Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ammonia plays an irreplaceable role in agricultural production and also is an important chemical raw material and energy carrier. Developing a catalyst for the electrochemical NO3− reduction reaction (NO3RR) to synthesize ammonia is crucial for energy, food security and pollution control. Herein, by adjusting the Cu/Ni ratio, we report a simple impregnation and calcination method to synthesize a N-doped bamboo-like carbon nanotube (CNT)-encapsulated CuNi alloy catalyst (Cu7Ni3-CNT). Cu7Ni3-CNT reveals an excellent ammonia synthesis performance, which has the highest Faraday efficiency (FE, 99.18%) at −0.8 V vs. reversible hydrogen electrode (RHE), along with an ammonia production rate of 20.90 mg·cm−2·h−1. In addition, the highest ammonia production rate of Cu7Ni3-CNT can reach 23.21 mg·cm−2·h−1, with a high FE (90.80%) at −1.0 V vs. RHE. At the same time, the electrocatalyst displays exceptional stability, which can operate steadily for 400 h at 300 mA·cm−2. The high catalytic activity and excellent stability derive from catalyst structure and the synergistic effect between Cu7Ni3 alloy and encapsulating bamboo-like CNT. The incorporation of Ni enhances the intrinsic activity of Cu for NO3RR. CNT endows the catalyst with a larger specific surface area, more exposed active sites to further improve the apparent activity, and higher stability. The internal cavity of CNT also contributes to the enrichment of nitrate. Furthermore, in-situ Raman spectroscopy and density functional theory (DFT) calculations reveal that Cu in the alloy can effectively adjust the adsorption energy of *NO3 by Ni element and increase the activity of *H as the reduction driving force, thereby improving the intrinsic activity of NO3RR.
Xu, H.; Ma, Y. Y.; Chen, J.; Zhang, W. X.; Yang, J. P. Electrocatalytic reduction of nitrate—A step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710–2758.
Morlanés, N.; Katikaneni, S. P.; Paglieri, S. N.; Harale, A.; Solami, B.; Sarathy, S. M.; Gascon, J. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem. Eng. J. 2021, 408, 127310.
Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
Chen, W. D.; Yang, X. Y.; Chen, Z. D.; Ou, Z. J.; Hu, J. T.; Xu, Y.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Qiu, J. S. et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Adv. Funct. Mater. 2023, 33, 2300512.
Huang, Z. L.; Rafiq, M.; Woldu, A. R.; Tong, Q. X.; Astruc, D.; Hu, L. S. Recent progress in electrocatalytic nitrogen reduction to ammonia (NRR). Coord. Chem. Rev. 2023, 478, 214981.
Mou, T.; Wang, Y. T.; Deák, P.; Li, H.; Long, J.; Fu, X. Y.; Zhang, B.; Frauenheim, T.; Xiao, J. P. Predictive theoretical model for the selective electroreduction of nitrate to ammonia. J. Phys. Chem. Lett. 2022, 13, 9919–9927.
Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B: Environ. 2017, 207, 42–59.
Chen, W. D.; Xu, Y.; Liu, J. X.; Cao, H. Q.; Li, Y. L.; Ren, X. Z.; Ye, S. H.; Liu, J. H.; Zhang, Q. L. Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorg. Chem. Front. 2023, 10, 4901–4917.
Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Appl. Catal. B: Environ. 2018, 236, 546–568.
Zhou, M.; Wang, H. L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307.
Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem., Int. Ed. 2020, 59, 15294–15297.
Song, Y.; Yang, X.; Liu, H.; Liang, S. X.; Cai, Y. F.; Yang, W. Q.; Zhu, K. X.; Yu, L.; Cui, X. J.; Deng, D. H. High-pressure electro-Fenton driving CH4 conversion by O2 at room temperature. J. Am. Chem. Soc. 2024, 146, 5834–5842.
Shin, S.; Lee, E.; Nam, J.; Kwon, J.; Choi, Y.; Kim, B. J.; Ham, H. C.; Lee, H. Carbon-embedded Pt alloy cluster catalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 2024, 14, 2400599.
Huang, L.; Su, Y. Q.; Qi, R. J.; Dang, D.; Qin, Y. Y.; Xi, S. B.; Zaman, S.; You, B.; Ding, S. J.; Xia, B. Y. Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem., Int. Ed. 2021, 60, 25530–25537.
Xu, Y.; Ren, K. L.; Ren, T. L.; Wang, M. Z.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Ultralow-content Pd in- situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Appl. Catal. B: Environ. 2022, 306, 121094.
Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. L.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater. 2023, 33, 2209890.
Xie, M. H.; Tang, S. S.; Li, Z.; Wang, M. Y.; Jin, Z. Y.; Li, P. P.; Zhan, X.; Zhou, H.; Yu, G. H. Intermetallic single-atom alloy In–Pd bimetallene for neutral electrosynthesis of ammonia from nitrate. J. Am. Chem. Soc. 2023, 145, 13957–13967.
