AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (23.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Reduced graphene oxide-induced in-situ uniform growth of hydrated WO3 film for enhanced electrochromic performance

Rui Fang1Yang Liu1Chunyu Shi2Huihui Jin2Zibo Chen4Haohao Sun1Ben Lv5Daping He2Xusheng Zheng3Yuli Xiong1 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
School of Science, Wuhan University of Technology, Wuhan 430070, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Graphical Abstract

This paper develops a two-dimensional reduced graphene oxide (rGO) assisted in-situ growth of hydrated WO3-rGO electrochromic materials, facilitating their application in smart window technologies. And it also offers new insights into the role of oxygen vacancies in enhancing the electrochromic properties of hydrated WO3 films through the addition of rGO.

Abstract

WO3-graphene electrochromic materials are widely used in electrochromic devices including smart windows and electronic displays, due to their ability to adjust optical transmittance in the visible and near-infrared ranges under low electrode potential. However, the uniformity of the film remains a challenge for the widely used physical mixing-coating method. In this study, we present a two-dimensional material-assisted synthesis of a porous hydrated WO3 film (WH-rGO) based on reduced graphene oxide (rGO) nanosheets and WO3 (rGO-WO3) seed layer via a hydrothermal method. The incorporation of rGO not only promotes the uniform growth of hydrated WO3 film, enhancing ion transport but also introduces oxygen vacancies, creating an efficient conduction pathway for charge transport. The resulting WH-rGO film exhibits impressive performance, achieving 71% optical modulation at 700 nm, with bleaching and coloring times of 4.2 and 1.0 s. The coloration efficiency is calculated at 156.11 cm2·C−1, and the optical modulation is maintained at 93% of the initial optical modulation after 1000 cycles applied in the +1.0 and −1.1 V potential ranges. This work offers new insights into the role of oxygen vacancies in enhancing the electrochromic properties of hydrated WO3 films through the addition of rGO. It also provides a promising approach for the synthesis of electrochromic materials, facilitating their application in smart window technologies.

Electronic Supplementary Material

Download File(s)
7269_ESM.pdf (6.4 MB)

References

[1]

Huang, Y.; Wang, B. S.; Bai, X. J.; Han, Y.; Zhang, W. S.; Zhou, C. H.; Meng, H. B.; Chen, F. X.; Wu, X. K.; Jiang, Q. Y. et al. 3D pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability. Adv. Opt. Mater. 2022, 10, 2102399.

[2]

Sheng, S. Z.; Wang, J. L.; Zhao, B.; He, Z.; Feng, X. F.; Shang, Q. G.; Chen, C.; Pei, G.; Zhou, J.; Liu, J. W. et al. Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation. Nat. Commun. 2023, 14, 3231.

[3]

Wang, Z.; Wang, X. Y.; Cong, S.; Geng, F. X.; Zhao, Z. G. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater. Sci. Eng.: R: Rep. 2020, 140, 100524.

[4]

Sun, X. H.; Wu, W.; Liu, N. N.; Li, P.; Zhao, X. Y.; Qu, Z. Z.; Zhao, K. M.; Wang, B.; Rong, X. H.; Zhang, X. Y. et al. Controlled assembly and synthesis of oxygen-deficient W18O49 films based on solvent molecular strategy for electrochromic energy storage smart windows. Chem. Eng. J. 2024, 499, 156109.

[5]

Cheng, Z. Q.; Xu, G.; Liu, Y.; Han, G. R. Topotactic layer-to-tunnel crystallization for h-WO3 films with enhanced electrochromic performance. Sol. Energy Mater. Sol. Cells 2024, 271, 112859.

[6]

Li, H. Z.; Shi, G. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. J. Mater. Chem. A 2014, 2, 11305–11310.

[7]

Li, G. Q.; Gao, L. X.; Li, L. D.; Guo, L. An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au NPs electrode and hydrogel electrolyte. J. Alloys Compd. 2019, 786, 40–49.

[8]

Cong, S.; Geng, F. X.; Zhao, Z. G. Tungsten oxide materials for optoelectronic applications. Adv. Mater. 2016, 28, 10518–10528.

[9]

Hai, Z. Y.; Wei, Z. H.; Xue, C. Y.; Xu, H. Y.; Verpoort, F. Nanostructured tungsten oxide thin film devices: From optoelectronics and ionics to iontronics. J. Mater. Chem. C 2019, 7, 12968–12990.

[10]

Zhai, Y. L.; Li, J. H.; Shen, S.; Zhu, Z. J.; Mao, S.; Xiao, X.; Zhu, C. Z.; Tang, J. G.; Lu, X. Q.; Chen, J. Recent advances on dual-band electrochromic materials and devices. Adv. Funct. Mater. 2022, 32, 2109848.

