Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Silicon (Si) has emerged as a promising anode material for lithium-ion batteries (LIBs) due to its extremely high theoretical capacity of 4200 mAh·g−1. However, its practical application is limited by several critical challenges, including severe volume expansion and poor electrical conductivity. Herein, we employ a two-dimensional (2D) oxygen modification engineering approach to fabricate 2D oxygen-functionalized CaSi2 (CaSi2Ox) layers. During the preparation of 2D CaSi2 layers, O atoms are gradually incorporated onto their surface. The resulting 2D CaSi2Ox layers have a thickness of 3–5 nm, closely matching the theoretical thickness of 6–10 layers. When used as lithium anodes, the 2D CaSi2Ox layers exhibit exceptional electrochemical performance, maintaining stability over 3000 cycles at an ultrahigh current density of 30 A·g−1. By tailoring the surface properties, their pseudocapacitive charge storage mechanism is significantly enhanced, effectively overcoming the intrinsic limitations of traditional Si anodes. This study highlights the promise of 2D surface engineering in the development of advanced materials for next-generation LIBs.
Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.
Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.
Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater. 2024, 36, 2308799.
Tu, J. X.; Yu, S.; Hao, K.; Sun, L.; Bai, R. C.; Zhang, F. Z.; Li, A. J.; Liu, H. Controllable synthesis of one-dimensional silicon nanostructures based on the dual effects of electro-deoxidation and the Kirkendall effect. Nano Res. 2024, 17, 7814–7823.
Gu, J. N.; Zhang, Y. Z.; Shi, Y.; Jin, Y. L.; Chen, H.; Sun, X.; Wang, Y. H.; Zhan, L.; Du, Z. G.; Yang, S. B. et al. Heteroatom immobilization engineering toward high-performance metal anodes. ACS Nano 2024, 18, 25966–25985.
Yan, Z. L.; Yi, S.; Wang, Z.; Ning, P. P.; Zhang, J. W.; Huang, J. L.; Xiao, Y. M.; Yang, D. R.; Zhang, Y. G.; Du, N. Atomic-level regulation of SiC4 units enable high Li+ dynamics and long-life micro-size SiC x anodes. Adv. Energy Mater. 2024, 14, 2400598.
Yu, Y. Y.; Yang, C.; Jiang, Y.; Shang, Z. T.; Zhu, J. D.; Zhang, J. H.; Jiang, M. J. Robust nitrogen/sulfur Co-doped carbon frameworks as multifunctional coating layer on Si anodes toward superior lithium storage. Adv. Energy Mater. 2025, 15, 2403086.
Luo, J.; Arnot, D. J.; King, S. T.; Kingan, A.; Nicoll, A.; Tong, X.; Bock, D. C.; Takeuchi, E. S.; Marschilok, A. C.; Yan, S. et al. Two-dimensional siloxene nanosheets: Impact of morphology and purity on electrochemistry. ACS Appl. Mater. Interfaces 2023, 15, 24306–24318.
Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiO x /C–Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2022, 15, 395–400.
Liu, C. W.; Lau Jr, V.; Tsui, L. Y.; Loo, B. Q.; Hsu, H. P.; Lan, C. W. Exfoliability of two-dimensional silicon nanosheets from calcium disilicide and its enhanced performance as lithium-ion battery anode material. J. Energy Storage 2023, 72, 108399.
Sun, L.; Xie, J.; Huang, S. C.; Liu, Y. X.; Zhang, L.; Wu, J.; Jin, Z. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiO x /C nanosheets for high-performance lithium storage. Sci. China Mater. 2022, 65, 51–58.
Sun, L.; Su, T. T.; Xu, L.; Liu, M. P.; Du, H. B. Two-dimensional ultra-thin SiO x (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes. Chem. Commun. 2016, 52, 4341–4344.
Zhou, P.; Xiao, P.; Pang, L.; Jiang, Z.; Hao, M.; Li, Y.; Wu, F. X. High-performance yolk–shell structured silicon-carbon composite anode preparation via one-step gas-phase deposition and etching technique. Adv. Funct. Mater. 2025, 35, 2406579.