Gao, Y.; Wang, R.; Li, Y. D.; Han, E. S.; Song, M. S.; Yang, Z. Y.; Guo, F.; He, Y. Z.; Yang, X. H. Regulating dynamic equilibrium of active hydrogen for super-efficient nitrate electroreduction to ammonia. Chem. Eng. J. 2023, 474, 145546.
Kim, K.; Zagalskaya, A.; Ng, J. L.; Hong, J.; Alexandrov, V.; Pham, T. A.; Su, X. Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nat. Commun. 2023, 14, 823.
Cai, J. M.; Huang, J. J.; Cao, A.; Wei, Y. Y.; Wang, H. M.; Li, X.; Jiang, Z.; Waterhouse, G. I. N.; Lu, S. Y.; Zang, S. Q. Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene. Appl. Catal. B: Environ. 2023, 328, 122473.
Kim, K. H.; Lee, H.; Huang, X. P.; Choi, J. H.; Chen, C. P.; Kang, J. K.; O’Hare, D. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy Environ. Sci. 2023, 16, 663–672.
Wang, Y. T.; Xu, Y.; Cheng, C. Q.; Zhang, B. S.; Zhang, B.; Yu, Y. F. Phase-regulated active hydrogen behavior on molybdenum disulfide for electrochemical nitrate-to-ammonia conversion. Angew. Chem., Int. Ed. 2024, 63, e202315109.
Liu, Y. T.; Qiu, W. X.; Wang, P. F.; Li, R.; Liu, K.; Omer, K. M.; Jin, Z. Y.; Li, P. P. Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Appl. Catal. B: Environ. 2024, 340, 123228.
Zhang, S.; Wu, J. H.; Zheng, M. T.; Jin, X.; Shen, Z. H.; Li, Z. H.; Wang, Y. J.; Wang, Q.; Wang, X. B.; Wei, H. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
Yang, J.; Qi, H. F.; Li, A. Q.; Liu, X. Y.; Yang, X. F.; Zhang, S. X.; Zhao, Q.; Jiang, Q. K.; Su, Y.; Zhang, L. L. et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 2022, 144, 12062–12071.
Xiao, L.; Dai, W. D.; Mou, S. Y.; Wang, X. Y.; Cheng, Q.; Dong, F. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy Environ. Sci. 2023, 16, 2696–2704.
Zhou, N.; Wang, Z.; Zhang, N.; Bao, D.; Zhong, H. X.; Zhang, X. B. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catal. 2023, 13, 7529–7537.
Hu, T.; Wang, C. H.; Wang, M. T.; Li, C. M.; Guo, C. X. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts. ACS Catal. 2021, 11, 14417–14427.
Liu, L. C.; Corma, A. Bimetallic sites for catalysis: From binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855–4933.
Chen, F. Y.; Wu, Z. Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M. et al. Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nat. Nanotechnol. 2022, 17, 759–767.
Chen, X. H.; Cheng, Y. M.; Zhang, B.; Zhou, J.; He, S. S. Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia. Nat. Commun. 2024, 15, 6278.
Shao, J. Q.; Jing, H. J.; Wei, P. F.; Fu, X. Y.; Pang, L.; Song, Y. P.; Ye, K.; Li, M. R.; Jiang, L. Z.; Ma, J. Y. et al. Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst. Nat. Energy 2023, 8, 1273–1283.
Jiang, H. F.; Chen, G. F.; Savateev, O.; Xue, J.; Ding, L. X.; Liang, Z. X.; Antonietti, M.; Wang, H. H. Enabled efficient ammonia synthesis and energy supply in a zinc-nitrate battery system by separating nitrate reduction process into two stages. Angew. Chem., Int. Ed. 2023, 62, e202218717.
Yu, W. Q.; Yu, J. Y.; Huang, M.; Wang, Y. J.; Wang, Y. J.; Li, J. W.; Liu, H.; Zhou, W. J. Laser-controlled tandem catalytic sites of CuNi alloys with ampere-level electrocatalytic nitrate-to-ammonia reduction activities for Zn-nitrate batteries. Energy Environ. Sci. 2023, 16, 2991–3001.
Gao, W. S.; Xie, K. F.; Xie, J.; Wang, X. M.; Zhang, H.; Chen, S. Q.; Wang, H.; Li, Z. L.; Li, C. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Adv. Mater. 2023, 35, 2202952.
Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
Li, H.; Yan, C. X.; Guo, H. Y.; Shin, K.; Humphrey, S. M.; Werth, C. J.; Henkelman, G. Cu x Ir1− x nanoalloy catalysts achieve near 100% selectivity for aqueous nitrite reduction to NH3. ACS Catal. 2020, 10, 7915–7921.
