AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (20.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Tandem electrocatalysts for CO2 reduction to prepare multi-carbon products

Zaiming Chen1,§Xuewei Song1,§Tao Long1Yugang Yan2Fei Lv3Jing Ma3Shengpan Peng3Zhengwei Tong3Fangkun Fan4Rongfei Yu5Dafeng Yan5 ( )Shenghua Chen4 ( )
CHN Energy Zhejiang Ninghai Power Generation Co. Ltd, Ningbo 315612, China
CHN Energy Zhejiang Electric Power Co. Ltd, Hangzhou 310020, China
Nation Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing 102209, China
National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

§ Zaiming Chen and Xuewei Song contributed equally to this work.

Show Author Information

Graphical Abstract

This review summarizes recent progress in tandem electrocatalysts for CO2 reduction to prepare C2+ products, including Cu–metal, Cu–metal–N–C, Cu–metal–organic framework, and Cu-free tandem materials.

Abstract

Electrocatalytic CO2 reduction reaction (CRR) is considered as a sustainable approach to converting CO2 into high value-added chemicals, assisting the goal of carbon peaking and carbon neutrality. Electrochemical CRR can be easily regulated by controlling the electrocatalyst, electrolyte, and reactor to produce various chemicals. Among different products, multi-carbon (C2+) products draw widespread attention for their high energy density and value along with complex reaction mechanisms. It is well recognized that *CO intermediate plays vital role in forming C2+ products and Cu is the only metal catalyst which can efficiently electro-reduce CO2 to C2+ products. Therefore, researchers developed many strategies to increase the amount of *CO intermediate and further enhance the performance of C2+ products. Recently, designing tandem electrocatalysts consisted of Cu and the materials which can convert CO2 to *CO intermediate has become a hotspot and achieved great achievements. In this review, we will summary the recent progress in tandem electrocatalysts for CO2 reduction to prepare C2+ products, including the origin and fundamental mechanism of tandem electrocatalysis, the strategies of catalyst design, and regulation principles. In addition, some newest findings, like Cu tandem catalysts can achieve to produce C2+ products, are well introduced. Finally, the remaining challenges and prospects for future development are also proposed.

References

[1]

Allen, M. R.; Frame, D. J.; Huntingford, C.; Jones, C. D.; Lowe, J. A.; Meinshausen, M.; Meinshausen, N. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458, 1163–1166.

[2]

Hulme, M. 1.5 °C and climate research after the Paris agreement. Nat. Climate Change 2016, 6, 222–224.

[3]

Teng, X.; Si, D.; Chen, L. S.; Shi, J. L. Synergetic catalytic effects by strong metal-support interaction for efficient electrocatalysis. eScience 2024, 4, 100272.

[4]

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]

Fang, W. S.; Guo, W.; Lu, R. H.; Yan, Y.; Liu, X. K.; Wu, D.; Li, F. M.; Zhou, Y. S.; He, C. H.; Xia, C. F. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 2024, 626, 86–91.

[7]

Wang, Y.; Ge, H. Y.; Luo, Y. X.; Zhu, X. J.; Wang, L. L.; Yan, D. F. Pulsed electrocatalysis: A dynamical route for tailoring electrocatalytic properties from fundamentals to applications. Chem. Eng. J. 2024, 502, 157783.

[8]

Gao, W. Q.; Wang, C.; Lv, L.; Yan, D. F.; Xia, B. Y. Electrocatalytic bipolar synthesis of valuable chemicals. ChemCatChem 2024, 16, e202401198.

[9]

Sun, H. X.; Gao, Y. Y.; Chen, M. Y.; Li, M.; Xia, Q. Q.; Liu, Y. Z.; Meng, J.; Dou, S.; Yu, H. P. Synergistic boosting the electrooxidation of biomass-based 5-hydroxymethylfurfural on cellulose-derived Co3O4/N-doped carbon catalysts. Mater. Today Catal. 2024, 7, 100062.

[10]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[11]

Li, Y. P.; Niu, S. W.; Liu, P. G.; Pan, R. R.; Zhang, H. K.; Ahmad, N.; Shi, Y.; Liang, X.; Cheng, M. Y.; Chen, S. H. et al. Ruthenium nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem. 2024, 136, e202316755.

[12]

Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem. 2023, 135, e202217449.