[11]

Gupta, S. P.; Nishad, H. H.; Patil, V. B.; Chakane, S. D.; More, M. A.; Late, D. J.; Walke, P. S. Morphology and crystal structure dependent pseudocapacitor performance of hydrated WO3 nanostructures. Mater. Adv. 2020, 1, 2492–2500.

[12]

Zhuang, D. S.; Zhang, Z. X.; Weng, J. B.; Wang, J. Y.; Zhang, H. L.; Cheng, W. Amorphous hydrated tungsten oxides with enhanced pseudocapacitive contribution for aqueous zinc-ion electrochromic energy storage. Adv. Energy Mater. 2024, 14, 2402603.

[13]

Yong, W. X.; Chen, N.; Xiong, T. D.; Fu, G. D. Development of high-performance Mo doped WO3 photo-electrochromic devices. Mater. Today Chem. 2024, 38, 102095.

[14]

Haritha, A. H.; Rozman, M.; Duran, A.; Galusek, D.; Velazquez, J. J.; Castro, Y. Sol–gel derived ZnO thin film as a transparent counter electrode for WO3 based electrochromic devices. Bol. Soc. Esp. Ceram. 2024, 63, 135–144.

[15]

Morankar, P. J.; Amate, R. U.; Chavan, G. T.; Teli, A. M.; Dalavi, D. S.; Jeon, C. W. Improved electrochromic performance of potentiostatically electrodeposited nanogranular WO3 thin films. J. Alloys Compd. 2023, 945, 169363.

[16]

Ghosh, T.; Rani, C.; Kandpal, S.; Tanwar, M.; Bansal, L.; Kumar, R. Chronoamperometric deposition of transparent WO3 film for application as power efficient electrochromic auxiliary electrode. J. Phys. D: Appl. Phys. 2022, 55, 365103.

[17]

Khan, A.; Bhosale, N. Y.; Mali, S. S.; Hong, C. K.; Kadam, A. V. Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties. J. Colloid Interface Sci. 2020, 571, 185–193.

[18]

Zhi, M. Y.; Huang, W. X.; Shi, Q. W.; Wang, M. Z.; Wang, Q. B. Sol–gel fabrication of WO3/RGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 2016, 6, 67488–67494.

[19]

Buch, V. R.; Chawla, A. K.; Rawal, S. K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proc. 2016, 3, 1429–1437.

[20]

Zheng, J. Y.; Sun, Q. M.; Cui, J. M. Z.; Yu, X. M.; Li, S. J.; Zhang, L. L.; Jiang, S. Y.; Ma, W.; Ma, R. Z. Review on recent progress in WO3-based electrochromic films: Preparation methods and performance enhancement strategies. Nanoscale 2023, 15, 63–79.

[21]

Man, W. K.; Lu, H.; Ju, L. C.; Zheng, F.; Zhang, M.; Guo, M. Effect of substrate pre-treatment on microstructure and enhanced electrochromic properties of WO3 nanorod arrays. RSC Adv. 2015, 5, 106182–106190.

[22]

Gao, C. J.; Guo, X. W.; Nie, L. W.; Wu, X.; Peng, L. M.; Chen, J.; Ding, W. J. Structure design and performance research of WO3 hydrogen gasochromic film prepared by solvothermal synthesis assisted with electrodeposition of seed layer. Adv. Mater. Interfaces 2022, 9, 2101355.

[23]

Tian, M. F.; Lu, M. S.; Wu, W. J.; Zheng, R. Z.; Tang, Y. B.; Wan, Z. Q.; Luo, J. S.; Jia, C. Y. Towards a large-scale and high-performance smart window based on Prussian blue: A revolutionary two-dimensional-material assisted in situ growth preparation method utilizing MXene. J. Mater. Chem. A 2024, 12, 2053–2069.

[24]

Tian, M. F.; Zheng, R. Z.; Jia, C. Y. Bridging to commercialization: Record-breaking of ultra-large and superior cyclic stability tungsten oxide electrochromic smart window. Adv. Mater. 2025, 37, 2409790.

[25]

Yang, J. Q.; Duan, X. C.; Guo, W.; Li, D.; Zhang, H. L.; Zheng, W. J. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 2014, 5, 74–81.

[26]

Bo, Z.; Zhu, W. G.; Ma, W.; Wen, Z. H.; Shuai, X. R.; Chen, J. H.; Yan, J. H.; Wang, Z. H.; Cen, K. F.; Feng, X. L. Graphene supercapacitors: Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors (Adv. Mater. 40/2013). Adv. Mater. 2013, 25, 5798.

[27]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[28]

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

[29]

Fu, C. P.; Foo, C.; Lee, P. S. One-step facile electrochemical preparation of WO3/graphene nanocomposites with improved electrochromic properties. Electrochim. Acta 2014, 117, 139–144.

[30]

Bhattacharjee, S.; Sen, S.; Samanta, S.; Kundu, S. Study on the role of rGO in enhancing the electrochromic performance of WO3 film. Electrochim. Acta 2022, 427, 140820.

