin. Chem. Lett. 2024, 35, 109282.

[17]

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

[18]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[19]

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

[20]

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

[21]

Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

[22]

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

[23]

Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; Xie, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176.

[24]

Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

[25]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017, 355, eaad4998.

[26]

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

[27]

Cao, J.; Zhang, D. Z.; Ren, B. Q.; Song, P.; Xu, W. L. Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chin. Chem. Lett. 2024, 35, 109863.

[28]

Long, X. D.; Li, Z. L.; Gao, G.; Sun, P.; Wang, J.; Zhang, B. S.; Zhong, J.; Jiang, Z.; Li, F. W. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

[29]

Haile, A. S.; Hansen, H. A.; Yohannes, W.; Mekonnen, Y. S. The role of nitrogen and sulfur dual coordination of cobalt in Co–N4– x S x /C single atom catalysts in the oxygen reduction reaction. Sustain. Energy Fuels. 2022, 6, 179–187.

[30]

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

[31]

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

[32]

Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

[33]

Hu, K. S.; Zhang, Y. L.; Zhu, J. Y.; Mai, J.; Liu, G.; Sugumar, M. K.; Liu, X. H.; Zhan, F.; Tan, R. Nano-engineered catalysts for high-performance oxygen reduction reaction. Chin. Chem. Lett. 2024, 35, 109423.

[34]

Osmieri, L.; Monteverde Videla, A. H. A.; Ocón, P.; Specchia, S. Kinetics of oxygen electroreduction on Me-N-C (Me = Fe, Co, Cu) catalysts in acidic medium: Insights on the effect of the transition metal. J. Phys. Chem. C 2017, 121, 17796–17817.

[35]

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

[36]

Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

[37]

Lu, Z. Y.; Wang, J.; Huang, S. F.; Hou, Y. L.; Li, Y. G.; Zhao, Y. P.; Mu, S. C.; Zhang, J. J.; Zhao, Y. F. N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 2017, 42, 334–340.

[38]

Chi, K.; Wang, Z. P.; Sun, T.; He, P.; Xiao, F.; Lu, J.; Wang, S. Simultaneously engineering the first and second coordination shells of single iron catalysts for enhanced oxygen reduction. Small 2024, 20, 2311817.

[39]

Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

[40]

Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.

[41]

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

[42]

Xiao, M. L.; Chen, Y. T.; Zhu, J. B.; Zhang, H.; Zhao, X.; Gao, L. Q.; Wang, X.; Zhao, J.; Ge, J. J.; Jiang, Z. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

[43]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[44]

Chen, G. B.; Lu, R. H.; Li, C. Z.; Yu, J. M.; Li, X. D.; Ni, L. M.; Zhang, Q.; Zhu, G. Q.; Liu, S. W.; Zhang, J. X. et al. Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts. Adv. Mater. 2023, 35, 2300907.

[45]

Liu, F. X.; Zou, X.; Yue, N. L.; Zhang, W.; Zheng, W. T. Correlative Raman imaging and scanning electron microscopy for advanced functional materials characterization. Cell Rep. Phys. Sci. 2023, 4, 101607.

[46]

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

[47]

Pei, J. J.; Shang, H. S.; Mao, J. J.; Chen, Z.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Wang, Y.; Zhang, F.; Zhu, W. et al. A replacement strategy for regulating local environment of single-atom Co-S x N4– x catalysts to facilitate CO2 electroreduction. Nat. Commun. 2024, 15, 416.

[48]

Luo, X.; Wei, X. Q.; Wang, H. J.; Gu, W. L.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Z. Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 2020, 12, 163.

[49]

Kone, I.; Xie, A.; Tang, Y.; Chen, Y.; Liu, J.; Chen, Y. M.; Sun, Y. Z.; Yang, X. J.; Wan, P. Y. Hierarchical porous carbon doped with iron/nitrogen/sulfur for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 20963–20973.

[50]

Vilé, G.; Sharma, P.; Nachtegaal, M.; Tollini, F.; Moscatelli, D.; Sroka-Bartnicka, A.; Tomanec, O.; Petr, M.; Filip, J.; Pieta, I. S. et al. An earth-abundant Ni-based single-atom catalyst for selective photodegradation of pollutants. Solar RRL 2021, 5, 2100176.

[51]

Qiu, P. X.; Chen, H.; Xu, C. M.; Zhou, N.; Jiang, F.; Wang, X.; Fu, Y. S. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J. Mater. Chem. A 2015, 3, 24237–24244.

[52]

Safaei, J.; Mohamed, N. A.; Noh, M. F. M.; Soh, M. F.; Riza, M. A.; Mustakim, N. S. M.; Ludin, N. A.; Ibrahim, M. A.; Isahak, W. N. R. W.; Teridi, M. A. M. Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film. J. Alloy. Compd. 2018, 769, 130–135.