[13]

Zhong, Y.; Xiong, H. L.; Low, J.; Long, R.; Xiong, Y. J. Recent progress in electrochemical C–N coupling reactions. eScience 2023, 3, 100086.

[14]

Lv, J. J.; Yin, R. N.; Zhou, L. M.; Li, J.; Kikas, R.; Xu, T.; Wang, Z. J.; Jin, H. L.; Wang, X.; Wang, S. Microenvironment engineering for the electrocatalytic CO2 reduction reaction. Angew. Chem. 2022, 134, e202207252.

[15]

Zhang, W.; Yang, Y.; Li, Y. X.; Li, F. W.; Luo, M. C. Recent progress on integrated CO2 capture and electrochemical upgrading. Mater. Today Catal. 2023, 2, 100006.

[16]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, 9120021.

[17]

He, X. R.; Chen, J. W.; Xu, Y. F.; Shen, Y.; Zeng, Y. F.; Zhu, J. Y.; Xu, B. J.; Wang, C. Metal–organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Res. 2023, 16, 4554–4561.

[18]
Wang, S. W.; Wang, L. G.; Zhou, X. D.; Fang, J. J.; Deng, C.; Wang, D. S. Design principles of single-atom catalysts anchored over porous materials for green catalysis and conversion. Nano Res., in press, DOI: 10.26599/NR.2025.94907137.
[19]

Yang, J. R.; Zhu, C. X.; Li, W. H.; Zheng, X. S.; Wang, D. S. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem., Int. Ed. 2024, 63, e202314382.

[20]

Wang, X. Y.; Pan, Y. Z.; Yang, J. R.; Li, W. H.; Gan, T.; Pan, Y. M.; Tang, H. T.; Wang, D. S. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem., Int. Ed. 2024, 63, e202404295.

[21]

Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Wang, D. S.; Li, H. T. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.

[22]

Wang, C.; Gao, W. Q.; Hu, W.; Wen, W.; Wang, S. F.; Zhang, X. H.; Yan, D. F.; Xia, B. Y. Recent advances in electrochemical synthesis of urea via C–N coupling. J. Energy Chem. 2024, 98, 294–310.

[23]

She, X. J.; Wang, Y. F.; Xu, H.; Chi Edman Tsang, S.; Ping Lau, S. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew. Chem., Int. Ed. 2022, 61, e202211396.

[24]

Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343–4380.

[25]

Zhang, J. F.; Li, Z. Y.; Cai, R.; Zhang, T. Y.; Yang, S. Z.; Ma, L.; Wang, Y.; Wu, Y. C.; Wu, J. J. Switching CO2 electroreduction selectivity between C1 and C2 hydrocarbons on Cu gas-diffusion electrodes. Energy Environ. Mater. 2023, 6, e12307.

[26]

Zhang, B. K.; Jiang, J. W. Mo2B2O2 MB ene for efficient electrochemical CO reduction to C2 chemicals: Computational exploration. Energy Enviro. Mater. 2024, 7, e12738.

[27]

Zhai, Y. J.; Han, P.; Yun, Q. B.; Ge, Y. Y.; Zhang, X.; Chen, Y.; Zhang, H. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2022, 2, 467–485.

[28]

Chen, F. R.; Yao, Z. C.; Lyu, Z. H.; Fu, J. J.; Zhang, X. L.; Hu, J. S. Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction. eScience 2024, 4, 100172.

[29]

Zhao, J.; Zhang, Y. X.; Zhuang, Z. C.; Deng, Y. T.; Gao, G.; Li, J. Y.; Meng, A. L.; Li, G. C.; Wang, L.; Li, Z. J. et al. Tailoring d–p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem., Int. Ed. 2024, 63, e202404968.

[30]

Zhang, Y. D.; Sun, Y. J.; Wang, Q. Y.; Zhuang, Z. C.; Ma, Z. T.; Liu, L. M.; Wang, G. M.; Wang, D. S.; Zheng, X. S. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem., Int. Ed. 2024, 63, e202405637.

[31]

Zhang, M.; Lu, M.; Yang, M. Y.; Liao, J. P.; Liu, Y. F.; Yan, H. J.; Chang, J. N.; Yu, T. Y.; Li, S. L.; Lan, Y. Q. Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy. eScience 2023, 3, 100116.

