Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The generation and manipulation of spin-polarized electrons at room temperature are essential for the development of advanced spin-optoelectronic devices. In this work, a one-pot method was used to successfully synthesize homogenous Mn:CsPbBr3 perovskite quantum dots in air with particle sizes of 7−8 nm. The effects of Mn doping on the structure, optical and magnetic properties of CsPbBr3 quantum dots were investigated. The findings demonstrated proper Mn doping improved the crystallinity and photoluminescence (PL) of quantum dots. The prepared quantum dots have a narrow full width at half maximum emission (FWHM) of about 17−20 nm. The magnetic properties of the doped samples and the effect of the magnetic field on the PL spectra properties were analyzed. The results show that trace Mn doping can improve the room-temperature ferromagnetism of CsPbBr3 quantum dots. Doping with magnetic elements makes CsPbBr3 quantum dots more responsive to the applied magnetic field. Even at a lower 50 mT magnetic field, the PL peak of Mn:CsPbBr3 still declined 5.91%. Mn:CsPbBr3 quantum dots are a new type of multifunctional material that is beneficial to spintronics research. This work demonstrates a low-cost synthesis method. It should make all-inorganic perovskite quantum dots a promising material for room-temperature spin optoelectronic devices.
Cornia, A.; Seneor, P. The molecular way. Nat. Mater. 2017, 16, 505–506.
Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868.
Shao, D. F.; Zhang, S. H.; Li, M.; Eom, C. B.; Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 2021, 12, 7061.
Kim, S. K.; Beach, G. S. D.; Lee, K. J.; Ono, T.; Rasing, T.; Yang, H. Ferrimagnetic spintronics. Nat. Mater. 2022, 21, 24–34.
Gish, J. T.; Lebedev, D.; Song, T. W.; Sangwan, V. K.; Hersam, M. C. Van der Waals opto-spintronics. Nat. Electron. 2024, 7, 336–347.
Shumilin, A. V.; Shamirzaev, T. S.; Smirnov, D. S. Spin light emitting diode Based on exciton fine structure tuning in quantum dots. Phys. Rev. Lett. 2024, 132, 076202.
Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pa, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.
Liu, J.; Peng, Z. S.; Cai, J. Z.; Yue, J. Y.; Wei, H. N.; Impundu, J.; Liu, H.; Jin, J. Y.; Yang, Z.; Chu, W. G. et al. A room-temperature four-terminal spin field effect transistor. Nano Today 2021, 38, 101138.
Eberle, F.; Schuh, D.; Grünewald, B.; Bougeard, D.; Weiss, D.; Ciorga, M. Controlled rotation of electrically injected spins in a nonballistic spin-field-effect transistor. Nano Lett. 2023, 23, 4815–4821.
Kang, K. F.; Qiu, Y. C.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Double quantum spin Hall phase in Moiré WSe2. Nano Lett. 2024, 24, 14901–14907.
Jang, H. J.; Richter, C. A. Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering. Adv. Mater. 2017, 229, 1602739.
Yang, X. L.; Guo, A. K.; Guo, L. D.; Liu, Y. Q.; Sun, X. N.; Guo, Y. L. Organic semiconductors for room-temperature spin valves. ACS Mater. Lett. 2022, 4, 805–814.
Tian, Y. L.; Cao, H. Q.; Yang, H. J.; Yao, W. Q.; Wang, J. O.; Qia, Z. R.; Cheetham, A. K. Electron spin catalysis with graphene belts. Angew. Chem., Int. Ed. 2023, 62, e202215295.
Sun, B.; Yan, Z.; Cao, Y.; Ding, S. S.; Li, R. J.; Ma, B.; Li, X. Y.; Yang, H.; Yin, W.; Zhang, Y. M. et al. Intrinsic ferromagnetic semiconductors with high saturation magnetization from hybrid perovskites. Adv. Mater. 2023, 35, 2303945.
Giovanni, D.; Ma, H.; Chua, J.; Grätzel, M.; Ramesh, R.; Mhaisalkar, S.; Mathews, N.; Sum, T. C. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 Perovskite Thin Films. Nano Lett. 2015, 15, 1553–1558.
Zhang, H. C.; Zhai, Z. H.; Bi, Z. X.; Gao, H.; Ye, M.; Xu, Y.; Tan, H. R.; Yang, L. Y. Spin coherence and spin relaxation in hybrid organic-inorganic lead and mixed lead-tin perovskites. Nano Lett. 2023, 23, 7914–7920.
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.
Li, Y. X.; Zhang, X. Y.; Huang, H.; Kershaw, S. V.; Rogach, A. L. Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Mater. Today 2020, 32, 204–221.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications. NPG Asia Mater. 2016, 8, e328.
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.
Kim, Y. C.; Kim, K. H.; Son, D. Y.; Jeong, D. N.; Seo, J. Y.; Choi, Y. S.; Han, I. T.; Lee, S. Y. Park, N. G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91.
Náfrádi, B.; Szirmai, P.; Spina, M.; Lee, H.; Yazyev, O. V.; Arakcheeva, A.; Chernyshov, D.; Gibert, M.; Forró, L.; Horváth, E. Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat. Commun. 2016, 7, 13406.
Rajamanickam, N.; Chowdhury, T. H.; Isogami, S.; Islam, A. Magnetic properties in CH3NH3PbI3 perovskite thin films by Mn doping. J. Phys. Chem. C 2021, 125, 20104–20112.
Kanoun, M. B.; Goumri-Said, S. Insights into the impact of Mn-doped inorganic CsPbBr3 perovskite on electronic structures and magnetism for photovoltaic application. Mater. Today Energy 2021, 21, 100796.
Parobek, D.; Roman, B. J.; Dong, Y. T.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 2016, 16, 7376–7380.
Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.
Yeh, I. H.; Ghobadifard, M.; Feng, L.; Galievsky, V.; Radovanovic, P. V. Origin of dopant-carrier exchange coupling and excitonic zeeman splitting in Mn2+-doped lead halide perovskite nanocrystals. Nano Lett. 2024, 24, 10554–10561.
Jung, H. S.; Choe, H.; Park, J.; Kim, Y.; Oh, S. J.; Ryu, S. J.; Na, H. K.; Lee, S. J.; Neuman, K. C.; Cho, J. et al. Dual-emissive Mn-doped lead halide perovskite nanocrystals as background-suppressed latent fingerprint detection probes. ACS Appl. Mater. Interfaces 2023, 15, 51593–51605.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Maksym, V.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Wang, C. W.; Liu, X. H.; Qiao, T.; Khurana, M.; Akimov, A. V.; Son, D. H. Photoemission of the upconverted hot electrons in Mn-doped CsPbBr3 nanocrystals. Nano Lett. 2022, 22, 6753–6759.
Sun, Z. G.; Cai, B.; Chen, X.; Wei, W. X.; Li, X. M.; Yang, D. D.; Meng, C. F.; Wu, Y.; Zeng, H. B. Prediction and observation of defect-induced room-temperature ferromagnetism in halide perovskites. J. Semicond. 2020, 41, 122501.
Kumar, V.; Chauhan, H. C.; Nagal, V.; Hafiz, A. K.; Singh, K. Lattice-distortion-induced change in the magnetic properties in Br-defect host CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2023, 14, 888–896.
402
Views
58
Downloads
0
Crossref
0
Web of Science
1
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).