[53]

Qin, T. T.; Zhang, W. L.; Ma, Y.; Zhang, W.; Dong, T. W.; Chu, X. Y.; Li, T.; Wang, Z. Z.; Yue, N. L.; Liu, H. Y. et al. Mechanistic insights into the electrochemical Li/Na/K-ion storage for aqueous bismuth anode. Energy Storage Mater. 2022, 45, 33–39.

[54]

Zhou, X. Y.; Qiao, S. F.; Yue, N. L.; Zhang, W.; Zheng, W. T. Soft X-ray emission spectroscopy finds plenty of room in exploring lithium-ion batteries. Mater. Res. Lett. 2023, 11, 239–249.

[55]

Yang, Y.; Li, B.; Liang, Y. N.; Ni, W. P.; Li, X.; Shen, G. Z.; Xu, L.; Chen, Z. J.; Zhu, C.; Liang, J. X. et al. Hetero-diatomic CoN4–NiN4 site pairs with long-range coupling as efficient bifunctional catalyst for rechargeable Zn-air batteries. Adv. Sci. 2024, 11, 2310231.

[56]

Chen, C. L.; Chai, J.; Sun, M. R.; Guo, T. Q.; Lin, J.; Zhou, Y. R.; Sun, Z. Y.; Zhang, F.; Zhang, L.; Chen, W. X. et al. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction. Energy Environ. Sci. 2024, 17, 2298–2308.

[57]

Xu, Y. H.; Yao, Z. Q.; Mao, Z. C.; Shi, M. Q.; Zhang, X. Y.; Cheng, F.; Yang, H. B.; Tao, H. B.; Liu, B. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Appl. Catal. B: Environ. 2020, 277, 119057.

[58]

Hu, X.; Chen, S. Y.; Chen, L. T.; Tian, Y.; Yao, S.; Lu, Z. Y.; Zhang, X.; Zhou, Z. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction. Critical roles of coordinating pyrrolic n and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144–18152.

[59]

Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

[60]

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

[61]

Guo, S. T.; Li, R.; Tian, F. Z.; Yang, X. T.; Wang, L.; Guan, S. Y.; Zhou, S. Y.; Lu, J. Carbon-defect-driven boron carbide for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. ACS Biomater. Sci. Eng. 2021, 7, 3370–3378.

[62]

Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 2019, 9, 1901503.

[63]

Xie, F.; Sun, L.; Qian, J. L.; Shi, X. C.; Hu, J. J.; Qu, Y. R.; Tan, H. K.; Wang, K.; Zhang, Y. H. Polypyrrole-coated Boron-doped Nickel–Cobalt sulfide on electrospinning carbon nanofibers for high performance asymmetric supercapacitors. J. Colloid. Interface Sci. 2022, 628, 371–383.

[64]

Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.

[65]

Wang, X. K.; Zhou, X. K.; Li, C.; Yao, H. X.; Zhang, C.; Zhou, J.; Xu, R.; Chu, L.; Wang, H. L.; Gu, M. et al. Asymmetric Co-N3P1 trifunctional catalyst with tailored electronic structures enabling boosted activities and corrosion resistance in an uninterrupted seawater splitting system. Adv. Mater. 2022, 34, 2204021.

[66]

Sun, K.; Huang, Y.; Wang, Q. Y.; Zhao, W. D.; Zheng, X. S.; Jiang, J.; Jiang, H. L. Manipulating the spin state of Co sites in metal-organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 2024, 146, 3241–3249.

[67]

Song, K. X.; Yang, B. B.; Zou, X.; Zhang, W.; Zheng, W. T. Unified ORR mechanism criteria via charge-spin-coordination of Fe functional units. Energy Environ. Sci. 2024, 17, 27–48.

[68]

Chen, Q. Y.; Chen, Z. Y.; Ali, A.; Luo, Y. Q.; Feng, H. Y.; Luo, Y. Y.; Tsiakaras, P.; Kang Shen, P. Shell-thickness-dependent Pd@PtNi core-shell nanosheets for efficient oxygen reduction reaction. Chem. Eng. J. 2022, 427, 131565.

Nano Research
Article number: 94907278
Cite this article:
Qi Y, Song K, Liang Q, et al. Asymmetric B-coordination stimulated high-spin cobalt boosts ORR. Nano Research, 2025, 18(4): 94907278. https://doi.org/10.26599/NR.2025.94907278
Topics:

683

Views

149

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 December 2024
Revised: 24 January 2025
Accepted: 27 January 2025
Published: 03 April 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return