[32]
Wang, F. S.; Ji, H. C.; Wu, Z. F.; Chen, K.; Gao, W. Q.; Wang, C.; Wang, L. L.; Chen, J. M.; Yan, D. F. The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.109898.
[33]

Wang, S.; Zhang, J. L.; Yao, L.; Yang, Y. S.; Zheng, L. R.; Guan, B.; Zhao, Y. Z.; Wang, Y. Y.; Han, B. X.; Xing, X. Q. Efficient electrocatalytic CO2 reduction to C2+ chemicals on internal porous copper. Nano Res. 2023, 16, 10779–10786.

[34]

Gu, Z. X.; Shen, H.; Chen, Z.; Yang, Y. Y.; Yang, C.; Ji, Y. L.; Wang, Y. H.; Zhu, C.; Liu, J. L.; Li, J. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 2021, 5, 429–440.

[35]

Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem. 2024, 136, e202412740.

[36]

Wang, X. D.; Hu, Q.; Li, G. D.; Yang, H. P.; He, C. X. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts. Electrochem. Energy Rev. 2022, 5, 28.

[37]

Xu, C. C.; Zhi, X.; Vasileff, A.; Wang, D.; Jin, B.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts. Small Struct. 2021, 2, 2000058.

[38]

Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: Catalyst evolution is the key. ACS Catal. 2016, 6, 6265–6274.

[39]

Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. C. et al. Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.

[40]

Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

[41]

Zhang, T. T.; Yuan, B. W.; Wang, W. L.; He, J.; Xiang, X. Tailoring *H intermediate coverage on the CuAl2O4/CuO catalyst for enhanced electrocatalytic CO2 reduction to ethanol. Angew. Chem. 2023, 135, e202302096.

[42]

Wang, D.; Mao, J. J.; Zhang, C. C.; Zhang, J. W.; Li, J. S.; Zhang, Y.; Zhu, Y. F. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023, 3, 100119.

[43]

Zeng, M.; Fang, W. S.; Cen, Y. R.; Zhang, X. Y.; Hu, Y. M.; Xia, B. Y. Reaction environment regulation for electrocatalytic CO2 reduction in acids. Angew. Chem. 2024, 136, e202404574.

[44]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[45]

Yan, D. F.; Xia, C. F.; Zhang, W. J.; Hu, Q.; He, C. X.; Xia, B. Y.; Wang, S. Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2202317.

[46]

Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

[47]

Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275–2309.

[48]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[49]

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

[50]

Yang, Y.; Zhang, Y.; Hu, J. S.; Wan, L. J. Progress in the mechanisms and materials for CO2 electroreduction toward C2+ products. Acta Phys.-Chim. Sin. 2020, 36, 1906085.

[51]

Yan, T. X.; Chen, X. Y.; Kumari, L.; Lin, J. L.; Li, M. L.; Fan, Q.; Chi, H. Y.; Meyer, T. J.; Zhang, S.; Ma, X. B. Multiscale CO2 electrocatalysis to C2+ products: Reaction mechanisms, catalyst design, and device fabrication. Chem. Rev. 2023, 123, 10530–10583.

[52]

Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326–11353.

[53]

Zhu, Q. S.; Murphy, C. J.; Baker, L. R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands. J. Am. Chem. Soc. 2022, 144, 2829–2840.

[54]

Hu, Y.; Asif, M.; Gong, J. X.; Zeb, H.; Lan, H. H.; Kashif Khan, M.; Xia, H. C.; Du, M. L. Mechanistic insights into C–C coupling in electrocatalytic CO2 reduction reaction. Chem. Commun. 2024, 60, 10618–10628.

[55]

Chen, C. B.; Yu, S.; Yang, Y.; Louisia, S.; Roh, I.; Jin, J. B.; Chen, S. P.; Chen, P. C.; Shan, Y.; Yang, P. D. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat. Catal. 2022, 5, 878–887.

[56]

Li, H. B.; Li, X. Y.; Wang, P. T.; Zhang, Z.; Davey, K.; Shi, J. Q.; Qiao, S. Z. Machine learning big data set analysis reveals C–C electro-coupling mechanism. J. Am. Chem. Soc. 2024, 146, 22850–22858.

[57]

Zhang, M. Y.; Zhou, D. Y.; Mu, X. Q.; Wang, D. S.; Liu, S.; Dai, Z. H. Regulating the critical intermediates of dual-atom catalysts for CO2 electroreduction. Small 2024, 20, 2402050.