Wang, S.; Li, L.; Hui, K. S.; Dinh, D. A.; Lu, Z. Y.; Zhang, Q. J.; Hui, K. N. Non-noble single-atom alloy for electrocatalytic nitrate reduction using hierarchical high-throughput screening. Nano Energy 2023, 113, 108543.
Zhang, Z. H.; Wu, P. Y. A facile one-pot route towards three-dimensional graphene-based microporous N-doped carbon composites. RSC Adv. 2014, 4, 45619–45624.
Jiang, L. J.; Qiu, L. J.; Cen, T. L.; Liu, Y. Y.; Peng, X. M.; Ye, Z. F.; Yuan, D. S. Controllable Co@N-doped graphene anchored onto the NRGO toward electrocatalytic hydrogen evolution at all pH values. Chem. Commun. 2020, 56, 567–570.
Ma, J. W.; Wang, M.; Lei, G. Y.; Zhang, G. L.; Zhang, F. B.; Peng, W. C.; Fan, X. B.; Li, Y. Polyaniline derived N-doped carbon-coated cobalt phosphide nanoparticles deposited on N-doped graphene as an efficient electrocatalyst for hydrogen evolution reaction. Small 2018, 14, 1702895.
Zhao, R. Y.; Wang, Y. D.; Ji, G. P.; Zhong, J. J.; Zhang, F. T.; Chen, M. F.; Tong, S. R.; Wang, P.; Wu, Z. H.; Han, B. X. et al. Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential. Adv. Mater. 2023, 35, 2205262.
Chhetri, M.; Wan, M. Y.; Jin, Z. H.; Yeager, J.; Sandor, C.; Rapp, C.; Wang, H.; Lee, S.; Bodenschatz, C. J.; Zachman, M. J. et al. Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO2 reduction. Nat. Commun. 2023, 14, 3075.
Guo, W. X.; Gao, X. P.; Zhu, M. Z.; Xu, C. X.; Zhu, X. R.; Zhao, X. Y.; Sun, R. B.; Xue, Z. G.; Song, J.; Tian, L. et al. A closely packed Pt1.5Ni1− x /Ni–N–C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 2023, 16, 148–156.
Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.
Bai, L. C.; Franco, F.; Timoshenko, J.; Rettenmaier, C.; Scholten, F.; Jeon, H. S.; Yoon, A.; Rüscher, M.; Herzog, A.; Haase, F. T. et al. Electrocatalytic nitrate and nitrite reduction toward ammonia using Cu2O nanocubes: Active species and reaction mechanisms. J. Am. Chem. Soc. 2024, 146, 9665–9678.
Wang, J. J.; Ou, Z. D.; Dong, C. B.; Su, M. Y.; Ali, A.; Kuklin, A. V.; Ågren, H.; Baryshnikov, G. V.; Liu, Y.; Zhao, X. et al. Electronic structure modulated by B-doped Cu promotes electrocatalytic nitrate reduction for ammonia production. ACS Catal. 2025, 15, 156–166.
Zhao, X.; Yang, Z. Q.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X. H.; Zhang, H. B. Efficient ambient electrocatalytic ammonia synthesis by nanogold triggered via boron clusters combined with carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 42821–42831.
Deng, X. F.; Xia, S. Y.; Zhao, H. X.; Wang, J. J.; Wang, Z. X.; Kuklin, A.; Ågren, H.; Baryshnikov, G.; Zhang, H. B. A new strategy for boron cluster-based metal boride (Co2B) synthesis and its applicability to electrocatalytic nitrate reduction. Chem. Eng. J. 2024, 485, 149639.
Li, S. Y.; Zhang, G.; Ma, X.; Gao, H.; Fu, D. L.; Wang, T.; Zeng, J. R.; Zhao, Z. J.; Zhang, P.; Gong, J. L. Atomically isolated Pd sites promote electrochemical CO reduction to acetate through a protonation-regulated mechanism. J. Am. Chem. Soc. 2024, 146, 31927–31934.
Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed. 2023, 62, e202300054.
Liu, Y.; Niu, S. Y.; Zou, Y.; Huang, S. L.; Shi, Y. X.; Gao, S. Y.; Tsiakaras, P. Electrochemical production of ammonia: Nitrate reduction over novel Cu–Ni–Al metallic glass nanoparticles used as highly active and durable catalyst. Appl. Catal. B: Environ. Energy 2025, 363, 124729.
Yao, Z. B.; Liu, S. Q.; Liu, H. H.; Ruan, Y. K.; Hong, S.; Wu, T. S.; Hao, L. D.; Soo, Y. L.; Xiong, P.; Li, M. M. J. et al. Pre-adsorbed H-assisted N2 activation on single-atom cadmium-O5 decorated In2O3 for efficient NH3 electrosynthesis. Adv. Funct. Mater. 2023, 33, 2209843.
302
Views
58
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).