Jiang, X. Y.; Tang, C. Y.; Zhou, X. C.; Hou, J. W.; Jiang, S.; Meng, L. C.; Zhang, Y. Recent progress in Si/Ti3C2T x MXene anode materials for lithium-ion batteries. iScience 2024, 27, 111217.
Zeng, S. B.; Lin, Z.; Peng, J.; He, Z. X.; Liang, X. H.; Li, Y. Y.; Lv, Y.; Xiong, L. B. Synergistic structural integrity and remarkable structural stability of NC@Si anodes for lithium-ion batteries. Mater. Res. Bull. 2025, 182, 113162.
Li, H.; Chen, Q. S.; Feng, L. L.; Zou, Y. L.; Gong, X. Z.; Wang, Z.; Liu, J. H. Vapor-phase conversion of waste silicon powders to silicon nanowires for ultrahigh and ultra-stable energy storage performance. J. Energy Chem. 2025, 102, 27–36.
Li, J. W.; Wang, T. D.; Wang, Y. J.; Xu, Z. H.; Mateen, A.; Yan, W.; Li, H. J.; Mujear, A.; Chen, J.; Deng, S. Y. et al. Solid–liquid–solid growth of doped silicon nanowires for high-performance lithium-ion battery anode. Nano Energy 2025, 133, 110455.
Sánchez-Ahijón, E.; Pendashteh, A.; Vilatela, J. J. Paper-like 100% Si nanowires electrodes integrated with argyrodite Li6PS5Cl solid electrolyte. Batter. Supercaps 2024, 7, e202400292.
Cao, Z. J.; Du, Z. G.; Jia, K.; Jin, L.; Li, N.; Zhang, M.; Gao, R.; Abdelkader, A.; Kumar, R. V.; Ding, S. J. et al. Bubbling chemical vapors in molten metal toward XIV-group nanosheets. Nano Lett. 2024, 24, 14559–14566.
Ren, H. L.; Su, Y.; Zhao, S.; Li, C. W.; Wang, X. M.; Li, B. H. N and B co-doping to enhance Li adsorption and diffusion properties on silicene/graphene heterostructures: Insights from density functional theory. Mater. Sci. Semicond. Process. 2025, 186, 109041.
Liu, J. J.; Yang, Y.; Lyu, P.; Nachtigall, P.; Xu, Y. X. Few-layer silicene nanosheets with superior lithium-storage properties. Adv. Mater. 2018, 30, 1800838.
Zhou, J.; Zhao, H. Y.; Lin, N.; Li, T. Q.; Li, Y.; Jiang, S.; Tian, J.; Qian, Y. T. Silicothermic reduction reaction for fabricating interconnected Si-Ge nanocrystals with fast and stable Li-storage. J. Mater. Chem. A 2020, 8, 6597–6606.
Zheng, G. R.; Xiang, Y. X.; Xu, L. F.; Luo, H.; Wang, B. L.; Liu, Y.; Han, X.; Zhao, W. M.; Chen, S. J.; Chen, H. L. et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 2018, 8, 1801718.
Tian, Y. F.; Li, G.; Xu, D. X.; Lu, Z. Y.; Yan, M. Y.; Wan, J.; Li, J. Y.; Xu, Q.; Xin, S.; Wen, R. et al. Micrometer-sized SiMg y O x with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 2022, 34, 2200672.
Ji, W. L.; Li, M. H.; Nong, Y. T.; Luo, J.; Liang, X. L.; Wang, X. W.; Ming, L.; Ou, X.; Zhang, J. F.; Zhang, B. et al. Low-temperature de-alloying and unique self-filling interface optimization mechanism of layered silicon for enhanced lithium storage. Chem. Commun. 2024, 60, 10500–10503.
Takagaki, R.; Yamamoto, C.; Yamanaka, J.; Arimoto, K.; Kurosawa, M.; Hara, K. O. Synthesis and characterization of CaSi2 films for hydrogenated 2D Si nanosheets. J. Vac. Sci. Technol. A 2024, 42, 053404.
Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Cl x ) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.
Teixeira, H.; Dias, C.; Silva, A. V.; Ventura, J. Advances on MXene-based memristors for neuromorphic computing: A review on synthesis, mechanisms, and future directions. ACS Nano 2024, 18, 21685–21713.