[58]

Zheng, M.; Wang, P. T.; Zhi, X.; Yang, K.; Jiao, Y.; Duan, J. J.; Zheng, Y.; Qiao, S. Z. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 2022, 144, 14936–14944.

[59]

Li, J.; Wang, Z. Y.; McCallum, C.; Xu, Y.; Li, F. W.; Wang, Y. H.; Gabardo, C. M.; Dinh, C. T.; Zhuang, T. T.; Wang, L. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2019, 2, 1124–1131.

[60]

Sun, Q.; Tan, X.; Jia, C.; Rong, C. L.; Wang, S. H.; Han, C.; Xiao, Y.; Qi, H. Q.; Smith, S. C.; Zhao, C. Molecule doping of atomically dispersed Cu–Au alloy for enhancing electroreduction of CO to C2+ products. Adv. Funct. Mater. 2024, 34, 2406281.

[61]

Rhimi, B.; Zhou, M.; Yan, Z. X.; Cai, X. Y.; Jiang, Z. F. Cu-based materials for enhanced C2+ product selectivity in photo-/electro-catalytic CO2 reduction: Challenges and prospects. Nano-Micro Lett. 2024, 16, 64.

[62]

Lin, Y. R.; Lee, D. U.; Tan, S. Q.; Koshy, D. M.; Lin, T. Y.; Wang, L.; Corral, D.; Avilés Acosta, J. E.; Zamora Zeledon, J. A.; Beck, V. A. et al. Vapor-fed electrolyzers for carbon dioxide reduction using tandem electrocatalysts: Cuprous oxide coupled with nickel-coordinated nitrogen-doped carbon. Adv. Funct. Mater. 2022, 32, 2113252.

[63]

Xie, G. X.; Guo, W. W.; Fang, Z. J.; Duan, Z. X.; Lang, X. Z.; Liu, D. D.; Mei, G. L.; Zhai, Y. L.; Sun, X. F.; Lu, X. Q. Dual-metal sites drive tandem electrocatalytic CO2 to C2+ products. Angew. Chem., Int. Ed. 2024, 63, e202412568.

[64]

Luan, P.; Dong, X.; Liu, L. Q.; Xiao, J. P.; Zhang, P. F.; Zhang, J.; Chi, H. B.; Wang, Q. N.; Ding, C. M.; Li, R. G. et al. Selective electrosynthesis of ethanol via asymmetric C–C coupling in tandem CO2 reduction. ACS Catal. 2024, 14, 8776–8785.

[65]

Duan, G. Y.; Li, X. Q.; Ding, G. R.; Han, L. J.; Xu, B. H.; Zhang, S. J. Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly (ionic liquid)-based Cu0–CuI tandem catalyst. Angew. Chem. 2022, 134, e202110657.

[66]

Zhang, B.; Wang, L. L.; Li, D.; Li, Z. M.; Bu, R.; Lu, Y. Y. Tandem strategy for electrochemical CO2 reduction reaction. Chem Catal. 2022, 2, 3395–3429.

[67]

Chen, Y. J.; Li, X. Y.; Chen, Z.; Ozden, A.; Huang, J. E.; Ou, P. F.; Dong, J. C.; Zhang, J. Q.; Tian, C.; Lee, B. H. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 2024, 19, 311–318.

[68]

Chen, S. H.; Zheng, X. B.; Zhu, P.; Li, Y. P.; Zhuang, Z. C.; Wu, H. J.; Zhu, J. X.; Xiao, C. H.; Chen, M. Z.; Wang, P. S. et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem., Int. Ed. 2024, 63, e202411591.

[69]

Ding, J.; Bin Yang, H.; Ma, X. L.; Liu, S.; Liu, W.; Mao, Q.; Huang, Y. Q.; Li, J.; Zhang, T.; Liu, B. A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nat. Energy 2023, 8, 1386–1394.

[70]

Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600.

[71]

Qin, Y. Y.; Zhao, W. S.; Xia, C. F.; Yu, L. J.; Song, F.; Zhang, J. R.; Wu, T. T.; Cao, R.; Ding, S. J.; Xia, B. Y. et al. CO intermediate-assisted dynamic cu sintering during electrocatalytic CO2 reduction on Cu–N–C catalysts. Angew. Chem., Int. Ed. 2024, 63, e202404763.