[31]

Zhao, B. W.; Lu, S. J.; Zhang, X.; Wang, H.; Liu, J. B.; Yan, H. Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties. Ionics 2016, 22, 261–267.

[32]

Tench, D. M.; White, J. T. Tensile properties of nanostructured Ni-Cu multilayered materials prepared by electrodeposition. J. Electrochem. Soc. 1991, 138, 3757–3758.

[33]

Mu, X. Q.; Yuan, Y. T.; Yu, M.; Hu, Y. J.; Zeng, W. H.; Peng, W.; Zhang, Y. F.; Liu, X. Y.; Liu, S. L.; Mu, S. C. Robust water/seawater-electrolysis hydrogen production at industrial-scale current densities by modulating built-in-outer electric field of catalytic substance. Nano Energy 2024, 131, 110216.

[34]

Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

[35]

Jia, D. D.; Shen, Z. L.; Lv, Y. H.; Chen, Z. P.; Li, H. Q.; Yu, Y.; Qiu, J. S.; He, X. J. In situ electrochemical tuning of MIL-88B(V)@rGO into amorphous V2O5@rGO as cathode for high-performance aqueous zinc-ion battery. Adv. Funct. Mater. 2024, 34, 2308319.

[36]

Ahmadi, M.; Guinel, M. J. F. Synthesis and characterization of tungstite (WO3·H2O) nanoleaves and nanoribbons. Acta Mater. 2014, 69, 203–209.

[37]

Baserga, A.; Russo, V.; Di Fonzo, F.; Bailini, A.; Cattaneo, D.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 2007, 515, 6465–6469.

[38]

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

[39]

Lee, Y.; Theerthagiri, J.; Min, A.; Moon, C. J.; Choi, M. Y. Dual-laser pulse-patterned α-Co(OH)2/rGO heterointerface for accelerated water oxidation and surface phase-transition via in-situ Raman spectroscopy. EcoMat 2023, 5, e12417.

[40]

Xie, F. Y.; Gong, L.; Liu, X.; Tao, Y. T.; Zhang, W. H.; Chen, S. H.; Meng, H.; Chen, J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 112–118.

[41]

Zhang, Z. C.; Mo, H. J.; Li, R. C.; Zhou, X. L.; Lin, Z. C.; Zhang, J.; Tang, X. F.; Zhan, Y. F.; Luo, J. Y. The counterbalancing role of oxygen vacancy between the electrochromic properties and the trapping effect passivation for amorphous tungsten oxide films. Small Sci. 2024, 4, 2300219.

[42]

Zhang, R. K.; Ning, F. Y.; Xu, S. M.; Zhou, L.; Shao, M. F.; Wei, M. Oxygen vacancy engineering of WO3 toward largely enhanced photoelectrochemical water splitting. Electrochim. Acta 2018, 274, 217–223.

[43]

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

[44]

Gao, H. Q.; Sun, W.; Tian, X. L.; Liao, J. J.; Ma, C. L.; Hu, Y. L.; Du, G.; Yang, J.; Ge, C. J. Amorphous-amorphous coupling enhancing the oxygen evolution reaction activity and stability of the NiFe-based catalyst. ACS Appl. Mater. Interfaces 2022, 14, 15205–15213.

[45]

Drevon, D.; Görlin, M.; Chernev, P.; Xi, L. F.; Dau, H.; Lange, K. M. Uncovering the role of oxygen in Ni-Fe(O x H y ) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction. Sci. Rep. 2019, 9, 1532.

[46]

Wang, K.; Qiu, J. M.; Hou, F. C.; Yang, M.; Nie, K. Q.; Wang, J. O.; Hou, Y. C.; Huang, W. Y.; Zhao, W. G.; Zhang, P. X. et al. Unraveling the role of surficial oxygen vacancies in stabilizing Li-rich layered oxides. Adv. Energy Mater. 2023, 13, 2301216.

[47]

Zhang, Y.; Mu, X. Q.; Liu, Z. Y.; Zhao, H. Y.; Zhuang, Z. C.; Zhang, Y. F.; Mu, S. C.; Liu, S. L.; Wang, D. S.; Dai, Z. H. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat. Commun. 2024, 15, 10149.

[48]

Cai, G. F.; Tu, J. P.; Zhou, D.; Li, L.; Zhang, J. H.; Wang, X. L.; Gu, C. D. The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm 2014, 16, 6866–6872.

Nano Research
Article number: 94907269
Cite this article:
Fang R, Liu Y, Shi C, et al. Reduced graphene oxide-induced in-situ uniform growth of hydrated WO3 film for enhanced electrochromic performance. Nano Research, 2025, 18(4): 94907269. https://doi.org/10.26599/NR.2025.94907269

465

Views

68

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 December 2024
Revised: 20 January 2025
Accepted: 22 January 2025
Published: 17 March 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return