Liu, Y. R.; Wu, Y.; Wang, X. W. Thermal transports in the MXenes family: Opportunities and challenges. Nano Res. 2024, 17, 7700–7716.
Zhou, S. Y.; Li, X.; Zhang, Y. L.; Halim, J.; Xu, C.; Rosen, J.; Strømme, M. Drawing highly ordered MXene fibers from dynamically aggregated hydrogels. Nano Res. 2024, 17, 9815–9821.
Xiang, K.; Wang, Y. J.; Zhuang, Z. C.; Zou, J.; Li, N.; Wang, D. S.; Zhai, T. Y.; Jiang, J. Z. Self-healing of active site in Co(OH)2/MXene electrocatalysts for hydrazine oxidation. J. Mater. Sci. Technol. 2024, 203, 108–117.
Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.
Zhu, G. Y.; Hou, Y. N.; Lu, J. Q.; Zhang, H. C.; Zhuang, Z. H.; Baig, M. M.; Khan, M. Z.; Akram, M. A.; Dong, S. Y.; Liu, P. MXene decorated 3D-printed carbon black-based electrodes for solid-state micro-supercapacitors. J. Mater. Chem. A 2023, 11, 25422–25428.
Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li–S battery. ACS Nano 2023, 17, 1653–1662.
Lang, Z. Q.; Zhuang, Z. C.; Li, S. K.; Xia, L. X.; Zhao, Y.; Zhao, Y. L.; Han, C. H.; Zhou, L. MXene surface terminations enable strong metal-support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.
Loaiza, L. C.; Dupré, N.; Davoisne, C.; Madec, L.; Monconduit, L.; Seznec, V. Complex lithiation mechanism of siloxene and germanane: Two promising battery electrode materials. J. Electrochem. Soc. 2021, 168, 010510.
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.
Ismail, M. M.; Vigneshwaran, J.; Arunbalaji, S.; Mani, D.; Arivanandhan, M.; Jose, S. P.; Jayavel, R. Antimonene nanosheets with enhanced electrochemical performance for energy storage applications. Dalton Trans. 2020, 49, 13717–13725.
Xu, Z. L.; Gang, Y.; Garakani, M. A.; Abouali, S.; Huang, J. Q.; Kim, J. K. Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A 2016, 4, 6098–6106.
Gohier, A.; Laïk, B.; Kim, K. H.; Maurice, J. L.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Van, P. T. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 2012, 24, 2592–2597.
Agyeman, D. A.; Song, K.; Lee, G. H.; Park, M.; Kang, Y. M. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 2016, 6, 1600904.
Li, Z. W.; Han, M. S.; Yu, J. Sub-nanometer structured silicon-carbon composite nanolayers armoring on graphite for fast-charging and high-energy-density lithium-ion batteries. Rare Metals 2023, 42, 3692–3704.
Zhang, W. Y.; Shi, H. F.; Wang, C. D.; Wang, J. S.; Wang, Z.; Jiang, H.; Xiong, Z. H.; Wang, Z. K.; Bai, Z. M.; Yan, X. Q. Synthesizing copper-doped silicon/carbon composite anode as cost-effective active materials for Li-ion batteries. J. Phys. Chem. Solids 2023, 179, 111387.
Liang, B.; Liu, Y. P.; Xu, Y. H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources 2014, 267, 469–490.
Chen, Y. F.; Du, N.; Zhang, H.; Yang, D. R. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J. Alloy. Compd. 2015, 622, 966–972.
Zhou, M.; Cai, T. W.; Pu, F.; Chen, H.; Wang, Z.; Zhang, H. Y.; Guan, S. Y. Graphene/Carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3449–3455.
Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.
Wang, Z. Y.; Jing, L. Y.; Zheng, X.; Xu, Z. G.; Yuan, Y. P.; Liu, X. H.; Fu, A. P.; Guo, Y. G.; Li, H. L. Microspheres of Si@Carbon-CNTs composites with a stable 3D interpenetrating structure applied in high-performance lithium-ion battery. J. Colloid Interface Sci. 2023, 629, 511–521.
272
Views
37
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).