[72]

Bai, H. P.; Cheng, T.; Li, S. Y.; Zhou, Z. Y.; Yang, H.; Li, J.; Xie, M.; Ye, J. Y.; Ji, Y. J.; Li, Y. Y. et al. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 2021, 66, 62–68.

[73]

Wang, C. L.; Lv, Z. H.; Liu, Y. R.; Dai, L.; Liu, R.; Sun, C. T.; Liu, W. Y.; Feng, X.; Yang, W. X.; Wang, B. Asymmetric Cu–N1O3 sites coupling atop-type and bridge-type adsorbed *C1 for electrocatalytic CO2-to-C2 conversion. Angew. Chem., Int. Ed. 2024, 63, e202411216.

[74]

Chen, C. J.; Huang, L. S.; Jiang, Y. L.; Zheng, Y.; Qiao, S. Z. Modulating local environment for electrocatalytic CO2 reduction to alcohol. Nano Energy 2024, 126, 109656.

[75]

Wang, X. L.; de Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.

[76]

Yang, Y. S.; Zhang, J. L.; Tan, Z. H.; Yang, J.; Wang, S.; Li, M. L.; Su, Z. Z. Highly selective production of C2+ oxygenates from CO2 in strongly acidic condition by rough Ag–Cu electrocatalyst. Angew. Chem., Int. Ed. 2024, 63, e202408873.

[77]

Jiang, K.; Cai, W. B. Disentangling distinct Cu surface sites for electrocatalytic CO2-to-CO and CO-to-C2+ conversion. Sci. China Chem. 2024, 67, 1047–1048.

[78]

Guan, S. Y.; Yuan, Z. L.; Zhao, S. Q.; Zhuang, Z. C.; Zhang, H. H.; Shen, R. F.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem., Int. Ed. 2024, 63, e202408193.

[79]

Ma, F. Y.; Zhang, P. F.; Zheng, X. B.; Chen, L.; Li, Y. R.; Zhuang, Z. C.; Fan, Y. M.; Jiang, P.; Zhao, H.; Zhang, J. W. et al. Steering the site distance of atomic Cu–Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem., Int. Ed. 2024, 63, e202412785.

[80]
Tang, M. H.; Shen, J.; Zhang, F. T.; Zhao, Y. F.; Gan, T.; Zeng, W.; Li, R. X.; Wang, D. S.; Han, B. X.; Liu, Z. M. Upcycling of polyamide wastes to tertiary amines using Mo single atoms and Rh nanoparticles. Angew. Chem., in press, DOI: 10.1002/ange.202416436.
[81]

Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B. R. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 reduction on Cu2O nanocubes via operando Raman spectroscopy. ACS Catal. 2021, 11, 7694–7701.

[82]

Chang, X. X.; Xiong, H. C.; Lu, Q.; Xu, B. J. Mechanistic implications of low CO coverage on Cu in the electrochemical CO and CO2 reduction reactions. JACS Au 2023, 3, 2948–2963.

[83]
Wang, Y.; Wang, J. R.; Cai, R.; Zhang, J. F.; Xia, S.; Li, Z. P.; Yu, C. P.; Wu, J. J.; Wang, P.; Wu, Y. C. Enhanced local CO coverage on Cu quantum dots for boosting electrocatalytic CO2 reduction to ethylene. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202417764.
[84]

Wang, M.; Nikolaou, V.; Loiudice, A.; Sharp, I. D.; Llobet, A.; Buonsanti, R. Tandem electrocatalytic CO2 reduction with Fe-porphyrins and Cu nanocubes enhances ethylene production. Chem. Sci. 2022, 13, 12673–12680.

[85]

Xu, W. J.; Shang, H. S.; Guan, J.; Yang, X. Y.; Jin, X. Y.; Tao, L. M.; Shao, Z. Q. Research progress of dual-site tandem catalysts in the preparation of multi carbon products by electro reduction of CO2. Adv. Funct. Mater. 2025, 35, 2412812.

[86]

Kim, Y. E.; Park, J. E.; Lee, J. H.; Choi, H.; Lee, W.; Ko, Y. N.; Kim, H. Y.; Park, K. T. Ag decorated-Cu2O catalysts with enhanced selectivity for CO2 electroreduction toward C2+ products. J. Environ. Chem. Eng. 2023, 11, 111028.

[87]

Fang, Z. J.; Guo, W. W.; Xie, G. X.; Mei, G. L.; Zhai, Y. L.; Zhu, Z. J.; Lu, X. Q.; Tang, J. G. Enhanced CO2 electroreduction to C2+ production on asymmetric Zn–O–Cu sites via tuning of *CO intermediate adsorption. Appl. Catal. B: Environ. Energy 2024, 359, 124473.

[88]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[89]

Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.

[90]

Song, J. T.; Qian, Z. X.; Yang, J.; Lin, X. M.; Xu, Q. C.; Li, J. F. In situ/ operando investigation for heterogeneous electro-catalysts: From model catalysts to state-of-the-art catalysts. ACS Energy Lett. 2024, 9, 4414–4440.

[91]

Yang, Y.; Louisia, S.; Yu, S.; Jin, J. B.; Roh, I.; Chen, C. B.; Fonseca Guzman, M. V.; Feijóo, J.; Chen, P. C.; Wang, H. S. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269.

[92]

Cao, X. Y.; Tan, D. X.; Wulan, B.; Hui, K. S.; Hui, K. N.; Zhang, J. T. In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods 2021, 5, 2100700.

[93]

Wang, Y.; Ma, F. Y.; Zhang, G. Q.; Zhang, J. W.; Zhao, H.; Dong, Y. M.; Wang, D. S. Precise synthesis of dual atom sites for electrocatalysis. Nano Res. 2024, 17, 9397–9427.

[94]

Du, C.; Mills, J. P.; Yohannes, A. G.; Wei, W.; Wang, L.; Lu, S. Y.; Lian, J. X.; Wang, M. Y.; Guo, T.; Wang, X. Y. et al. Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products. Nat. Commun. 2023, 14, 6142.

[95]

Ning, S. B.; Ou, H. H.; Li, Y. G.; Lv, C. C.; Wang, S. F.; Wang, D. S.; Ye, J. H. Co0–Co δ + interface double-site-mediated C–C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem., Int. Ed. 2023, 62, e202302253.

[96]

Kong, X. D.; Zhao, J. K.; Ke, J. W.; Wang, C.; Li, S. J.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. G. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 2022, 22, 3801–3808.

[97]

Kibria, M. G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; García de Arquer, F. P.; Yang, P. D. et al. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 2018, 30, 1804867.

[98]

Jiang, Y. W.; Wang, X. Y.; Duan, D. L.; He, C. H.; Ma, J.; Zhang, W. Q.; Liu, H. J.; Long, R.; Li, Z. B.; Kong, T. T. et al. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 2022, 9, 2105292.

[99]

He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2− x S derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. 2023, 16, 4494–4498.

[100]

Gao, X. Y.; Jiang, Y. J.; Liu, J. Y.; Shi, G. S.; Yang, C. L.; Xu, Q. S.; Yun, Y. Q.; Shen, Y. L.; Chang, M. W.; Zhu, C. Y. et al. Intermediate-regulated dynamic restructuring at Ag–Cu biphasic interface enables selective CO2 electroreduction to C2+ fuels. Nat. Commun. 2024, 15, 10331.

[101]
Yang, R. O.; Wen, Q. L.; Yang, Y. Q.; Liu, Y. W.; Yang, Y.; Wu, M.; Wei, Y.; Mei, B. B.; Liu, Y.; Li, H. Q. et al. Directional reconstruction to highly active tandem sites for superior acidic CO2 electroreduction. Adv. Mater., in press, DOI: 10.1002/adma.202414642.
[102]

Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

[103]

Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe–N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

[104]

Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

[105]

Lin, L.; Su, P. Y.; Han, Y. T.; Xu, Y. M.; Ni, Q.; Zhang, X. Y.; Xiong, P. X.; Sun, Z. M.; Sun, G. B.; Chen, X. B. Advances in regulating the electron spin effect toward electrocatalysis applications. eScience 2025, 5, 100264.

[106]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru–Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. 2024, 136, e202319618.

[107]

Tao, Y.; Guan, J. P.; Zhang, J.; Hu, S. Y.; Ma, R. Z.; Zheng, H. R.; Gong, J. X.; Zhuang, Z. C.; Liu, S. J.; Ou, H. H. et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem., Int. Ed. 2024, 63, e202400625.

[108]

Zhuang, J. H.; Wang, D. S. Recent advances of single-atom alloy catalyst: Properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2023, 2, 100009.

[109]

Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdiscip. Mater. 2024, 3, 74–86.

[110]

Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

[111]

Tang, Q. Q.; Feng, L. F.; Li, Z. P.; Wu, S. H.; Zhang, L. S.; Sun, Q.; Wu, M. F.; Zou, J. P. Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chin. Chem. Lett. 2024, 35, 109454.

[112]

Wong, H. H.; Sun, M. Z.; Wu, T.; Chan, C. H.; Lu, L.; Lu, Q. Y.; Chen, B. A.; Huang, B. L. Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction. eScience 2024, 4, 100140.

[113]
Xiong, J. X.; Ji, J. P.; Lei, Q.; Yang, X. C.; Bai, Y.; Zhang, X. L.; Cheng, H. M. Synergetic energy coupled thermal catalytic systems for CO2 reduction. eScience, in press, DOI: 10.1016/j.esci.2024.100306.
[114]

Wu, Y. S.; Liang, Y. Y.; Wang, H. L. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 2021, 54, 3149–3159.

[115]

Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H. Z.; Wang, X. J.; Liang, Y. Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 2019, 12, 2330–2334.

[116]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

[117]

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

[118]

Zheng, T. T.; Jiang, K.; Ta, N.; Hu, Y. F.; Zeng, J.; Liu, J. Y.; Wang, H. T. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019, 3, 265–278.

[119]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. 2020, 132, 2727–2731.

[120]

Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

[121]

Wang, X. L.; Ju, W.; Liang, L.; Riyaz, M.; Bagger, A.; Filippi, M.; Rossmeisl, J.; Strasser, P. Electrochemical CO2 activation and valorization on metallic copper and carbon-embedded N-coordinated single metal MNC catalysts. Angew. Chem. 2024, 136, e202401821.

[122]

Yang, Q. H.; Liu, H.; Lin, Y. C.; Su, D. S.; Tang, Y. L.; Chen, L. Atomically dispersed metal catalysts for the conversion of CO2 into high-value C2+ chemicals. Adv. Mater. 2024, 36, 2310912.

[123]

Liu, M.; Wang, Q. Y.; Luo, T.; Herran, M.; Cao, X. Y.; Liao, W. R.; Zhu, L.; Li, H. M.; Stefancu, A.; Lu, Y. R. et al. Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies. J. Am. Chem. Soc. 2024, 146, 468–475.

[124]

Xie, X. L.; Zhang, X.; Xie, M.; Xiong, L. K.; Sun, H.; Lu, Y. T.; Mu, Q. Q.; Rummeli, M. H.; Xu, J. B.; Li, S. et al. Au-activated N motifs in non-coherent cupric porphyrin metal–organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63.

[125]

Chen, S. H.; Ye, C. L.; Wang, Z. W.; Li, P.; Jiang, W. J.; Zhuang, Z. C.; Zhu, J. X.; Zheng, X. B.; Zaman, S.; Ou, H. H. et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem. 2023, 135, e202315621.

[126]

Liu, K. K.; Meng, Z.; Fang, Y.; Jiang, H. L. Conductive MOFs for electrocatalysis and electrochemical sensor. eScience 2023, 3, 100133.

[127]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[128]

Wen, C. F.; Zhou, M.; Liu, P. F.; Liu, Y. W.; Wu, X. F.; Mao, F. X.; Dai, S.; Xu, B. B.; Wang, X. L.; Jiang, Z. et al. Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu–S motifs in metal–organic framework based precatalysts. Angew. Chem., Int. Ed. 2022, 61, e202111700.

[129]

Guan, H. X.; Zhang, Y. X.; Fan, W. J.; Yang, K.; Li, G.; Chen, S.; Li, L. Q.; Duan, J. J. Regulated Cu diatomic distance promoting carbon-carbon coupling during CO2 electroreduction. Small 2024, 21, 2406605.

[130]

Shao, B.; Huang, D.; Huang, R. K.; He, X. L.; Luo, Y.; Xiang, Y. L.; Jiang, L. B.; Dong, M.; Li, S. X.; Zhang, Z. et al. Metal–organic framework supported low-nuclearity cluster catalysts for highly selective carbon dioxide electroreduction to ethanol. Angew. Chem., Int. Ed. 2024, 63, e202409270.

[131]
Li, Z. X.; Qiu, X. F.; Liao, P. Q. Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal–organic framework. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2024.110473.
[132]

Huang, L.; Liu, Z. A.; Gao, G.; Chen, C. L.; Xue, Y. R.; Zhao, J. W.; Lei, Q.; Jin, M. T.; Zhu, C. Q.; Han, Y. et al. Enhanced CO2 electroreduction selectivity toward ethylene on pyrazolate-stabilized asymmetric Ni–Cu hybrid sites. J. Am. Chem. Soc. 2023, 145, 26444–26451.

[133]

Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 16687–16692.

[134]

He, Q. Z.; Li, H. W.; Hu, Z. F.; Lei, L.; Wang, D. G.; Li, T. T. Highly selective CO2 electroreduction to C2H4 using a dual-sites Cu(II) porphyrin framework coupled with Cu2O nanoparticles via a synergetic-tandem strategy. Angew. Chem., Int. Ed. 2024, 63, e202407090.

[135]

Zhao, Z. H.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly efficient electroreduction of CO2 to ethanol via asymmetric C–C Coupling by a metal–organic framework with heterodimetal dual sites. J. Am. Chem. Soc. 2023, 145, 26783–26790.

[136]

Singh, A. K.; Gu, L.; Dutta Chowdhury, A.; Indra, A. Exploring ligand-controlled C2 product selectivity in carbon dioxide reduction with copper metal–organic framework nanosheets. Inorg. Chem. 2023, 62, 8803–8811.

[137]

Sun, M. X.; Cheng, J. M.; Anzai, A.; Kobayashi, H.; Yamauchi, M. Modulating electronic states of Cu in metal–organic frameworks for emerging controllable CH4/C2H4 selectivity in CO2 electroreduction. Adv. Sci. 2024, 11, 2404931.

[138]

Zhuo, L. L.; Chen, P.; Zheng, K.; Zhang, X. W.; Wu, J. X.; Lin, D. Y.; Liu, S. Y.; Wang, Z. S.; Liu, J. Y.; Zhou, D. D. et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem., Int. Ed. 2022, 61, e202204967.

[139]

Jiao, J. P.; Kang, X. C.; Yang, J. H.; Jia, S. Q.; Peng, Y. G.; Liu, S. Q.; Chen, C. J.; Xing, X. Q.; He, M. Y.; Wu, H. H. et al. Steering the reaction pathway of CO2 electroreduction by tuning the coordination number of copper catalysts. J. Am. Chem. Soc. 2024, 146, 15917–15925.

[140]

A, B.; Jin, X. X.; Wang, M.; Wang, Y.; Chen, W. R.; Wei, Z. X.; Du, Z. Y.; Liu, X. M.; Wang, Y.; Zhang, L. X. Steering CO2 electroreduction toward C2+ products by defect-engineered coordination microenvironments of Cu-MOFs. Chem. Eng. J. 2024, 500, 157076.

[141]

Deng, J.; Qiu, L. M.; Xin, M. D.; He, W. H.; Zhao, W. H.; Dong, J. C.; Xu, G. T. Boosting electrochemical CO2 reduction on copper-based metal–organic frameworks via valence and coordination environment modulation. Small 2024, 20, 2311060.

[142]

Liu, Y.; Chen, H. M.; Yang, Y.; Jiao, C.; Zhu, W. K.; Zhang, Y. P.; Wu, X. J.; Mao, J. J.; Zhuo, Z. W. Atomically inner tandem catalysts for electrochemical reduction of carbon dioxide. Energy Environ. Sci. 2023, 16, 5185–5195.

[143]

Lin, L.; Liu, T. F.; Xiao, J. P.; Li, H. F.; Wei, P. F.; Gao, D. F.; Nan, B.; Si, R.; Wang, G. X.; Bao, X. H. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem., Int. Ed. 2020, 59, 22408–22413.

Nano Research
Article number: 94907270
Cite this article:
Chen Z, Song X, Long T, et al. Tandem electrocatalysts for CO2 reduction to prepare multi-carbon products. Nano Research, 2025, 18(4): 94907270. https://doi.org/10.26599/NR.2025.94907270
Topics:

441

Views

87

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 16 December 2024
Revised: 14 January 2025
Accepted: 22 January 2025
Published: 11 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return